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Abstract

DNA microarrays have been used for over a decade to profile gene expression on a genomic scale. 

While this technology has advanced our understanding of complex cellular function, the reliance 

of microarrays on hybridization kinetics results in several technical limitations. For example, 

knowledge of the sequences being probed is required, distinguishing similar sequences is difficult 

because of cross-hybridization, and the relatively narrow dynamic range of the signal limits 

sensitivity. Recently, new technologies have been introduced that are based on novel sequencing 

methodologies. These next-generation sequencing methods do not have the limitations inherent to 

microarrays. Next-generation sequencing is unique since it allows the detection of all known and 

novel RNAs present in biological samples without bias toward known transcripts. In addition, the 

expression of coding and noncoding RNAs, alternative splicing events, and expressed single 

nucleotide polymorphisms (SNPs) can be identified in a single experiment. Furthermore, this 

technology allows for remarkably higher throughput while lowering sequencing costs. This 

significant shift in throughput and pricing makes low-cost access to whole genomes possible and 

more importantly expands sequencing applications far beyond traditional uses (Morozova & 

Marra, 2008) to include sequencing the transcriptome (RNA-Seq), providing detail on gene 

structure, alternative splicing events, expressed SNPs, and transcript size (Mane et al., 2009; Tang 

et al., 2009; Walter et al., 2009), in a single experiment, while also quantifying the absolute 

abundance of genes, all with greater sensitivity and dynamic range than the competing cDNA 

microarray technology (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008).

1. OVERVIEW

RNA-Seq utilizes highly efficient sequencing techniques and subsequent mapping of short 

sequence reads to a reference genome, making it possible to identify exons and introns by 

mapping their boundaries of genes, which in turn allows investigation of the complexity of 

transcriptomes in unparalleled detail. Moreover, RNA-Seq enables identification of 

transcription initiation sites and new splicing variants and permits quantitative determination 

of exon and splicing isoform expression. This innovative technology facilitates detailed 

examination of individual expression differences in human brain and makes it possible to 
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dissect the genetic complexities of alcoholism and a variety of physiological conditions 

(Wang, Gerstein, & Snyder, 2009).

This review addresses three critical barriers to progress in alcohol research: (1) Regulation 

of cell function often occurs at the level of alternative splicing of mRNAs (Hartmann & 

Valcárcel, 2009; Tazi et al., 2009), and emerging evidence indicates that this can be 

important for alcohol tolerance (Pietrzykowski et al., 2008), yet we have little information 

about splicing changes in human alcoholism. This can now be examined using next-

generation sequencing of brain RNA from alcoholics and controls. (2) We do not know if 

our rodent and nonhuman primate models of alcohol consumption or dependence contain 

any of the molecular signatures found in human alcoholic brain. Because these animal 

models must serve as the basis for future medication development, it is essential to 

determine which, if any, display genomic convergence with human alcoholics. (3) 

Noncoding RNAs (ncRNAs) are emerging as “master regulators” of gene expression and 

may underlie many of the widespread genomic changes produced by chronic alcohol 

consumption, yet we have limited knowledge of changes in brain miRNA levels in human 

alcoholics or animal models and even less is understood regarding the behavioral 

significance of changes in ncRNAs.

2. RNA-SEQ OF POSTMORTEM BRAIN TISSUE

Transcriptome profiling of postmortem brain tissue from alcoholics and matched controls 

has revealed novel and detailed gene expression changes, generating new avenues for 

addiction research. Although there are certain difficulties inherent with using postmortem 

brain tissue, such as difficulty in obtaining samples and accounting for variable patterns of 

alcohol use and other human variables, postmortem brain tissue remains the gold standard 

against which all other model systems should be evaluated. Next-generation sequencing 

provides a more comprehensive and accurate tool for transcriptome analysis of this limited, 

valuable resource.

