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Abstract

Cancer may be a disease of geometry: a misregulation of the field of information that orchestrates 

individual cells’ activities towards normal anatomy. Recent work identified molecular 

mechanisms underlying a novel system of developmental control: bioelectric gradients. 

Endogenous spatio-temporal differences in resting potential of non-neural cells provide instructive 

cues for cell regulation and complex patterning during embryogenesis and regeneration. It is now 

appreciated that these cues are an important layer of the dysregulation of cell: cell interactions that 

leads to cancer. Abnormal depolarization of resting potential (Vmem) is a convenient marker for 

neoplasia and activates a metastatic phenotype in genetically-normal cells in vivo. Moreover, 

oncogene expression depolarizes cells that form tumor-like structures, but is unable to form 

tumors if this depolarization is artificially prevented by misexpression of hyperpolarizing ion 

channels. Vmem triggers metastatic behaviors at considerable distance, mediated by transcriptional 

and epigenetic effects of electrically-modulated flows of serotonin and butyrate. While in vivo 

data on voltages in carcinogenesis comes mainly from the amphibian model, unbiased genetic 

screens and network profiling in rodents and human tissues reveal several ion channel proteins as 

bona fide oncogene and promising targets for cancer drug development. However, we propose that 

a focus on specific channel genes is just the tip of the iceberg. Bioelectric state is determined by 

post-translational gating of ion channels, not only from genetically-specified complements of ion 

translocators. A better model is a statistical dynamics view of spatial Vmem gradients. Cancer may 

not originate at the single cell level, since gap junctional coupling results in multi-cellular 

physiological networks with multiple stable attractors in bioelectrical state space. New medical 

applications await a detailed understanding of the mechanisms by which organ target morphology 

stored in real-time patterns of ion flows is perceived or mis-perceived by cells. Mastery of somatic 

voltage gradients will lead to cancer normalization or rebooting strategies, such as those that occur 

in regenerating and embryonic organs, resulting in transformative advances in basic biology and 

oncology.
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Introduction

“Cancer is no more a disease of cells than a traffic jam is a disease of cars. A 

lifetime of study of the internal-combustion engine would not help anyone 

understand our traffic problems--

D. W. Smithers”

Ideas in cancer biology comprise two complementary paradigms. The mainstream view is 

that cancer cells are irreversibly damaged: they have accumulated genetic or epigenetic 

damage and are fundamentally a different kind of cell. On this view (the somatic mutation 

model), cancer cells have acquired cell-autonomous properties that underlie unlimited 

proliferation and metastasis [1,2]. Contrasting with this view is the idea that cells exhibit 

neoplastic behavior and form tumors due to a change of interactions with their environment. 

This view of cancer is focused on context-non-cell-autonomous signaling that activates 

cellular misbehavior in the host [3–8]. The latter class of models ranges from simple growth 

suppressive molecules (morphostats) secreted by healthy tissue [9,10] and averaging effects 

of cell neighbors that stabilize stochastic gene expression [11] to suppression of 

tumorigenesis by tissue-level organization [12,13] to global models of whole-body 

morphogenetic information fields [14–19].

While the mutation-centered paradigm has dominated work in this field for decades, 

increased attention is now focused on cancer as a progressive loss of the organization 

capacity of the environment over the heterogeneous behavior of isolated cells [18–24]. 

Interestingly, “no cancer exhibits any trait which cannot be found in some normal tissue as 

the expression of normal genomic activity; no cancer grows faster than an embryo nor is any 

cancer cell more invasive than a macrophage nor are cancer cell lines more immortal than 

are germ lines. The only distinction is that, in the cancer, the expression or lack of 

expression of many traits may be inappropriate for the tissue in which the cancer occurs” 

[25]. This is a view of cancer as fundamentally a developmental disorder of cell regulation.

Large-scale shape, or the correct geometric arrangement of organs and tissues in an 

organism, is a key concept in biological growth and development. To achieve optimal 

health, organisms strive to maintain shape at all levels, from the single cell to the whole 

organism. Cancer can be seen as an error of geometry, because tumor cells grow, migrate, 

and function without regard for the orderly structure within which they occur [26]. This is 

seen most acutely in teratomas - embryonic tumors that display extensive differentiation of a 

number of tissues combined with a complete absence of orderly organization of the whole. 

The idea that cancer is a developmental disease is an old one [9,10,26–29]. Needham and 

Waddington speculated that cancers represented an escape from the control of the 

morphogenetic field [30–32]. On this view, tumors form when cells stop obeying the normal 

patterning cues of the body: “cancer as part of an inexorable process in which the organism 

falls behind in its ceaseless effort to maintain order” [28].

Understanding cancer as a reversible physiological state of a multi-cellular dynamical 

system (as opposed to damage within single cancer stem cells) has significant medical 

implications because it suggests specific prevention and detection strategies focused on 
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modulating the physiological interrelationships among many cells instead of looking for 

DNA markers in single cancer stem cells. A mechanistic dissection of these pathways may 

give rise to strategies that reboot [23] or normalize cancer, in contrast to current approaches 

that all seek to kill tumors and thus risk a compensatory proliferation response by rogue cells 

that still remain [33]. Thus, biologists are beginning to explore the idea that cancer is not a 

genetic disease of specific loci but rather a kind of attractor in a multi-dimensional 

transcriptional space describing cell states [17]: “The topology of the attractor is the 

‘invisible hand’ driving the system functions into coherent behavioral states: they are self-

organizing structures and can capture the gene expression profiles associated with cell fates” 

[34]. Huang et al. also point out an interesting paradox: while many studies seek to 

“determine which gene is mutated to explain an incremental malignant trait, no one doubts 

that normal cells as distinct as a mature neuron vs. a blood or epithelial stem cell share the 

exact same genome! No mutations are invoked to explain the remarkable phenotypes during 

cell lineages in development” [34], and indeed aneuploidy is routinely present in normal 

brain, testes, and liver, but does not usually result in cancer (reviewed in 8).

A complete picture of cancer no doubt involves both an understanding of DNA damage and 

cell signaling dynamics, although considerable controversy exists as to the most appropriate 

level of organization at which to search for the origin and cure of cancer (ranging from 

genes, to stem cells, to tissues, to entire body plan organizing fields). Here we focus on 

bioelectrical information-exchanging processes occurring within and among cell groups in 

the suppression and progression of cancer, followed by an in-depth discussion of the 

importance of context and cell: cell signaling to the cancer problem in general. Our 

hypothesis is that while ion channels are increasingly revealed as important oncogenes, a 

focus on specific channel genes is just the tip of the iceberg because bioelectric cell states 

result from post-translational gating of ion channels and pumps, not only from genetically-

specified complements of ion translocators. A more fruitful model of cancer and its 

reprogramming may be a statistical dynamics view of spatial gradients of resting potential as 

a systems-level property of multi-cellular physiological networks of cells linked by gap 

junctions.

Bioelectricity as an instructive component of microenvironment

Voltage gradients in non-neural cells control cell behavior—It has long been 

known that bioelectrical signals, or spatio-temporally patterned ion flows in non-excitable 

cells, are important determinants of cell behavior [35,36]. Steady-state endogenous ion 

currents, resting potentials (voltage gradients), and electric fields are produced by the 

activity of ion channel and pump proteins across cell membranes and their slow dynamics 

are distinct from the rapid action potentials of nerve and muscle (Figure 1). While related 

biophysical phenomena include transepithelial electric fields [37,38], ultraweak photon 

emission [39,40], and coherent AC electromagnetic fields [41,42], here we focus on 

distributions of Vmem or membrane potential [43]. The many interesting studies of applied 

field effects are discussed in several excellent recent reviews [44–47].

Bioelectric properties of cells and the electrical states of cells in the microenvironment are 

known to control several key behaviors of relevance to cancer [38,48–54]. For example, 
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electric fields generated by ion pumping across epithelia serve as migration cues for cellular 

galvanotaxis [55–59] - an important guidance modality for cell movement within the host. 

Cell shape changes, such as increased arborization, are also driven by endogenous electric 

fields and changes in Vmem [60–64]. Together, migration and shape properties are key 

elements of successful metastasis.

Moreover, resting potential established by ion channel and pump proteins is important for 

determination of differentiation state and proliferation; generally, a depolarized state is 

indicative of plastic, undifferentiated cells (e.g., stem cells), while differentiation is caused 

by increase of negative Vmem. Functional control of cell state by changes in Vmem has been 

observed in many kinds of stem and progenitor cells [65–75], including adult human 

mesenchymal stem cell [71,76] which can be kept stem-like despite the presence of 

chemical differentiation factors by forced depolarization, and in induced pluripotentent stem 

cells [77]. Even mature CNS neurons can be made to re-enter mitosis by sustained 

depolarization [78,79] revealing the power of transmembrane potential to regulate 

proliferative potential in adult somatic cells.

Importantly, the molecular mechanisms by which cell-autonomous [80] and non-

autonomous [49,81] bioelectric events control downstream processes are now beginning to 

be fleshed out. Electric fields are transduced to cell migration machinery via Ca2+-

dependent mechanisms. A cell with a negative membrane potential, when exposed to an 

electric field, becomes more hyperpolarized near the anode, allowing the passive inflow of 

Ca2+ through voltage-gated calcium channels. An increase in Ca2+ in the anodal side of the 

membrane results in increased polymerization/depolymerization of actin, contraction of 

actomyosin, and decreased adhesion; collectively, the anodal side contracts and is propelled 

towards the cathode [82]. Inositol-phospholipid signaling, PI(3)Kγ, and cdc42/rho have been 

especially implicated in setting the directionality of cytoskeleton-mediated migration 

polarity in several cell types [83,84].