A first-pass examination of the transcriptome of alcoholics and matched controls identified a 

number of molecular constituents within a specific brain region (Fig. 11.1). The type of 

RNA molecules uncovered depends on the initial experimental design, but novel biological 

features may also be revealed. By design, RNA-Seq of the prefrontal cortex primarily 

identified protein-coding transcripts and also discerned an appreciable number of 

pseudogenes and small nucleolar RNAs (snoRNAs) (Fig. 11.1). In addition to having 

recognized roles in RNA processing and ribosomal RNA modification (Eddy, 2001; Kiss, 

2002), snoRNAs are implicated in regulating CNS function (Cao, Yeo, Muotri, Kuwabara, 

& Gage, 2006; Rogelj, Hartmann, Yeo, Hunt, & Giese, 2003). The expression of snoRNAs 

and other ncRNAs may have important roles in alcoholism and other diseases.

Comparing the overall expression of detected biological RNA categories within individual 

samples illustrates consistency among nonalcoholics and alcoholics (Fig. 11.2). 

Alternatively, any possible discrepancies that may need special consideration in downstream 

analyses may also be revealed through this type of comparison. The global expression level 

of transcriptome elements is stable among individuals from alcoholics and matched controls 
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(Fig. 11.3A), and is also similar in terms of sensitivity, determined through the number of 

counts per million (CPM) mapped reads over varying levels of stringency (Fig. 11.3B). 

General agreement across the samples indicates the absence of a potential batch effect or 

outliers within the examined cohort. Sequencing depth, based on reliably and 

unambiguously mapped reads, is nearly uniform across controls and alcoholics for all of the 

biological units (Fig. 11.4A), as well as for only protein-coding transcripts (Fig. 11.4B). 

Although increased sequencing depth could improve expression estimates, continuity 

between specimens suggests reliable biotype measurements for comparing alcoholic and 

nonalcoholic subjects. Importantly, lack of overall expression differences in proportion to 

disease state does not exclude finding potential differences in discrete RNA molecules, 

which may be important players in the development of alcohol use disorder.

3. DETECTION OF TECHNICAL BIASES IN RNA-SEQ DATA

Obtaining an accurate assessment of RNA molecules that correspond with disease is not a 

trivial undertaking and should include a comprehensive evaluation of expression estimates 

for potential areas of artificial biases (Ozsolak & Milos, 2011). Transcript length and 

guanine–cytosine content (GC content) are two particular characteristics that may influence 

the quantification of RNA-Seq data (Oshlack & Wakefield, 2009; Pickrell et al., 2010). 

Nonnormalized expression counts follow a similar trend for alcoholics and matched controls 

with respect to the length (Fig. 11.5A) and percentage of GC content of identified transcripts 

(Fig. 11.6A). The length and GC content for mapped features, without normalization, are 

significantly associated with expression for both groups (Figs. 11.5B and 11.6B). Correcting 

expression estimates based on the number of collected reads per kilobase per million 

(RPKM) mapped reads, one method accounting for molar concentration and transcript 

length (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008), effectively alleviated the 

significant bias introduced by transcript length within controls and alcoholics (Fig. 11.5D). 

Utilizing RPKM values also blunted the relationship between GC content and computed 

expression values (Fig. 11.6D), although not to the same degree as the length of expressed 

biotypes. The effect of GC content on expression may be minimized with additional 

processing/normalization strategies (Hansen, Irizarry, & Wu, 2012; Risso, Schwartz, 

Sherlock, & Dudoit, 2011). At first glance, expression may appear nearly indistinguishable 

between alcoholics and controls (Figs. 11.5 and 11.6); however, detailed examination of 

RNA-Seq can expose biases that may affect expression estimates, and an appropriate 

normalization strategy is therefore crucial.

4. NORMALIZATION OF RNA-SEQ DATA

No single procedure has yet emerged as a gold standard for RNA-Seq analyses. Differing 

methodologies for profiling expression can reveal discrepant findings in the identification of 

differentially expressed genes from the same experimental dataset (Rapaport et al., 2013; 

Soneson & Delorenzi, 2013; Tarazona, García-Alcalde, Dopazo, Ferrer, & Conesa, 2011). In 

order to adequately manage bioinformatics pipelines, multiple in silico experimental 

designs, rather than a one size fits all approach, may initially need to be explored before 

selecting a suitable model of normalization. RNA-Seq expression data from the prefrontal 

cortex are illustrated using different representative methods of normalization. The 
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intersample correlations among controls and alcoholics fluctuate according to the 

normalization strategy and impact the extent of within group variation (Fig. 11.7). RPKM 

values have the highest proportion of variability, which may impede the identification of 

differentially expressed features between alcoholics and controls. A comprehensive 

evaluation of normalization techniques for RNA-Seq data has previously suggested the 