Changes in Vmem of cells, such as cancer-associated depolarization, can trigger 

transcriptional changes by 1) regulating the movement of morphogens such as serotonin, 

calcium, and inositol triphosphate through gap junctions [85–91], 2) controlling the import/

export of small signaling molecules such as serotonin and butyrate across membrane 

exchangers [60,91–94], and 3) modulating the activity level of phosphatases such as PTEN 

[95–98]. Together, these transduction mechanisms convert an essentially biophysical state 

change into secondary messenger events that impact on transcriptional and epigenetic 

regulation of loci such as NODAL which are important for the cancer phenotype [94,99]. 

While bioelectric cues feed into the same molecular-genetic pathways that are known to 

regulate normal and neoplastic cell behaviors, they form a pathway that functions alongside 

biochemical gradients, but with significantly different spatial dynamics, to coordinate 

normal tissue morphology.

Spatio-temporal gradients of Vmem are instructive patterning cues—Disruption 

of the electrical gradients, or the mechanisms by which they are perceived by cells, are one 

way that complex anatomical order is subverted during carcinogenesis. Recent development 

of state-of-the-art tools for the detection and experimental manipulation of biophysical 
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signals in multicellular patterning contexts [80,100–102] has revealed how distributions of 

voltage gradients mediate positional information, organ identity of large cell groups, and 

initiation signals for complex developmental modules such as tail or limb regeneration. 

Using a combination of fluorescent voltage-reporter dyes to characterize spatial Vmem 

distributions and functional studies using targeted misexpression of a panel of well-

characterized ion transporters to specifically modify those gradients in vivo, instructive 

signaling roles of transmembrane voltage gradients have been identified in embryogenesis 

and regeneration, adding to the list of such roles identified in earlier work using functional 

physiology [103,104].

During early frog development, the redistribution of maternal potassium channels and 

proton pumps in early blastomeres results in a Vmem difference across gap junction-coupled 

cells [89,90,105–108]. The resulting voltage gradient redistributes pre-nervous serotonin to 

the right side, which then interacts with a cytoplasmic receptor that binds histone 

deacetylase [1] and shuts off Nodal expression on the right side of the embryo [99,106,109]. 

Later, during craniofacial patterning, the position of the eyes [110] and other elements of the 

face [111] is determined by a regionalization of naïve ectoderm into distinct domains of 

hyperpolarized cells. These voltage gradients regulate the expression of genes like Frizzled, 

and artificially altering this pattern by misexpression of specific ion channels and pumps is 

sufficient to perturb normal craniofacial anatomy and to reprogram tissues far away from the 

head to form properly-patterned eyes [110]. Importantly, in such cases, as in the cancer 

phenotypes discussed below, it is really the Vmem that is the necessary and sufficient factor 

for inducing specific shape change – it does not matter which ion translocator protein is 

involved, or what ion species is used: a given voltage change, no matter how it is produced, 

activates specific downstream events.

During regeneration of flatworms, the patterning activity of adult stem cells (neoblasts) is 

regulated by gap junctional connectivity and a set of proton and potassium flows [112–114]. 

By regulation of apoptotic remodeling and downstream activity of genes such as Wnt11 

[115], the physiological gradient determines the anatomy of the organs built after injury. In 

vertebrates, where electric fields were long ago implicated in limb regeneration [116–123], 

recent experiments showed that driving proton and sodium fluxes can initiate complete tail 

[124,125] or limb [126] regeneration in a range of non-regenerative conditions. The 

mechanisms involve guidance of innervation into the stump, activation of blastema genes 

such as MSX1, Notch, Delta, BMP2, and BMP4, and induction of cell proliferation in the 

wound mesenchyme.

Indeed, a number of recent molecular studies using unbiased approaches have identified a 

range of ion channels, gap junctions, and ion pumps in: morphogenesis of the trachea [127], 

development of skin pigmentation pattern [128,129], regeneration of the zebrafish fin [130], 

development of mammalian face [131–139], growth of the cerebellum [140–143], and 

formation of the skeletal [144], cardiac [145,146], and urogenital [147,148] systems. Thus in 

addition to experiments directly studying bioelectricity in amphibian, avian, and planarian 

systems, data from genetic models such as Drosophila also identifies channels such as 

Kir2.1 as important regulators of Dpp signaling and wing patterning [137].
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With respect to wound healing, inhibition of which is known to be a tumor promoting agent 

[149–151], elegant molecular genetics experiments have now revealed some of the elements 

underlying endogenous electric field-mediated cell migrations. Epithelial wound closure 

involves Integrin Beta-4 (ITGB4), Cyclic AMP, betaphosphatidylinositol-3-OH kinase-γ 

(PI(3)Kγ) and phosphatase and tensin homolog (PTEN) [49,81,83,84,152]. Having seen that 

endogenous electric fields and Vmem gradients play an instructive role in normal patterning, 

what is the evidence that dysregulation of bioelectrical communication can underlie the 

cancer phenotype?

Bioelectric gradients in cancer at the cell level

Ion channels are oncogenes and important drug targets—The view that cancer is 

a developmental disorder predicts that molecular mechanisms known to be important 

mediators of the morphogenetic field would be involved in tumorigenesis. Indeed, there is 

mounting evidence (Figure 2) that the bioelectric cues that establish normal pattern can go 

awry and result in cancerous growth [51,153,154]. The function of ion channels is involved 

in the self-sufficiency in growth signals, insensitivity to anti-growth signals, evasion of 

programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue 

invasion and metastasis [52]. Ion channels, pumps, and gap junctions are now recognized as 

oncogenes [51], predictive markers [52], and an important set of targets for new cancer 

drugs that’s seek to modulate cell behavior by tweaking electrical controls of proliferation or 

metastatic behavior [155]. Importantly however, oncochannel misregulation occurs not only 

through mutations in channel genes but also by changes in the rich network of events that 

implement post-translational gating of wild-type ion channels.

Tumor cells differ from untransformed cells in terms of the type of ion channels and pumps 

they express and in the resulting membrane potential of the cells [156–165]. Some channel 

levels are thus used as markers, such as the K2P channel TREK-1 and the sodium channel 

NaV in prostate cancer [166,167], and the TRPM1 channel in melanoma [168,169]. Tumor 

cells’ membrane voltage is often determined by a different transporter than that of normal 

cells and it has been suggested that this gives the cells a selective advantage [160]. For 

example, hepatocellular carcinoma up-regulates the V-ATPase, which is then localized to 

the plasma membrane [170].

The function of ion translocators, (Table 1) such as voltage-gated K+ channels [171,172] and 

Cl− channels [173], controls the proliferation rate of a number of cells that often form 

tumors [174–185] or leukemia [186]. ERG is particularly involved in cell growth signals 

[160,187–191], and is implicated in transformation of prostate epithelium [192]. Also 

implicated are 2-pore channels such as KCNK9 [193,194], and voltage-gated sodium 

channels, being definitive oncogenes – necessary and sufficient for a transformed phenotype 

[195]. Transfection of the EAG K+ channel confers a transformed phenotype in mammalian 

cells [196], and hEAG1 channel expression is regulated by p53 (via miR-34 and E2F1) 

[197]. In human breast cancer cells, K+ current controls progression through the cell cycle 

[198]; activation of an ATP-sensitive potassium channel is required for breast cancer cells to 

undergo the G1/G0-S transition [199]. Metastatic potential correlates with voltage-gated 

inward sodium current and it has been suggested that some sodium channels may be 
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oncofetal genes, encoding signals that are active during the rapid and autonomous growth of 

tumors and embryos [167,200–203].

Migration of cells including B-16 melanoma is dependent on K+ channels [204]. The 

voltage-gated sodium channels (VGSCs) potentiate breast cancer metastasis [203], and 

indeed the involvement of NaV in the galvanotaxis that allows prostate and breast cancer 

cells to move across vessel lumens [82,195,205–211] is one of the leading stories on ion 

channels in cancer. Highly up-regulated activities of NaV confers on cancer cells directional 

motility and invasive characteristics via Ca2+ and pH-sensitive cytoskeletal remodeling 

processes which facilitate metastasis [195,203]. Certain channelopathies result in syndromes 

associated with cancer such as the lung cancer seen in Lambert-Eaton syndrome [212], and 

the tumors present in Beckwith-Wiedemann syndrome, which is caused by abnormal 

imprinting of a voltage-gated potassium channel [213–215]. As will be discussed below, 

Vmem induces cancer-like cell states; while a complete picture of the process remains to be 

worked out in mammalian cells, a few entry-points have been identified. For example, 

KID-1, a kinase induced by depolarization [216,217], is a member of the Pim family of 

proto-oncogenes [218].

Voltage control functions together with the more commonly-studied signals such as growth 

factors and adhesion molecules. For example, adhesion to specific substrate molecules 

(mediated by integrin) causes a 20 mV hyperpolarization of resting potential in murine 

neuroblastoma cells; the hyperpolarization is due to Kir channels and works through a G 

protein; this hyperpolarization is gone after 1 hour and is necessary for neurite outgrowth 

[219,220]. Proton pump blockers such as concanamycin and bafilomycin are known anti-

tumor agents [221–228] and repression of pancreatic tumor cells occurs after selective 

blockade of IK-type channels [229]. The involvement of neurotransmitters in cancer 

[230,231] could also be explained by a voltage-dependent mechanism. For example, GABA 

is a tumor suppressor [232–234] and GABAA and nAChR are ligand-gated ion channels 

often expressed in tumors [51].