RPKM approach is ineffective and should cease to be used for evaluating differential 

expression (Dillies et al., 2013). Additionally, RPKM data may fail to adequately account 

for RNA composition bias (Robinson & Oshlack, 2010) or gene length (Bullard, Purdom, 

Hansen, & Dudoit, 2010) in the detection of differentially expressed features. Practical 

recommendations are available for generating fairly robust datasets (Dillies et al., 2013) and 

will continue to evolve as RNA-Seq is adopted in a larger number of laboratories. Selecting 

the appropriate statistical method for minimizing the effects of technical error will also 

depend upon additional known sources of systematic variation.

5. ALTERNATIVE SPLICING AND DIFFERENTIAL EXPRESSION

Once an acceptable normalization method is determined, summarized read counts can be 

evaluated for divergent expression profiles between two or more conditions. RNA-Seq is a 

powerful tool for the detection of differentially expressed features, capable of capturing 

weakly expressed genes and alternatively splices transcripts within a single experiment 

(Bottomly et al., 2011; Marioni, Mason, Mane, Stephens, & Gilad, 2008). Although it is 

challenging to use short-read sequencers to quantify splice variants having identical exons, 

several algorithms exist for computing the expression of full-length isoforms (Garber, 

Grabherr, Guttman, & Trapnell, 2011; Trapnell et al., 2012; Xing et al., 2006). Recognition 

of alternatively spliced transcripts, and their individual exons, is an important aspect for 

interpreting the neurobiology of disease. The human transcriptome is able to generate a 

tremendous degree of biodiversity, with ~95% of all multiexon genes undergoing alternative 

splicing (Pan, Kaiguo, Razak, Westwood, & Gerlai, 2011). Humans, and closely related 

primates, exhibit the greatest degree of complexity in splicing, with the human brain being 

the most diverse among several tissue types (Barbosa-Morais et al., 2012). The higher rate 

of alternative splicing in human brain may underscore evolutionary remodeling for higher 

cognitive function while generating greater susceptibility to neuropsychiatric diseases.

Differential expression between alcoholics and controls is able to distinguish ~1000 genes 

and ~1200 significant alternatively spliced transcripts (Fig. 11.8). Genes and corresponding 

spliced isoforms tend to follow similar patterns of differential expression in relation to 

alcohol dependence. The majority of genes and splice variants with a p-value ≤0.05 have 

only a modest, less than twofold change in expression. Statistically significant genes, or 

alternatively spliced transcripts, with larger fold changes in expression are usually weaker in 

overall expression. In some circumstances, it may be advantageous to remove missing or 

low-level counts; however, some methods of statistical inference may account for extreme 

or missing variables (Anders et al., 2013). Individual exons are more abundant in RNA-Seq 

counts, making no assumption of its interconnection with other units to form a functional 

RNA molecule. Approximately, 11,000 individual exons are differentially expressed in the 

prefrontal cortex of alcoholics (Fig. 11.8). Additionally, a greater number of exon features 

have fold-change values >2, which may suggest some gene or isoform reconstructions 
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underestimate some of the differences occurring with alcohol dependence. Although 

individual exons cannot function solely on their own accord, these molecular units might 

serve as surrogate markers for differences in the functional transcript or gene product. 

Altered expression of individual exons may be of substantial interest, especially if these 

changes coincide with the site of activation, a site of intramolecule docking, or an alcohol-

binding site for the fully formed protein substrate.

6. LONG NONCODING RNA

In the absence of forming a functional protein, intracellular molecules can still function as 

ncRNAs (Mattick & Makunin, 2006). ncRNAs make up a sizeable share of the 

transcriptional landscape (Carninci et al., 2005; ENCODE Project Consortium et al., 2012, 

2007), but the precise function of many noncoding elements remains largely unknown. 