The involvement of ion channels in transformation, growth control, and metastasis has led to 

efforts to develop potassium, chloride, and sodium channel and pump modulators as clinical 

agents for ovarian [235], breast [236], and prostate [237] cancer [155,238]. Unbiased drug 

screens for inhibitors of cancer stem cells have identified salinomycin (a potassium 

ionophore) [239] and tetraethylammonium (TEA, a potassium channel blocker) as 

anticancer drugs that target tumor initiating cells. For example, TEA was found to suppress 

colony formation in endometrial cancer cells while its withdrawal resulted in a significant 

enhancement of tumorigenesis [240].

Which ion channels should be targeted by therapeutic drugs? In an important sense, focusing 

on the channel gene or protein may be missing the bigger picture. In the current literature, 

ion translocators are usually treated as single genes or proteins responsible for a specific cell 

behavior (metastasis, hyperproliferation, etc.) – a cell-level view that neglects the fact that 

numerous channels and pumps contribute to the Vmem gradients that mediate large-scale 

patterning cues [54,242]. The true impact of bioelectricity in cancer will only occur when 

we understand and target the storage of patterning information in physiological networks 
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that is misprocessed in cancer [243,244]; such networks are dynamical systems with 

complex feedback between the post-translational gating of many different channel and pump 

proteins.

Resting potential: a statistical dynamics view

“For those who believe in the simplification and rationalization of the cancer process, the 

actual course of research on the molecular basis of cancer has been largely disappointing. 

Rather than revealing a small number of genetic and biochemical determinants operating 

within cancer cells, molecular analyses of human cancers have revealed a bewilderingly 

complex array of such factors.” [245]. It is now appreciated that the essence of cancer may 

not be in specific driver genes but in the dynamics of cells traversing state spaces and 

shifting between different attractors [34,246]. While these state spaces are commonly 

thought of in terms of transcription (gene-regulatory networks), the data on bioelectricity in 

cancer suggests that another important concept may be the physiological state space.

It has long been realized that cancer differs from normal cells by the relatively depolarized 

state of its cells [247–250]. As far back as the 1930’s, Burr was able to detect tumors based 

on voltmeter readings [251,252]. What these classical data (and the molecular data 

summarized below) had in common is a focus on bioelectrical state of the cell rather than its 

genetics: a given resting potential level is contributed to by all of the ion channels and 

pumps in the cell. Thus, while Vmem relies on gene products, it is a complex function of all 

of them and cannot even in principle be reduced to genetics or transcriptional profiles 

because all of these translocator proteins are gated at the post-translational level. The 

dependence of voltage upon the activities of a myriad channels which are regulated by each 

other and additional physiological events (e.g., phosphorylation), and the ability of voltage 

change to induce specific outcomes (regardless of which ion channels are used to alter the 

Vmem of this cell), suggest a powerful paradigm borrowed from physics: statistical 

mechanics.

We propose that the right concept to describe the role of Vmem in cellular control is akin to 

“pressure” in physics. Pressure is a systems property – it is created by the contribution of 

individual molecules’ motions, but tracking any individual molecule in an attempt to 

understand or manipulate what the system will do would be missing the point entirely. There 

is no “driver particle” in a gas under pressure any more than there is anything special about a 

particle that happens to be at the “center of gravity” of a complex object. Pressure is a 

concept that exists at a higher level of organization than individual molecules, but is causal 

in the sense that appropriate measurement and control of pressure as such is sufficient to 

efficiently predict and rationally alter the behavior of systems. We propose that a statistical 

mechanics view of Vmem is the right level to understand its involvement in cancer. Focusing 

on the details of specific channel genes obscures the “necessary and sufficient causal state” 

for inducing or suppressing cancer (e.g., depolarized Vmem, see below). Specific channels 

may dominate the Vmem in specific cell types, and in those cell types serve as convenient 

and simple genes to be targeted. However, the general situation is that one can often use any 

well-characterized channel or pump to make the necessary (and functionally sufficient) 

changes in Vmem. True, databases like Gene Expression Omnibus and Oncomine are 

Chernet and Levin Page 8

J Clin Exp Oncol. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



revealing many associations between ion channels and cancer, and specific network analyses 

do implicate ion channels [253] in processes such as invasiveness. We argue that this is only 

the tip of the iceberg – an immense under-estimate of the true importance of voltage in 

oncology, because most of the physiological changes are occurring at the post-translational 

gating level, and thus are utterly invisible to the mRNA or protein profiling that is so 

extensively used today.

This was seen for example in the regeneration and left-right asymmetry field, where any 

number of appropriate gain-of-function channel and pump constructs could be used to 

induce specific anatomical outcomes such as randomization of the asymmetric organs’ 

laterality or the regrowth of a tail [80,100,126]. Focusing on individual channels as “genes 

for regeneration” is missing the point that the necessary and sufficient factor is often a 

voltage state, such as the narrow range of Vmem that induces eye formation in any region of 

the Xenopus larva [110]. With increasingly detailed profiling data, the picture is going to 

only become more complicated unless we define the distinct physiological states that are 

responsible for inducing specific cell behaviors such as transformation or metastasis and 

formulate models at that level of biological organization. This in turn will enable us to 

rationally design reagents (e.g., select specific gain-of-function channels or pharmacological 

cocktails) to control Vmem appropriately in vivo.

But, if distinct Vmem levels are transduced by various second-messenger mechanisms into 

transcriptional and epigenetic responses, why not simply focus on those downstream 

endpoints directly? This is the situation with every complex regulatory network – any node 

event (transcriptional or biophysical) has an upstream cause and a downstream effect. The 

trick is to find “key nodes” – components of the functional network that are convenient to 

manipulate because they offer optimal control over complex downstream events. This is 

seen for example in the regeneration field, where a single hour’s treatment of a non-

regenerative tail blastema is sufficient to induce the entire 8-day regeneration program of 

this complex appendage (containing spinal cord) [125]. Bioelectric states appear to be 

powerful master regulators that trigger complex downstream cascades (self-limiting and 

self-organizing patterning modules) without the need to micromanage the process. 

Importantly, recent data reveal that Vmem is a similarly potent control node in the genetic 

and biophysical networks that underlie cancer.

Bioelectrical regulation of cancer in vivo

Vmem signature detects cancer—A variety of bioelectric properties have been used as 

detection modalities for tumors; these capitalize on cancer cells’ distinct electrical 

impedance [254–268] or ion content [269,270]. Zeta potential is also associated with cancer; 

for example asbestos fibers and sheets of positively-charged materials (but not powders of 

the same material) induce tumors, probably by acting as a capacitor for bioelectric potential, 

the positive side corresponding to the electron sink existing at a wound [271]. In this section, 

we focus on depolarized Vmem, which has been suggested to correspond to the cancer state 

[247–250].

One way to probe the physiology of the effects of canonical mammalian oncogenes (Gli1, 

Xrel3 and KRASG12D) and a mutant tumor suppressors (p53Trp248) in vivo is to 
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misexpress them in Xenopus and zebrafish embryos [272–275], which induces tumor like 

structures (ITLS, Figure 3A,A′). ITLS’s thus form as a result of genetic interference with 

signaling pathways altered in several cancer types including basal cell carcinoma, lung 

cancer, leukemia, melanoma, and rhabdomysarcoma [276–279]. Examination of injected 

animals using fluorescence reporters of Vmem [280] revealed unique depolarization of 

tumors (and increased sodium content) compared to healthy surrounding tissues (Figure 3B) 

[93,281]. Moreover, depolarization foci are present in oncogene-expressing, preneoplastic 

cells that are yet to undergo transformation or show any morphological phenotype. Such 

depolarized foci, while present in only 19–30% of oncogene-injected embryos (depending 

on oncogene used), predict tumor formation with 50–56% success rate (15–21% false 

negatives). For comparison, prostate specific antigen (PSA) level in the serum, when used as 

a biomarker for prostate cancer, has ~29% predictive value [282,283]. An added advantage 

of Vmem as a biomarker is that it is associated with tumors of diverse molecular origin, 

suggesting a general role for Vmem change as an early indicator of tumorigenesis.

The next major areas of opportunity for bioelectric detection of cancer are four-fold. First, a 

more specific physiological signature needs to be developed (to distinguish tumor cells from 

adult stem cells – another depolarized population) and appropriate voltage-sensitive dye 

technology implemented as a diagnostic tool to visualize areas of pre-cancer on patients as 

well as observe tumor margins during surgery. In addition to visualization, a better 

characterization of bioelectric state could be used to guide drug delivery vehicles such as 

nanoparticles [284,285]. Second, this strategy needs to be validated in a mammalian model 

system, and in a range of well-characterized human tumor cell lines. Third, it is critical to 

begin to tackle the long-range aspects of biological disturbance introduced by cancer. While 

body-wide morphogenetic fields and the role that Vmem distributions play in these are only 

beginning to be understood [14,15], it is imperative to establish molecular models in which 

to investigate the fact that transplanted or chemically-induced tumors can be detected by 

aberrant voltmeter readings taken at locations far away from the tumor [251,252,286–290]. 

Lastly, modern work on bioelectricity in non-excitable cells has not yet addressed the 

information encoded in time-dependent changes in Vmem. For example, fibroblasts 

expressing Ras-oncogene respond to the drug bradykinin with Vmem oscillations, while 

control cells exhibit a single transient hyperpolarization. In human carcinoma cells, 

fluctuations of membrane potential are triggered by EGF and persist for long periods of time 

after EGF application [291]. The mechanisms and significance of the temporal Vmem 

changes for cancer initiation and progression remain to be discovered.

Depolarization of specific cells induces metastatic phenotype at a distance

Given that a depolarized Vmem is an indicator of tumorigenic potential, is it merely a side-

effect of cancer, or is it functionally instructive? This question was addressed for the first 

time in vivo in a frog model [60], by the selective depolarization of a sparse set of cells 

expressing the glycine-gated chloride channel (Figure 4). Using a pharmacological strategy 

designed to depolarize this subpopulation, a remarkable phenotype was observed: 

hyperpigmentation of the animals due to over-proliferation, increased migration, and drastic 

arborization of melanocytes (pigment cells). By transiently depolarizing cells in the body, a 

different cell type underwent a metastatic-like conversion, turning on expression of genes 
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such as Sox10 and SLUG 61. The melanocytes acquired a dendritic morphology, 

upregulated mitotic activity, and invaded blood vessels and soft tissues like the neural tube 

lumen and brain (Figure 5). In addition to melanocytes, disorganization and ectopic growth 

of blood vessels was also observed [281], but otherwise the tadpoles were remarkably 

normal in terms of overall growth and development. Importantly, the same exact effect was 

induced by any method of depolarization, including by the movement of chloride, sodium, 

potassium, or hydrogen ions – truly an effect initiated by Vmem depolarization, not any 

specific gene product or chemical ion species. This metastatic-like conversion occurred by a 

bioelectrical signal alone, without any oncogene, DNA damage, or cancer-causing chemical 

being applied. Also of note here is that, like in some blood cancers, there was no primary 

tumor site but a direct metastatic behavior of a normal embryonic stem cell (neural crest) 

derivative. Thus, while this is an example of non-genotoxic cell-cell communication effect, 

it differs from the epithelium:stroma interaction at a primary tumor site described by others 

[292].

Most interesting was the non-cell-autonomous nature of the effect: the cells that acquired a 

melanoma-like phenotype were not the cells whose resting potential was changed (the GlyR-

bearing cells were thus called “instructor cells”) [60,61]. Indeed, only a small number of 

instructor cells had to be depolarized in order to induce the hyperpigmentation phenotype 

(which is all-or-none within any individual animal). How was the communication between 

these two cell types mediated? A suppression screen testing the several known methods of 

transducing voltage change into transcriptional cascades revealed (Figure 6) that the 

serotonin transporter SERT, which powers uptake or efflux of serotonin depending on 

resting potential, was involved (much like in the bioelectric regulation of left-right 

patterning); blockade of SERT could rescue the hyper pigmentation effect, and direct 

application of serotonin could trigger a similar phenotype.

A number of key questions remain. First, although it is clear that serotonin signaling is 

involved in the imposition of a metastatic phenotype by depolarization, serotonin is too 

small to be fluorescently tagged without drastically altering its transport properties. Thus, 

the movement of serotonin across long distances has not been imaged directly in this model 

system. Second, it remains to be understood how hyperpigmentation occurs in an all-or-none 

manner: treatments that inhibit specific serotonin receptors for example partially rescue the 

effect, but they do not inhibit metastatic phenotype in some melanocytes, but instead 

completely rescue only some animals in a test cohort. The current model of this effect [281] 

relies on a model of amplification and antagonistic function among three different subtypes 

of serotonin receptors, leading to stochastic effects in the downstream activation of cAMP 

signaling. However this model remains to be tested in detail. Finally, how does this pathway 

relate to mammalian cells? It is known that ivermectin, a specific opener of the glycine-

gated chloride channel, can regulate the growth of neuroblastoma [293] and leukemia cells 

[294], although neither of these studies looked at the Vmem changes that would have been 

induced by ivermectin in mammalian tissue culture medium. The findings in the Xenopus 

model make a number of predictions for human medicine that could be tested. First, the 

GlyR channel opener Ivermectin, which was used to induce the melanoma-like conversion, 

could have increased the rate of melanoma and other cancer in human patients. While this 

drug is no longer widely prescribed as an antiparasitic agent, this class of molecules was 
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used in human medicine [295] and is known to cause cancer in the parasites that it (usually) 

kills by muscle depolarization and paralysis [296]. Conversely, we predict that patients 

taking Prozac (the SERT blocker fluoxetine) may have lower incidence of melanoma. These 

predictions await epidemiological testing.

Hyperpolarization inhibits oncogene-induced tumorigenesis

he above data show that depolarization of Vmem can, itself, activate a metastatic-like 

phenotype. What role could Vmem play in carcinogenesis induced by genetic perturbation? 

Well-characterized channels such as inward rectifying potassium channel (Kir 4.1) and 

constitutively open glycine-gated chloride channel mutant (GlyRF99A) can be used to 

generate strong hyperpolarizing currents [297,298]. When GlyRF99A is co-injected with the 

Xrel3 oncogene in Xenopus larvae [93], it significantly suppresses the incidence of ITLS 

formation compared to oncogene alone (Figure 7). Florescent tags on the oncogene protein 

revealed that hyperpolarization could prevent the formation of tumor-like structures despite 

very robust expression of oncogene in cells. The use of several different hyperpolarizing 

channels based on Cl− and K+ confirmed that suppression of neoplastic transformation was 

due to Vmem hyperpolarization per se, as opposed to ion-specific or scaffolding functions of 

the ion channel proteins. Consistent with this, data in rats showed that the ion channel 

modulator drug ivermectin can likewise modulate the effectiveness of carcinogenic 

compounds [299].

How do changes in Vmem transduce into suppression of oncogene-mediated tumorigenesis? 

A pharmacological suppression screen of several candidate mechanisms, followed by 

molecular-genetic loss-of-function validation [93], implicated the sodium-coupled 

monocarboxylate transporter (SLC5A8). SLC5A8 has previously been identified as a tumor-

suppressor whose transport of butyrate or other short chain fatty acids (HDAC inhibitors) is 

essential in maintaining a healthy colon and/or control colon cancer invasion [300–306]. A 

model of the bioelectrical regulation of oncogene activity is shown in Figure 8: oncogene 

expression causes the observed depolarization, which limits the intake of Na+ through 

SLC5A8, also limiting butyrate intake (co-transport, Figure 8A). Lack of HDAC regulation 

due to reduced butyrate presence leads to hyperpolarization and tumor progression (Figure 

8B). However, forced hyperpolarization within oncogene-expressing cells facilitates the 

uptake of the positive Na+. This powers the import of butyrate through SLC5A8, resulting in 

continuous suppression of HDAC and thus reduced proliferation and ITLS suppression 

(Figure 8C). The specific genetic targets of hyperpolarization in this context remain to be 

thoroughly explored, however p21 is a likely mediator. Hyperacetylation of histones – as a 

result of butyrate-induced HDAC inhibition – has been shown to up-regulate p21 at both at 

the mRNA and protein level [307,308]. p21 inhibits cyclins/cdk’s activities, thus inhibiting 

downstream substrate phosphorylation and causing cell cycle arrest (reduced proliferation) 

at the G1/S transition and subsequent suppression of ITLSs (Figure 8D). It should be noted 

however that many other (physiological, non-genetic) events can induce a similar 

depolarization as that initiated by oncogene function, thus inducing the rest of the 

downstream steps in this tumorigenesis pathway without necessitating oncogenic mutation.
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Cancer: a disease of geometry?

Given the data implicating physiological cell properties and bioelectric cell:cell 

communication in cancer and its normalization, it is important to place this body of work in 

the context of developmental signaling. Bioelectric gradients are one component of 

morphogenetic cues mediating positional information, tissue specification, and intercellular 

coordination [14,43].

Morphogenetic Field as tumor suppressor: importance of community

The sum total of the instructive patterning signals that impinge upon cells in the organism 

(Figure 9A) is referred to as the Morphogenetic Field [14,18,309,310]. This instructive 

information is mediated by a range of dynamically-varying spatio-temporal gradients of 

secreted biochemical factors, extracellular matrix properties, stresses/strains/stiffness values, 

and electric properties. Disturbances of the normal interactions between cells and the signals 

that normally orchestrate individual cell activities into maintenance of host tissues and 

organs can manifest as cancer. The hypothesis that cancer is fundamentally a phenomenon at 

the level of multicellular organization makes a number of unique predictions confirmed by 

experimental data (that are not predicted by the somatic mutation model). For example, one 

way to perturb field structure is to introduce ectopic organizer nodes. Indeed, implantation 

of early embryos (which organize their own field of signals) under the kidney capsule of an 

adult makes transplantable malignant teratomas despite a lack of any infective, chemical, or 

radiation initiator to cause genetic damage [8], while normal adult Xenopus kidney 

implanted in the non-amputated forelimbs of recently-etamorphosed larvae will make 

lymphosarcomas as well as accessory limb structures [311]. Implantation of mouse embryos 

into adults causes teratocarcinomas [312], possibly due to an interference between the host 

and implanted embryo’s morphogenetic field signals.

Cancerous failure of morphostasis can occur because a morphogenetic field is missing, 

altered, or not successfully perceived (all three of which can occur due to genetic or 

physiological state change). Cells in dispersed monolayer culture are several orders of 

magnitude more sensitive to chemical carcinogenesis than are organized tissues within an 

intact organism [313], and placing normal primary mammalian cells in culture results in the 

appearance of cells with malignant potential [313–316]. Chick embryos infected with the v-

Src virus exhibit no malignant phenotype, but the same cells in culture undergo massive 

transformation [317]. A number of recent papers stress the suppressive nature of signals 

from neighboring tissues [4,9,10,29]. Consistently, re-establishing appropriate interactions 

of human cancer cells with the microenvironment and normal neighbors underlies the 

observed reversion of malignant phenotype in a number of cell lines [318–320].