Defining the diverse biological roles carried out by multiple classes of ncRNAs is a 

burgeoning aspect of transcriptomics that will likely match or rival the large number and 

diversity represented by the proteome. Long noncoding RNAs (lncRNAs) represent one of 

the most abundant classes of nonprotein-coding RNAs in the brain (Jia et al., 2010; Ravasi 

et al., 2006). Similar to protein-coding transcripts, lncRNAs can be found within specific 

neuroanatomical regions (Belgard et al., 2011; Mercer, Dinger, Sunkin, Mehler, & Mattick, 

2008). A study of human alcoholic brain tissue showed an increase in the expression of the 

lncRNA MALAT1 within multiple brain regions (Kryger, Fan, Wilce, & Jaquet, 2012). 

Overall expression of lncRNAs may be lower than protein-coding transcripts, but can be 

dynamically regulated in alcoholic brain tissue (Fig. 11.9). Although the role of lncRNAs on 

alcohol dependence and drug addiction is still unclear, lncRNAs are known to (1) mediate 

control of epigenetic factors for regulating gene expression (Khalil et al., 2009; Lee, 2012; 

Wang et al., 2011), (2) act as endogenous competitors (Cesana et al., 2011), (3) regulate 

alternative splicing events (Barry et al., 2013; Massone et al., 2011; Tripathi et al., 2010), 

(4) control neuronal development (Pollard et al., 2006), and (5) guide synaptic plasticity 

(Bond et al., 2009). These diverse roles make it likely that even low-to-moderate changes in 

lncRNA expression could significantly impact alcohol use disorders and other psychiatric 

diseases.

7. NOVEL THREE PRIME UNTRANSLATED REGIONS

RNA-Seq can generate rich expression maps for annotated and unannotated regions of the 

transcriptional landscape (Nagalakshmi et al., 2008). The expression of transcribed RNA 

features can be extensively regulated across human tissues and cell types (Djebali et al., 

2012; Wang et al., 2008), which may involve alternative splicing of exons or pervasive 

variation within the 3′-UTR of transcripts. Differences in the 3′-UTR of transcripts are 

known to contribute to expression instability, translation, and act as sites of 

posttranscriptional regulation (Jackson, 1993). Unbiased transcriptome sequencing of the 

human brain can identify novel 3′-UTRs for candidate genes (Fig. 11.10). Further 

characterization of the transcriptome across assorted brain structures, experimental 

circumstances, and individuals may reveal unique 3′-UTRs or other features for transcribed 

elements. Probing the neurobiology of novel 3′-UTRs, though time consuming, could 

eventually expose distinct mechanisms of neuronal function. For example, a short 3′-UTR of 
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Bdnf RNA is restricted to neuronal somata, while a long form of the 3′-UTR is trafficked to 

the dendrites where it can act upon spine morphology and synaptic transmission (An et al., 

2008). Local translation of BDNF, delivered via a long form of the 3′-UTR, can modulate 

GABAergic transmission (Waterhouse et al., 2012), a well-characterized neurotransmitter 

system targeted by alcohol and other drugs of abuse (Davies et al., 2003; Harris, Trudell, & 

Mihic, 2008; Kauer & Malenka, 2007).

8. GENETIC VARIATION AND ALCOHOL DEPENDENCE

Single nucleotide polymorphisms (SNPs) within GABA receptors, and several other 

candidate genes, are likely contributors in susceptibility to the development of alcohol 

dependence (Dick & Foroud, 2003). Similar to other psychiatric diseases, alcoholism is 

influenced by multiple genes with low-to-moderate effect (Sullivan, Daly, & O’Donovan, 

2012). Polygenic factors can account for 40–60% of the risk for developing alcohol 

dependence (Schuckit, 2009); however, SNPs associated with disease usually reside within 

noncoding regions. Surveying the alcoholic transcriptome for genetic variants further 

corroborates this assertion (Fig. 11.11). The largest percentage of detected variants is located 

with sequencing reads mapped to intronic regions, followed by areas located up- or 

downstream of coding elements and intergenic regions. Introns are typically removed 

through RNA splicing events, but may be retained within individual isoforms harboring cis-

acting SNPs controlling their expression (Dieter & Estus, 2010). High-throughput 

sequencing of human populations, as well as other model systems, is beginning to pinpoint 

numerous sites of nucleotide variation, that regardless of genomic loci, are capable of gene, 

alternative splicing, and downstream expression (Gerstein et al., 2010; Graveley et al., 2011; 