Consistent with the need for cell: cell interactions in suppressing cancer are data showing 

that tumorigenesis is promoted when cells are isolated from their neighbors (and thus from 

the morphogenetic guidance they would otherwise receive) by physical barriers. Implanting 

into connective tissue of the rat rectangles of inert plastic, metal foil, or glass cover slips 

induces sarcomas when the material is >1cm2. If the material is perforated, the incidence is 

reduced, and the effect does not occur with powders of the same material (which actually 
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increases surface area, ruling out chemical induction or genetic damage mechanisms) [321–

324].

More recent data has focused attention on interruption of cell:cell communication via ions 

and other small molecules through gap junctions (GJs) – aqueous channels made of 

connexin proteins that allow physiological signaling directly between the cytoplasmic 

interiors of docking adjacent cells [325–330]. For example, Connexin32-deficient mice have 

a 25-fold increased incidence of spontaneous liver tumors [331]. Gap junctional isolation is 

known to be a tumor-promoting agent [330,332–337], although there are counter-examples 

[338]. Active GJ communication allows cells to make sophisticated decisions comparing 

relative levels of specific compounds between themselves and their neighbors [339] and thus 

can underlie the transmission of physiological patterning signals [89,90,114,340–347].

Another mechanism of coordination across large cell fields that was recently implicated in 

cancer is the planar cell polarity (PCP) pathway – a set of protein components designed to 

coordinate orientation and function of cells over long distances [348]. PCP has now been 

shown to function as a non-canonical tumor suppressor [349,350]. While the direct causal 

relationship between loss of PCP and tumor initiation in humans is not yet proven, it is clear 

that loss of polarity can be an initiating event in tumor formation in Drosophila [351]. 

Consistent with conserved mechanisms underlying coordination and maintenance of long-

range order in cancer and normal development, PCP is also involved in dynamic 

morphostasis: grafts of embryonic skin (after the planar polarity of hair becomes evident), 

when implanted into adults, realign their hair polarity to match that of the hosts [352] – this 

dynamic readjustment to local conditions is a factor that distinguishes cancerous tissue from 

its normal counterpart (see below). PCP allows cells to align axes orthogonal to their apical-

basal polarity with each other, and with major anatomical axes of the organism, linking 

large-scale order with regulation of single-cell behavior.

Another mechanism used to coordinate cell activity away from cancer is communication via 

the nervous system. Tumors are readily induced by denervation in salivary organ and 

alimentary canal in cockroach [353,354] and in mammalian skin [355]. Similarly, tumors are 

chemically induced more easily in denervated rabbit ears as compared with contralateral 

controls bearing normal innervation [355]; the same has been observed in sarcomas 

implanted into normal or denervated frog limbs [356]. These remarkable results are 

predicted by models in which nervous system components transmit long-range 

morphogenetic field cues [357–360], but have been unfortunately neglected in the modern 

literature focused on DNA. Much works remains to characterize the role of the nervous 

system in providing information and cancer-suppressive cues to existing adult tissue, and to 

dissect which signals are broadcast via the long-range communication systems provided by 

planar cell polarity, nerves, and gap-junctional networks.

Positional information and cancer

Models of suppression of cancer by long-range morphogenetic cues, as opposed to simpler 

models of growth-inhibitory signals from any normal neighbors, predict that tumorigenesis 

would be modulated by global position within the host, as are events operating during 

embryonic development and regeneration. Microarray analysis reveals quite different 
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profiles of human glioma cell lines grown in leg vs. brain [361]. Moreover, tumors grow on 

posterior regions of Triturus less readily than they do on anterior regions [362], and 

numerous such differences are observed in human tumors as well [363–368]. These studies 

suggest a link between large-scale axial patterning in adult organisms and the potential for 

failed perception of morphogenetic cues by cells.

A most impressive example of the importance of location and environment in cancer growth 

is provided by patients with peritoneo-venous shunts, who have a steady infusion of 

peritoneal fluid that carries billions of desquamated cancer cells into the systemic 

circulation, for months or years [7]. Known metastases in some organs before insertion of 

the shunt exhibited additional deposits in the same organs but not anywhere else, despite 

millions of viable cancer cells being distributed to every organ. This work (which ruled out 

immune clearance of cancer cells) revealed that the disseminating cancer cells were capable 

of establishing secondary tumor colonies in some anatomical sites in a given patient but 

could not do so in other organs, raising the question of whether some body regions have 

more active morphostasis pathways.

Even more interestingly, surgical disruption of normal topographical tissue relationships 

tends to induce cancer, which suggests a feedback model where the morphogenetic field can 

be altered by scrambled anatomy, or perhaps difficulty in cells’ reading instructions at the 

borders of fields that are not supposed to be geometrically adjacent. For example, despite 

lack of DNA damage or cytotoxic chemical stressor, transplantation of rat testis to the spleen 

induces formation of interstitial cell tumors [369], while normal rat ovary tissue put into 

normal rat spleen results in malignant neoplasm [370]. Cancer thus is not only a disruption 

of normal patterning within the tumor but also reveals an interplay between its activity and 

the context of the large-scale spatial organization of the host.

Normalization of cancer by developmental and regenerative patterning

The morphogenetic field ought to be the most active and accessible during embryogenesis. It 

is thus not surprising that despite considerable malignancy and aneuploidy, tumor cells 

introduced into wild-type embryos become integrated as normal tissue [371–381]. Human 

metastatic melanoma cells injected into zebrafish embryos acquire a non-neoplastic 

phenotype, but form tumors when injected into zebrafish after organogenesis [382,383]. 

Likewise, implanted sarcoma progressed in 80% of adult rats but only in 6.4% of rat 

embryos. Similar data have been recently shown for chick and other kinds of embryos that 

are able to tame aggressive cancer cells when these are implanted [383–386]. Cancer 

normalization can occur cell-autonomously [387], or induced by communication from other 

cells, such as the mammary stroma [371,388–393]. Indeed the embryonic field present in the 

blastocyst can normalize several types of cancer cells including those isolated from 

embryonic carcinoma, leukemia and neuroblastoma [381], although the limits of this 

normalization process (with respect to large-scale chromosome aberrations found in some 

tumors) remain to be probed fully. Thus, active patterning signals can normalize cancer 

(over-ride genetic defects and reboot cell behavior programs); this is a finding that is not 

predicted by the cell-level view of cancer as embryos have high levels of many growth 
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factors that could be expected to potentiate tumor growth (and do, in experimental contexts 

such as cell culture which is devoid of large-scale patterning structure).

Tumors have also been described as wounds that do not heal – areas of disruption and cell 

growth without an appropriate patterning program that reaches a terminal goal state 

[149,394]. This analogy is supported by profiling data showing the molecular similarity of 

repair vs. carcinoma in renal tissue [149]. Successful tumors have developed the capacity to 

preempt and subvert the wound-healing response of the host [395]. What about wounds that 

not only heal but successfully rebuild a missing structure? Some animals, such as 

salamanders, can regenerate entire limbs, eyes, hearts, and jaws. Even mammals regenerate 

some organs (e.g., liver in humans, and antlers – meters of innervation, bone, and skin – in 

deer).

It has been long known that regeneration and cancer are closely related [396–401]. Highly-

regenerative organisms are resistant to carcinogenesis and indeed activating regenerative 

response can normalize existing tumors [396–399,401–405], although this does not always 

occur [406]. The inverse relationship between regeneration and cancer susceptibility 

[407,408] is more compatible with the importance of morphogenetic field guidance than 

with cancer risk associated with the presence of highly-active, undifferentiated cells [18]. 

Mammalian liver regeneration can overcome cancer - early nodules initiated by carcinogens 

are remodeled to normal-appearing liver [409,410], hepatocarcinoma cells can be 

normalized by injection into wild-type liver [411,412], and over 95% of nascent tumor sites 

remodel into normal tissue by the highly-regenerative liver [413–415]. In zebrafish brain 

regeneration, a remarkable degree of aneuploidy does not lead to cancer -an active 

patterning program trumps chromosomal damage [416], and amphibian limb regeneration 

can likewise normalize tumors [31,32,400]. Thus, tumors may be wounds that do not 

pattern.

Modern molecular model systems are now available for the study of these still poorly-

understood mechanisms: regeneration of the zebrafish tail prevented tumor formation from 

BRAFV600E mutation + p53 knockout [417], offering the opportunity to use the numerous 

available zebrafish reporter lines and functional morpholino strategies to investigate the 

relationship between regeneration and tumorigenesis. Remarkably, such influence is not 

necessarily local. Induction of anterior regeneration in planaria turns posterior infiltrating 

tumors into differentiated accessory organs such as the pharynx [362], which suggests the 

presence of regulatory long-range signals that are initiated by large-scale regeneration. It is 

likely that the normalization of tumors by active remodeling represents one of the most 

profound and exciting areas for future work in understanding morphogenetic fields and their 

interpretation by growing tissue.

Interestingly, the interplay between proper patterning and cancer suppression is retained 

throughout life; for example, if the endocrine gland is removed in Dixippus, regenerative 

capacity is lost, and spontaneous tumors begin to appear [418–421]. Work in highly-

regenerative model species such as amphibia and some invertebrates is likely to be the 

fastest route to understanding this fascinating phenomenon of tumor and cancer cell 

reprogramming but it is important to note that these signaling pathways are likely to be of 

Chernet and Levin Page 16

J Clin Exp Oncol. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



relevance to human patients. For example, childhood neuroblastoma has a high rate of 

spontaneous regression [422,423], and a number of other cancers often regress 

spontaneously [7]. The efforts of regenerative medicine to improve regeneration prospects in 

man may thus have a significant side benefit of impacting cancer treatment.

Explanations at above the single-cell level—Is cancer fundamentally a cell-level 

property or a multicellular phenomenon that, like the wetness of water, which is not 

applicable to individual H2O molecules, applies only to collections of cells and characterizes 

the interactions between them? The current paradigm focuses on cell-level activity 

(proliferation, differentiation, migration), but tissue- or organ-level systems properties might 

be the right basal concepts with which to formulate models and intervention modalities 

[424–427].

The difference between these approaches is not mere philosophy – it has testable 

implications that allow data to distinguish between the two classes of models. For example, 

a focus on cell cycle checkpoints and TGF-β molecules (a view at the cell level) leads to the 

prediction that cancer and regenerative potential should go together: animals with ready 

access to plastic, highly proliferative cells should be prone to neoplasia, and long-lived 

humans would be forever barred from powerful regenerative pathways because of the 

evolutionary pressure to suppress cancer over decades. Conversely, a morphogenetic field 

model (cancer as a failure to transmit or receive anatomical cues) suggests that regeneration 

and cancer should be inversely related, as robust patterning pathways necessary for 

regenerating complex organs from new cell growth would also keep cells within a coherent 

morphological plan and away from tumorigenesis during normal lifespan.

In fact, the most highly regenerative animals tend to have the lowest incidence of cancer 

[396,399–401]. Moreover, if a tumor is induced on the limb of a salamander and the limb is 

amputated through the tumor (Figure 9B), the remaining cancer tissue becomes part of the 

newly regenerating limb [396–401]! This readily illustrates the profound relationship 

between cancer and regeneration and the importance of studying systems-level concepts (the 

mechanistic details of “exerting strong patterning control at the level of a whole 

appendage”) for what is often thought of as a cellular- or gene-level process. It also suggests 

a highly optimistic view of the potential for regenerative pattern control in human cancer 

medicine.

As in regenerative medicine, the answer to this question impacts treatment strategies: do we 

micromanage individual gene products, or attempt to initiate complex patterning cascades? 

Up-regulating embryonic genes in adults results in cancer [428–430], while, as discussed 

above, inducing embryonic genetic programs leads to cancer normalization [18]. Moreover, 

drugs that target upstream functions in signaling networks have less general toxicity than 

those that interact with targets further downstream [431]; this is consistent with the view that 

the right level of intervention to optimize effectiveness and compatibility with overall health 

(lack of toxicity) is by activating large-scale physiological modules that have been evolved 

to implement mutually compatible (healthful) downstream events, instead of specifically 

impacting individual downstream players which may induce unwanted interference with 

other functions in the organism.
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A closely related question to the scale and level of organization of cancer state is the spatial 

distance over which the disturbance acts [432–434]. In mammalian breast cancer [292] and 

frog melanoma-like transformation [60,61], clear roles for non-local (long-range) influence 

over carcinogenesis have been found and can now be dissected. This is clinically relevant, as 

seen in field effects in many different kinds of cancer in which surrogate sites are not 

necessarily adjacent to the main tumor [435,436]. The characteristic size scale of the “cancer 

field” is still not mechanistically understood and is relevant not only for understanding the 

basic biology of signaling but for designing detection and treatment modalities intending to 

impact specific tumor sites. Although most work on cell:cell interactions today deals with 

chemical gradients as a signaling modality, bioelectricity is an ideal medium for long-range 

coordination and information exchange among cells during pattern maintenance and repair.

Future Prospects/Speculations

Tumor boundaries and selves

The fundamental fact of cancer is that cells cease to work towards the anatomical needs of a 

host organism and narrow their dynamic goal-seeking behavior to the level of single cells – 

an increase in “selfish” behavior away from the normal cooperativity of multicellular life. 

Cancer could result from a failure of the host to impose or transmit necessary patterning 

information within a particular region; it is also possible that tumor cells are those that 

stopped attending to the morphogenetic field cues [27,349,398]. Anticipating recent 

discoveries of the importance of gap-junction cell:cell communication for planarian 

regenerative patterning [112,114], in 1965 Seilern-Aspang described planarian experiments 

in which a carcinogen led to formation of many head teratomas with irregular nerves and un-

oriented eyes concluding that “the cell-isolating action of the carcinogen prevents formation 

of a single morphogenetic field and leads to the establishment of several separated fields of 

reduced dimensions” [362]. Thus, tumors could also represent establishment of a local 

“subfield” – a fragmentation of the host’s morphogenetic field such that integration with the 

host body plan is lost. Unlike normal somatic tissues, which remodel when transplanted into 

foreign locations [437–439], the histopathological structure of metastasis reflects the tissue 

of origin, not of their destination [8], confirming an inability to respond to neighboring 

signals such as positional information and remodeling cues.

Interestingly, cancer is not only a loss of patterning, but also a coherent, goal-seeking 

subsystem: tumors are not just aggregates of replicating neoplastic cells but complex living 

entities composed of numerous cell types that work together to acquire nutrients, survive, 

and evade the efforts of an environment that is trying to kill them [5,440]. One way to model 

such changes in dynamics is as a reduced scope of “self” – the view that a tumor is, in some 

practical sense, an independent organism [441] with its own (primitive) morphogenetic field. 

In a tumor, the boundary of self has been reduced from the whole body to that of a much 

smaller structure, making the rest of the body just part of the pseudo-organism’s outside 

environment. Such a view is suggested by a number of findings. First, histological analysis 

indicates that tumors can indeed be regarded as complex tissues with a distinct internal 

organization [314,442]. Tumors reproduce themselves via metastasis, and execute many 

adaptive strategies (such as up-regulating multi-drug resistance proteins in the face of 
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chemotherapy) to preserve their homeostasis and existence – just as organisms within an 

ecological niche do [443–445]. Much like organisms maintaining morphostasis, tumors 

maintain their identity during massive cell turnover during selection for founder cells 

resistant to chemotherapy drugs [446]. Recent work describes the highly malignant brain 

tumor as an “opportunistic, self-organizing, and adaptive complex dynamic biosystem” 

[447]; proper characterization of the essential principles predictive of the properties of tumor 

invasion makes uses of concepts such as least resistance, most permission, and highest 

attraction – these are systems-level, goal-directed elements that are very compatible with the 

conceptual modeling techniques suggested for understanding embryogenesis and 

regeneration of whole organisms.

The defection of cells from the goal states of the body to those of a much smaller entity (a 

tumor, or perhaps individual cells) implements a contraction of the functional boundaries of 

the self-organizing system [448,449]. Tumors of course pursue goals quite at odds with 

those of their host. “Glioma cells are ill-equipped to participate in ion and amino acid 

homeostasis, those important altruistic tasks performed by their nonmalignant counterparts. 

Instead, gliomas are more concerned about their relentless growth and invasive migration” 

[450]. Interestingly, cooperation occurs among the tumor cells that can be analyzed via the 

same mathematical tools that explain cooperation and competition among somatic cells and 

members of societal groups [339,451,452]. While tumors typically lose heterologous gap-

junctional communication to surrounding stroma, they often maintain good gap junctional 

connections among their own cells. Interestingly, gap-junctional connections have been 

proposed as a mechanism by which cells can recognize “self” [453,454].

The questions of size control and field boundaries are central to developmental biology as 

well as cancer. During planarian regeneration, a regenerating head will inhibit the formation 

of heads elsewhere, but parts of the regenerating head do not inhibit the rest of that same 

head from forming. A specific voltage range causes tissues to reorganize into eyes [110], but 

these eyes are of normal (limited) size, and at the same time contain numerous distinct 

tissues that clearly result from a process more complex than simple control of cell fate and 

differentiation by a resting potential value. To really understand the fascinating ability of 

active morphogenetic fields during regeneration to normalize or prevent tumors will require 

new, molecularly-tractable models of tumor normalization. Axolotls are a powerful system 

in which this could readily be dissected [455,456]. Future work must uncover the 

mechanisms that establish size and scope of morphogenetic fields, to understand how 

boundaries are established and altered during pattern formation. Cybernetic models of goal-

seeking behavior among dynamical systems such as embryos and tumors are needed to 

understand the kinds of signals that can be manipulated for desired outcomes in regenerative 

biomedicine and oncology contexts [457–459].

Genetics and physiology

One of the most important lessons to come from the recent work on bioelectrical controls of 

morphology is the fact that significant patterning information can be generated and 

maintained at the level of physiology and de-coupled from changes in transcription and 

translation (Figure 10). While biophysical events are certainly transduced into genetic 
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cascades, the laws of physics and the post-translational gating of channel and pump proteins 

guarantee that cells expressing precisely the same complement of proteins can be in very 

different bioelectrical states. Of course this is akin to familiar phenomena such as action 

potentials propagating down an axon and calcium fertilization waves moving over an 

oocyte, neither of which requires changes in mRNA or protein levels for the dynamics of 

bioelectrical cell state to evolve. On longer time scales, networks of voltage-gated ion 

channels and voltage-regulated gap junctional current paths can form cell fields with rich 

feedback dynamics in the distribution of voltage levels that are not at all captured by 

analysis of protein content. Protein profile does not determine physiological state: not only 

can cells with the same protein be in different physiological states, cells in very similar 

physiological states could reach them by making use of very different ion channels. The 

ability of many different channels to be combined towards the same physiological end-goal 

results in a huge degree of compensation and redundancy [460]; this is a benefit for ensuring 

physiological robustness of bioelectrical control systems, but also means that the popular 

single-channel knockout experiments will rarely reveal phenotypes indicative of the 

patterning roles of transmembrane voltage potentials.