Lappalainen et al., 2013). However, linking any causal points of genetic inference with 

disease remains a significant challenge in the modern era for quantitative biology. Isolated 

studies often lack statistical power to definitively link any single SNP, let alone the 

interaction among multiple SNPs, with disease progression. Strategies are emerging to 

overcome these types of hurdles and identify unanticipated points of genetic interaction 

(Pan, 2008; Pandey et al., 2010). Similar to other complex traits, alcoholism is driven by the 

interaction of countless SNPs and competing environmental influences, which shape the 

transcriptome and regulate neurobiological functions. Although a number of differences may 

exist between human DNA and RNA sequences from the same individual (Li et al., 2011), 

sequencing the transcriptome in alcoholic brain tissue will continue to provide a valuable 

resource that represents the multidimensional factors operating in alcohol use disorders.

9. BIOLOGICAL COEXPRESSION NETWORKS

The number of genes implicated in alcohol dependence and other psychiatric illnesses 

continues to grow, with no single factor being uniquely responsible for the genotype–

phenotype relationship. This is not a surprising notion, given that genes and their ensuing 

proteins do not exist in isolation, but work through coordinated pathways to govern cellular 

actions. Current canonical pathways, although useful to some extent, are becoming 

increasingly inadequate to account for the multitude of factors driving cellular behavior and 

manifesting phenotypes (Califano, Butte, Friend, Ideker, & Schadt, 2012). Using a variety of 

high-throughput approaches, both expected and unexpected connections can be 
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simultaneously established among multiple cellular substrates to define biological networks 

for nearly any condition (Barabási & Oltvai, 2004; Vidal, Cusick, & Barabási, 2011). Not all 

genetic perturbations may be of equal value but may spread their effects across a web of 

neighboring genes to propagate disease symptomology. Disease-associated genes form an 

extended network that surrounds highly connected hub genes, which are essential to 

influence multiple biochemical pathways for development and survival (Goh et al., 2007). 

Understanding phenotypes across a spectrum of human disorders will require understanding 

the corresponding network architecture of related diseases.

The human brain transcriptome represents highly organized gene coexpression networks that 

are consistent across individuals (Hawrylycz et al., 2012; Oldham et al., 2008). Defining 

gene coexpression patterns for human diseases has revealed convergent molecular profiles 

(Voineagu et al., 2011), predicted causal systems in neuropathology (Zhang et al., 2013), 

and unveiled distinct network structures for similar phenotypes (Parikshak et al., 2013). 

Gene coexpression networks of alcoholic brain tissue, determined with microarray profiling, 

generated a systemic view of gene expression alterations spanning multiple cell types and 

brain regions (Ponomarev, Wang, Zhang, Harris, & Mayfield, 2012). A significant portion 

of transcripts coregulated by chronic alcohol abuse may be conserved within animal models 

of alcohol consumption (Nunez et al., 2013), permitting an experimentally tractable mode of 

elucidating gene networks in complex behaviors. Mouse models of alcohol-responsive gene 

networks can genetically dissect the interrelationship among endophenotypes (Wolen et al., 

2012) and clarify networks of candidate genes in alcohol-responsive behaviors (Farris & 

Miles, 2013). Most network models of acute and chronic alcohol exposure have relied 

primarily upon microarrays, excluding many available ncRNA substrates. RNA-Seq-derived 

coexpression networks for alcohol-related phenotypes are still emerging, but should offer 

greater insight into the whole transcriptome (Giorgi, Del Fabbro, & Licausi, 2013; Iancu et 

al., 2012). Leveraging the network structure, in addition to differential expression, of the 

complete transcriptome using RNA-Seq will facilitate a more comprehensive assessment of 

transcribed features involved in alcoholism and drug conditions.