As seen in the several examples discussed in detail above, changes in bioelectric state can 

alter patterning and induce/suppress tumorigenesis without DNA damage, and by the 

modulation of any number of channels/pumps at the post-translational level. Cracking the 

bioelectrical code to allow prevention and normalization of cancer will require fleshing out 

the interaction between information stored in truly epigenetic (in the original sense of the 

word) physiological networks, transcriptional responses, and the goal-seeking control 

algorithms of single cells and multicellular host organisms. This in turn will require new 

technique development - establishment of model systems in which voltage can be controlled 

directly in any cell/tissue of interest; one exciting candidate is the extension of optogenetics 

to non-neural, non-excitable tissues [461,462], and conceptual apparatus for modeling 

information processing and autonomous dynamical system properties in silico that can be 

applied to the initiation and reprogramming of cancer in vivo.

Speculations: cancer as a failure of morphogenetic field memory

Taken together, recent and classical data suggest that morphogenesis and morphostasis are 

core concepts unifying three major areas of study – development, regeneration, and cancer. 

Understanding the ability of systems to self-assemble complex anatomy, to repair damage, 

and maintain shape against aging and cancer is paramount to progress in all three fields, and 

will drive radical advances in biomedicine [463]. It is imperative that we identify and 

quantitatively model the information-processing and computational activities of patterning 

systems to gain control of molecular mechanisms by which morphogenetic information 

orchestrates low-level (cell) behaviors towards the patterning needs of the host. Cancer 

biology may be an ideal context in which to consider predictive, quantitative models of top-

down causation and control as an alternative to the current paradigm focused on molecular 

pathways and emergence [464–468]. What criteria (degree of predictive control in 

functional experiments? parsimony of model? conformance with reductionism?) are to be 

used to decide among top-down and bottom-up models? This has important implications 

beyond philosophy and basic developmental biology. Our choice of strategies for 
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regenerative and cancer medicine depends crucially on finding the easiest path towards 

gaining rational control over complex biological shapes and understanding the still 

mysterious link between the equally rapid growth of cancer vs. regenerative repair.

Bioelectric events have properties that make them ideal components for implementing the 

morphogenetic field, and indeed recent data has shown that their manipulation is a good 

entry-point into a molecular-level understanding of these mechanisms [80,469]. 

Bioelectricity is central to development, regeneration, and cancer. But the transformative 

impact of integrating biophysics into our genetic paradigm will be the ability to move 

beyond Vmem in single cells and understand the dynamics of multicellular bioelectric 

networks and how they store and specify shape. A key next step is the construction of 

specific dynamical systems models of patterning information stored in real-time 

physiological networks. Multidimensional spaces of many different bioelectric 

measurements will require concerted physiomics profiling efforts; such data may turn out to 

contain attractors that map to anatomical states, and may implement the “dynamically 

preformed morph” envisioned by Gurwitsch [470].

The data of modern bioelectricity reveal the instructive control of shape (and its 

derangement during cancer) by endogenous voltage gradients and ion currents. Dynamic 

control of morphogenesis requires processing large amounts of information about tissue and 

organ structure, as well as a mechanism for ceasing growth when particular target 

morphology has been reached (a step that is likely to be completely short-circuited in 

tumors). Fortunately, we have two solid precedents for storing information in dynamic 

patterns of ion flow. The first is storage of bits in a magnetic core memory – the information 

is literally encoded in the direction of ion flows and their resulting magnetic fields. Much as 

the ion flows among electrically active cells are invisible to techniques focused on the 

material structure of cells and the mRNA/proteins expressed in them, the information 

content of electronic storage media is invisible to a description of the material components 

of a computer memory system - energy flow patterns can store distinct bits among identical 

bi-stable units, whether they are implemented in cells [471–473] or transistor flip-flop 

circuits.

Even more simply, the conservation of basic molecular elements in the central nervous 

system and in non-neural embryonic cells reminds us that cognitive science has a mature 

and well-developed history of investigating spatial maps encoded in the dynamics of 

electrically-active cells - navigational memory in the brain [474,475]. The neurobehavioral 

community is quite comfortable with the storage of memory in neural networks, and 

techniques and results in this field should be combined with modern understanding of 

pattern formation and disorders. After all, both study information – spatial information 

processed in reorganization of geometry (morphogenesis), and temporal information 

remembered as patterns from the environment (learning and memory); the parallels in 

information-processing algorithms of neural networks and developmental dynamics was 

pointed out by Grossberg decades ago [476], but not seriously investigated yet. Not 

surprisingly, ion translocators are involved in learning and memory storage [477–479], 

placing these molecules at an important focal point at the intersection of morphogenesis and 

cognition. Likewise, heart cells have been modeled as a neural-like network to explain 
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memory effects relevant to remodeling [471,480]. While most somatic cells process voltage 

change signals much more slowly than do rapidly spiking neurons, it is tempting to 

speculate that the analogy may indicate a real, mechanistic relationship. Such computational 

tissues would be ideal media in which to store and manipulate the information used by 

morphogenetic fields. Given that many cell types are communicating electrically via 

membrane potential and highly-tunable electric synapses, gap junctions [88,481–483], there 

may not be any fundamental difference between the information-processing functions of 

neural networks and similar electrical dynamics in non-neural cells. Thus, cancer could be a 

regenerative response that cannot remember what target morphology is to be recognized as 

the “end of growth signal”, and a reprogramming solution could be sought in repairing the 

ability of cells to access the electrically-mediated memory of appropriate tissue organization 

and the cell behaviors that are needed to achieve that state.

If these highly speculative parallels hold, many novel, mechanistically-tractable questions 

are suggested with respect to how normal tissue architecture is “remembered” in cell 

networks and what processes of memory failure may result in neoplasm. For example, the 

glutamate receptor, metabotropic [1], also known as GRM1, is an ion channel and an 

oncogene; notably, the knockout mice exhibited problems with long-term potentiation 

(memory) [484–488]. Likewise, signaling via the neurotransmitter serotonin has been 

implicated in cancer [60,281,489–491]. The use of cognitive modulator compounds in 

cancer assays is being pursued in our lab, to test predictions of a hypothesis linking 

bioelectric mediation of morphogenetic cues, stored memory of correct organ/tissue 

morphology, and its disruption in cancer.

Conclusion and Summary

Much classical and recent data reveal that cancer is not simply a result of damaged genomes 

but rather involves a disruption of normal developmental mechanisms and cell:cell 

communication across large distances. It is now known that endogenous bioelectrical 

gradients underlie an important layer of such cell coordination, and it is thus not surprising 

that ion channels are increasingly revealed as not only markers of the transformed state but 

also bona fide oncogenes and thus important drug targets. Work in the amphibian model 

demonstrated that depolarization of resting potential by voltage-sensitive fluorescent dyes is 

a promising modality for detecting cancer in vivo. Moreover, depolarization of key cell 

groups in the body is sufficient to activate metastatic behavior in other cell types through a 

serotonergic signaling mechanism. Finally, oncogene-induced tumor structure formation 

requires depolarization, and artificial hyperpolarization is able to suppress this effect, despite 

high levels of oncogene protein, through a butyrate and histone deacetylate mechanism. 

Thus, the tumor microenvironment is not only chemical but also bioelectrical [492]; indeed, 

it may function over considerable distances. Transformative applications in cancer medicine 

and beyond await our molecular dissection of the bioelectrical and other mechanisms by 

which active morphogenesis and nervous system activity suppresses tumorigenesis, and 

regenerative and embryonic environments actively reprogram tumors.
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Figure 1. Bioelectric cues in vivo
(A) Resting potential gradients in all cells result from the imbalance of ion movement across 

cell membranes. The resulting Vmem is a function of the internal and external concentrations 

of the major ion species, as well as the conductivity to each ion (open/closed states of 

specific ion channel proteins).

(B) At the level of tissues, trans-epithelial potentials (TEPs) result from ion flows across 

sheets of cells connected by tight junctions [493–494]. Breaks in epithelia provide electric 

fields that serve as migratory cues for galvanotaxis of cells involved in wound healing and 

metastasis.

(C) At a yet greater level of biological organization, spatial gradients of Vmem and TEP 

correlate with whole body organs or primary anatomical axes[113,495,496], providing 

patterning cues such as positional information that guide growth and form.

(D) Still mysterious with respect to their function in patterning are the gradients across 

intracellular membranes, such as the nuclear envelope potential [497–498]. The role of such 

gradients for active targeting and distribution of intracellular components or conformation/

transcriptional status of components of the DNA in the nucleus remain to be analyzed.
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Figure 2. Molecular genetics implicates ion translocators in cancer
(A) The Gene Expression Omnibus (GEO) database consists of high-throughput functional 

genomic data on collections of biologically and statistically comparable samples. A profile 

generated from the cutaneous malignant melanoma dataset readily reveals changes of 

transcription of many ion channel genes during neoplastic progression; here is shown the 

down-regulation of a specific sodium channel at the transition from benign nevi to malignant 

melanoma.

(B) The amount of published data on ion channels is growing more voluminous every year. 

Importantly, the current level of interest in oncochannels as genetic and pharmacological 

targets is a significant underestimate of their true importance, since current studies take 

place almost exclusively at the levels of mRNA or protein profiling. Since channels do most 

of their regulation post-translationally (being opened or closed by a range of local and non-

cell-autonomous signals), analyses such as profiling, microarray, deep sequencing, knockout 

screens, etc. inevitably miss all of the regulation that takes place at the level of physiology.

(C) Oncomine is a cancer profiling database consisting of genes, pathways, and networks 

deregulated in more than 50,000 cancer gene expression profiles. Analysis of genes with 

highly altered expression levels (fold change compared to relevant normal tissue in the top 

10 percentile) in multiple cancer types implicates several chloride, potassium, and sodium 

channels as oncogenes.

Chernet and Levin Page 48

J Clin Exp Oncol. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Transmembrane potential as a diagnostic modality for tumor detection
(A, closeup in A′) Tumors (red arrow) can be induced in vivo in tractable model systems 

such as Xenopus larvae using targeted misexpression of mammalian oncogenes such as 

dnP53, Rel3, Gli1, RAS, etc.).

(B) Using voltage-sensitive fluorescent dyes, areas of depolarization (green, red) are 

detected non-invasively [93,281]. While a tightly-defined physiological signature remains to 

be developed (likely necessitating concomitant use of several different physiological dyes, 

such as those reporting voltage, sodium content, and pH), the scanning of bioelectric 

properties with light-emitting dyes in vivo is a promising modality for early detection of pre-

cancerous tissue and tumor margins during surgery.
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Figure 4. Experimental control of Vmem in a defined cell subpopulation
(A) In Xenopus, a sparse but ubiquitous population of cells expresses the Glycine-gated 

chloride channel (GlyR or GlyCl) [60]. Here a section of a frog larva has been subjected to 

immunohistochemistry revealing these cells as purple dots (red arrows).

(B) A strategy for selective depolarization of these cells in vivo uses a specific channel 

opener, ivermectin, to render these cells permeable to chloride. Then the level of chloride in 

surrounding medium is varied, to induce depolarization (efflux of negative Cl− ions) or 

hyperpolarization (influx of negative chloride ions) at will. This technique allows the 

experimenter to study the effects of Vmem change in a specific cell population within a 

living organism.
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Figure 5. Instructor cell depolarization induces metastatic phenotype
When the GlyR-expressing cells are depolarized, a remarkable phenotype is observed 

among melanocytes – pigment cell derivatives of the neural crest [60–61]. Panels A–F 

shows cross sections of tadpoles.

(A, B) in control sections across the anterior and posterior trunk, small numbers of normal 

round melanocytes are observed (nt = neural tube). In contrast (C,D), animals in which the 

instructor cells have been depolarized show high numbers of highly arborized melanocytes. 

In fact these melanocytes not only become much more dendritic and overproliferate, but also 

thoroughly invade soft body tissues such as the neural tube and its lumen (E, red arrows) and 

form long nerve-like projections across the entire somatic mesoderm (F). These cells 

preferentially target the blood vessels (H, red arrows, compares to G).

Not only melanocytes are affected: blood vessels (visualized in a transgenic animal in which 

all flk1-positive cells express GFP) also lose their normal patterned organization and grow 

ectopically (blue arrows, compare J to I) [281]. When depolarized using any method 

(whether relying on chloride or another ion), the instructor cells activate a metastatic-like 

program of behavior in several target cell types, without the involvement of genetic damage 

or the presence of canonical oncogenes.
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Figure 6. Instructor cells manipulate cell behavior using serotonin
(A) The cells that overproliferate, change shape, and migrate inappropriately (brown 

melanocytes, red arrow) are not the same cells that are depolarized (blue lineage label, 

showing the location of a depolarizing channel’s misexpression in this section of a tadpole) 

[60,61]. Indeed, the effect takes place at considerable distance and recent studies showed 

that a very few depolarized cells at one end of a Xenopus larva is sufficient to induce the 

metastatic behavior of melanocytes at the far end of the animal [281].

(B) The non-cell-autonomous transformation of melanocyte behavior is mediated by a non-

neural function of the neurotransmitter serotonin, and can be completely rescued by 

fluoxetine – the blocker of SERT (the 5HT transporter). A current model of these events is 

that an instructor cell, when depolarized (causing SERT to run backwards instead of 

performing serotonin reuptake), begins to secrete serotonin. Serotonin itself can induce the 

same hyperpigmented phenotype, turning on genes like Slug and Sox10.

(C) The induction of metastatic behavior by voltage change forms a paradigm case for 

understanding bioelectric events in cancer. In this case, all of the key points are known: the 

endogenous channel regulating Vmem, the physiological parameter that is necessary and 

sufficient for activating the effect (depolarization, no matter which ion species is used), the 

transduction mechanism that converts biophysical property into movement of a small 

molecule chemical signal (SERT), the receptor machinery (5HT-R1,2,5 and cAMP) and key 
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transcriptional downstream responses, and the cell behaviors regulated by these downstream 

events.

Chernet and Levin Page 53

J Clin Exp Oncol. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. Vmem as a regulator of oncogene-mediated tumorigenesis
(A) When an oncogene (Xrel3) fused with a red fluorescent tag (tdTomato) is injected into a 

frog embryo, the larvae develop fluorescently-labeled tumors. Remarkably, when a 

hyperpolarizing channel mRNA is co-injected with the oncogene (B), the incidence of 

tumors is significantly reduced (C). The ability of a hyperpolarized state to suppress 

tumorigenesis despite the strong presence of oncogene protein (dashed circle in panel B-ii) 

reveals the functional importance of the depolarized state acquired by prospective tumor 

cells, and shows that at least in some contexts, cancer can be suppressed by physiological 

signals despite the presence of a genetic component normally sufficient to induce a tumor 

[93].
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Figure 8. SLC5A8, Butyrate, and HDAC mediate tumor suppression by hyperpolarization
The current model of how Vmem regulates ability of cells to form tumors is as follows [93].

(A) In unperturbed embryos, polarized Vmem is generated and maintained by several ion 

channels and pumps present in the plasma membrane; this condition allows moderate 

amounts of butyrate to influx through SLC5A8 and inhibits histone deacetylases (HDACs). 

This epigenetically regulates transcription machinery thereby maintaining baseline level 

proliferation and differentiation compatible with normal somatic morphostasis.

(B) Expression of oncogenes, or other physiological events (e.g., non-genetically induced 

depolarization, as described in [60–61]), results in the inability of SLC5A8 to import 

butyrate. Higher HDAC activity then leads to overproliferation and other neoplastic changes 

leading to appearance of tumor structures.

(C) The effect can be blocked by forced hyperpolarization via molecular and/or 

pharmacological targeting of H+, K+, or Cl− ion translocators. Forced hyperpolarization of 

the overall transmembrane potential efficiently powers the uptake of Na+ through SLC5A8. 

This energetically favorable intake of Na+ drives the inward flux of butyrate through 

SLC5A8. High levels of butyrate continually block HDAC, which leads to hyperacetylation 

of important genes resulting in cell cycle arrest and suppression of tumor formation.
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(D) The bioelectric pathway is similar to that of the depolarization-induced metastasis 

(Figure 7C), except that the transduction mechanism involves SLC5A8 and butyrate (instead 

of SERT and serotonin), and initially regulates a chromatin modification enzyme (HDAC) 

upstream of transcriptional changes that lead to tumor formation.
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Figure 9. Cancer as a disease of geometry
(A) Within any organism, substructures are provided with a field of instructive information 

that continually orchestrates individual cell activities into large-scale anatomical target 

morphologies [14,15]. These signals are mediated by gradients of chemical factors, 

pressures/tensions, extracellular matrix components, and bioelectrical events. This 

morphogenetic field operates during embryogenesis and regenerative repair, as well as 

maintains the organism for decades against aging, and disorders of cell: field interaction 

manifest as cancer.

(B) When half of a tumor is removed during a limb amputation in regenerative organisms 

such as salamanders, remaining tumor tissue is normalized and participates in the formation 

of a healthy limb [397,398,400]. The ability of embryonic and regenerative contexts to 

reprogram cancer cells towards correct anatomy reinforces the idea that cancer is a disease 

of organization and cell:cell communication, and suggests normalization strategies as 

alternatives to biomedical paradigm of mandatory killing of permanently damaged 

(malignant) cells.
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Figure 10. Bioelectric control of growth and form overrides genetic information
The interplay of physiological and genetic information represents a key area for future 

research in the cancer field, as well as developmental and regenerative biology. Recent work 

on the bioelectric control of stem cell-mediated regeneration in planaria illustrates one 

example in which information stored in bioelectrical states dominates the genetically-

encoded tissue pattern [113,115].

(A) An intact worm is cut into 3 pieces, and the middle fragment is subjected to transient 

pharmacological gap junctional inhibition [112,114]. This isolation of the wound cells from 

long-range signals throughout the fragment result in a 2-headed worm (B). Remarkably, 

when these worms are cut again (C) and again (D), without any further manipulation, the 2-

headed phenotype persists (indefinitely). The ability of a brief perturbation of physiological 

signaling to permanently change the target morphology (the shape to which the animal 

regenerates upon damage) despite an undamaged genome hints at the power of 

bioelectrically-encoded signals to regulate cell behavior toward specific tissue outcomes. 

Note that this target morphology is specified non-locally and cannot be explained by a 
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simple epigenetic modification of wound tissue, because the tail cells that would have been 

epigenetically reprogrammed into head identity are removed on each round of cutting, and it 

is the normally-differentiated central trunk cells that must know to generate an ectopic head 

at each wound site. Such distributed storage of target morphology in the real-time 

bioelectrical network present throughout the organism may explain the classical data on 

detection of tumors by electrical readings taken far away from the actual site of the cancer, 

and serves to focus attention on events outside of the immediate microenvironment of a 

neoplastic lesion.
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Table 1

Ion translocators implicated in cancer.

Ion channel/pump Protein Species Reference

NaV1.5 sodium channel Human 253,499

EAG-1 potassium channel Human 196

KCNK9 potassium channel Mouse 194

Ductin (proton V-ATPase subunit) Mouse 495

SLC5A8 sodium/butyrate transporter Human 496

KCNE2 potassium channel Mouse 497

KCNQ1 potassium channel Human 214,215

SCN5A sodium channel Human 498

Metabotropic glutamate receptor Mouse, Human 236,485,499
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