10. FUTURE DIRECTIONS

Realizing the full potential of RNA-Seq will eventually involve incorporating multiple 

levels of discrete data types and model systems (Fig. 11.12). The entire complement of RNA 

molecules, including miRNAs and lncRNAs, exists as a highly orchestrated network, 

regulated in part by genetic variants or epigenetic phenomena spread throughout the 

genome. Alternative splicing of mature RNA enables considerable bio-diversity of protein 

products and protein–protein interaction networks. The human proteome (Rual et al., 2005) 

is far from complete and will likely evolve in parallel with information gleaned from the 

transcriptome. In the long term, such information will further inform the interpretation of 

neurophysiological and neuroanatomical studies, including large-scale initiatives like the 

Human Connectome Project (Van Essen et al., 2013, 2012), in human health. A major 

challenge will be distilling the vast amount of biological data that bridge multiple scales and 

also are linked to discrete phenotypes. Focusing on intermediate phenotypes of complex 

traits may be useful for discovering large, consistent effects exerted by gene networks.
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Although it should be emphasized that many of the biological effects seen in 

neuropsychiatric diseases may be specific to humans, model systems will continue to serve a 

fundamental role in the post transcriptomic era of modern biology. For example, 

systematically combining multiple biological networks within a yeast reference population 

clearly demonstrated that integrating several datasets can improve prediction of causal 

regulators of complex system behavior (Zhu et al., 2008). Combining information from 

human and animal models can ascertain core networks affecting disease (Emilsson et al., 

2008). Alternatively, animal models explicitly created for a desired attribute may be 

sequenced to find novel causal contributors. Studying alcohol preferring and nonpreferring 

rats identified a stop codon within the metabotropic glutamate receptor 2 (Grm2) that 

controls protein expression and alcohol-drinking behavior (Zhou et al., 2013). This is just 

one example of the presumably large collection of variants that will be identified in alcohol 

consumption, which may eventually intersect with those recognized in human populations. 

Identifying networks with convergent validity across model organisms and humans (Fig. 

11.12) has the potential to isolate systems for therapeutic intervention tailored to the specific 

needs of the individual.

Whole-transcriptome sequencing has far reaching effects in both clinical and preclinical 

applications. As a foundation for basic sciences, RNA-Seq continues to impart a deeper 

appreciation for the vast transcriptional structure of genes and quantification of transcript 

expression throughout differing cells, tissues, and species. Although still in the early stages 

of use, RNA-Seq can monitor spatial organization of the transcriptome (Lee et al., 2014) and 

extract some of the subtle expression differences induced by individual neurons and their 

microenvironments (Lovatt et al., 2014). With psychiatric illnesses representing one of the 

most challenging areas of medicine, sophisticated tools such as those furnished by deep 

sequencing technologies are essential for deciphering all of the converging elements that 

orchestrate these diseases.
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Figure 11.1. 
RNA-Seq detection of biological features for alcoholics and matched controls. Bar plot 

demonstrates the percentage of features detected in a representative control (blue (black in 

the print version)) and alcoholic (red (dark gray in the print version)) sample from a cohort 

of the prefrontal cortex. The left axis shows percentage of features for the top three biotypes 

with the right axis showing percentage of remaining biotypes (separated by dotted green 

(light gray in the print version) vertical line). Protein-coding transcripts were the 

predominant feature detected in both groups.
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Figure 11.2. 
Expression values of the detected biological features for alcoholics and matched controls. 

Box and whisker plots for expression of biological features in representative controls (A) 

and alcoholics (B) from the prefrontal cortex. Shown along the x-axis is the number of 

corresponding biotypes determined for all samples having greater than zero counts. The two 

groups have similar overall expression values for biological features.

Farris and Mayfield Page 15

Int Rev Neurobiol. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 11.3. 
Comparison of individual samples for overall expression and sensitivity. (A) Box and 

whisker plots for overall expression within individual samples and (B) stacked bar plot of 

binned expression based on counts per million (CPM) mapped reads across individuals to 

determine intersample consistency and the percentage of low expression values that may 

interfere with downstream analyses. Horizontal lines depict the percentage of CPM 

expressed in at least one specimen to help determine an appropriate range of sensitivity.
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Figure 11.4. 
Saturation plots for assessing quality control across individual samples and disease groups. 

Number of detected features compared with sequencing depth in million mapped reads for 

controls (left), alcoholics (middle), and all samples (right) for all biological features detected 

(A) and “protein-coding” transcripts only (B). Figures demonstrate all samples have 

comparable saturation slopes and can be included in downstream analysis.
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Figure 11.5. 
Assessment of gene expression for bias in sequencing length. The size of detected biotypes 

is binned along the x-axis and compared to mean expression values of raw counts (top) and 

normalized expression by reads per kilobase per million (RPKM) mapped reads (bottom). 

Alcoholic and control samples follow similar trends in raw mean expression values (A) and 

RPKM values (C). Mean raw count values in controls and alcoholics are highly associated 

with feature length (B); however, feature length is not strongly correlated with mean RPKM 

(D).
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Figure 11.6. 
Assessment of gene expression for bias in GC content. The GC% of detected biotypes is 

binned along the x-axis and compared to mean expression values of raw counts (top) and 

normalized expression by reads per kilobase per million (RPKM) mapped reads (bottom). 

Alcoholic and control samples follow similar trends in raw mean expression values (A) and 

RPKM values (C) in relation to GC%. Mean raw count values in controls and alcoholics are 

persistently correlated with % of GC content (B); however, GC% shows lower correlation 

with normalized expression (D).
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Figure 11.7. 
Comparison of normalization strategies for assessing gene expression in controls and 

alcoholics. Box and whisker plots for intersample Pearson correlation coefficients of control 

and alcoholic prefrontal cortex gene expression across multiple strategies for normalizing 

RNA-Seq count data. Differing methods of normalization exhibit differing median 

intersample consistency and within group variation, which may affect experimental 

outcomes. The appropriate method should be based on the quality control measures and 

hypothesis in question.
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Figure 11.8. 
Differential expression for gene, transcript, and exon models of RNA-Seq data. The mean 

log CPM is plotted against the log fold change in gene (left), alternatively spliced transcript 

(middle), and exon (right) expression for alcoholics versus controls in the prefrontal cortex. 

Horizontal blue (light gray in the print version) lines depict a twofold change in expression 

(increased or decreased) between disease groups and red (dark gray in the print version) dots 

indicate features with a p-value ≤ 0.05.
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Figure 11.9. 
Fold change of long noncoding RNAs within the prefrontal cortex. Bar plot of fold change 

in expression of the top 15 long noncoding RNAs (lncRNAs) between alcoholics and 

controls within prefrontal cortex. Eleven lncRNAs show increased expression in the 

prefrontal cortex of alcoholics compared to controls, while four lncRNAs show decreased 

expression.
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Figure 11.10. 
Example of a novel three prime untranslated region (3′-UTR) from RNA-Seq data. Snapshot 

of RNA-Seq counts for three representative samples of a novel long form of a 3′-UTR. Blue 

(black in the print version) boxes indicate the presence of the last exon and currently 

annotated 3′-UTR; however, RNA-Seq may detect previously unknown details regarding 

transcript expression that may impact function.
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Figure 11.11. 
Classifying genetic variants within alcoholic prefrontal cortex. Genetic variants detected 

within alcoholic prefrontal cortex classified by currently annotated gene regions: intergenic, 

upstream, 5′-UTR, exon, splice site donor, intron, splice site acceptor, 3′-UTR, and 

downstream. Genetic variants are primarily located in unannotated genomic areas or 

noncoding/intronic regions.

Farris and Mayfield Page 24

Int Rev Neurobiol. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 11.12. 
Utilizing RNA-Seq in the context of a multiscale systems approach for understanding the 

neurobiology of alcohol dependence. Differing brain regions of alcoholics and controls can 

be evaluated using high-throughput sequencing for regulation of DNA and RNA expression. 

Information from sequencing data can then be layered with current protein data, brain 

imaging, physiological function, a variety of phenotypic traits (i.e., drinking behavior, 

withdrawal, craving), and additional influences (non-CNS tissues, human microbiota, and 

environmental pressures). Pooling resources from both clinical and preclinical sources can 

clarify points of convergent validity to determine individualized treatment plans 

incorporating behavioral therapy, current FDA approved compounds, or designer 

compounds that best target the underlying structure of an individual’s disease.
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