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Abstract

Background—Simian immunodeficiency virus (SIV), a model for HIV pathogenesis, is 

associated with neuropathology.

Methods—Five SIV-infected animals were selected following a database search of 1,206 SIV-

infected animals for nodular or astrocytic lesions. 2/5 had neurologic dysfunction and 3/5 were 

incidental findings.

Results—Histologic examination revealed multifocal nodular foci in the gray and white matter 

formed by interlacing astrocytes with abundant cytoplasm and large, reactive nuclei. Nodules were 

often enmeshed with small capillaries. Immunohistochemistry revealed variable immunoreactivity 

for a panel of markers: GFAP (4/5), vimentin (5/5), Glut-1 (1/5), CNPase (0/5), S100 (5/5), Iba1 

(0/5), Ki67 (0/5), and p53 (4/4). In situ hybridization failed to detect any SIV RNA (0/5). 

Immunohistochemistry for simian virus 40, rhesus cytomegalovirus, and rhesus 

lymphocryptovirus failed to detect any antigen within the lesions.

Conclusion—The immunoreactivity of p53 in the lesions compared to adjacent tissue suggests a 

local derangement in astrocyte proliferation and function.
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Introduction

Human immunodeficiency virus (HIV) mediated immunosuppression may increase the risk 

for proliferative astrocytic lesions [1-11]. Astrocytic neoplasms including astroblastoma and 

astrocytoma affect approximately 6% of the HIV patient population [3, 4] compared to 

<0.005% in the normal population[12]. Moderate to severe perivascular astrocytosis has 

been reported in simian immunodeficiency virus (SIV) positive individuals [13]. To our 

knowledge, nodular astroglial proliferative lesions have been rarely reported in SIV-infected 

nonhuman primates, including a solitary malignant astrocytoma [14] and a proliferative and 
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dysplastic astrocytosis [15], both conditions associated with SV40 CNS infection in the 

context of SIV-immunosuppression. SIV does manifest multiple other pathologies in the 

central nervous system, including SIV encephalitis and a variety of neurodegenerative 

changes [16].

The World Health Organization classifies astrocytic tumors into grades I-IV, with the 

highest grade (Grade IV) given to glioblastoma multiforme (GBM) [17]. Tumor suppressor 

p53 is a transcription factor mutated in 50% of tumors and is commonly constitutively 

expressed in tumors [18]. Alterations of the p53 pathway in GBM include mutations to both 

upstream and downstream regulators and effectors, as well as mutations in p53 itself; the 

most common mutations alter expression of genes controlling senescence and apoptosis 

[19]. The overall result of these mutations includes constitutive expression of mutant p53 

[20]. Approximately 33% of low grade infiltrating astrocytoma (Grade I-II) have mutations 

detected in the p53 gene [17]. Alteration of p53 expression is seen in 60% of diffuse 

astrocytoma [21], 25-30% of primary GBM, and 60-70% of secondary GBM [22]. 

Astrocytic neoplasia reported in the rhesus macaque includes radiation-induced GBM [23] 

and a spontaneously occurring neurohypophyseal astrocytoma [24]. In SIV-infected rhesus 

macaques, simian virus 40 (SV40) has been directly isolated from malignant astrocytoma 

[14]; however the role this virus plays in oncogenesis is incompletely understood.

Herein we describe five cases of atypical nodular perivascular lesions in SIV-infected rhesus 

macaque and detail the histopathologic features, including increased p53 immunoreactivity 

within the lesions.

Materials and Methods

Retrospective analysis of the New England Primate Research Center (NEPRC)’s database of 

archived necropsy reports identified 1,206 cases of SIV-infected rhesus macaques from 

1997-2012. We identified five cases with nodular lesions in the brain and brainstem 

following a search for the following key words in the microscopic findings in the central 

nervous system (CNS): nodule, spindloid, spindle, whorls, astrocytosis, and aggregates of 

astrocytes. A comparable search of non-SIV-infected rhesus macaques failed to reveal any 

lesions similar to those presented in this case report. Four out of five cases demonstrated 

AIDS-defining lesions indicating SIV-immunosuppression. Signalment, SIV variant, 

inoculation route, days post inoculation, location and size of nodular lesions are indicated in 

Table 1. All of the animals in this study were housed at the NEPRC in a biosafety level 3 

facility and cared for in accordance with the National Research Council’s Guide for the Care 

and Use of Laboratory Animals (8th edition, 2011), the standards of the Harvard Medical 

School Standing Committee on Animals, and The Association for the Assessment and 

Accreditation of Laboratory Animal Care.

Representative sections of all major organs were collected, fixed in 10% neutral buffered 

formalin, and embedded in paraffin. Five μm sections of representative samples were 

routinely prepared and stained with hematoxylin and eosin (H&E).
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To identify cell types, to characterize cellular proliferative processes, and to test for the 

presence of viral antigens for possible viral etiology, brain tissues were subjected to 

extensive immunohistochemical analysis. Astrocytes were distinguished through the 

expression of glial fibrillary acidic protein (GFAP), a class-III intermediate filament highly 

expressed in mature astrocytes, and the mesenchymal cell marker vimentin, a class-III 

intermediate filament found in non-epithelial cells [25]. The enzyme 2′, 3′-cyclic nucleotide 

3′-phosphodiesterase (CNPase), expressed at high levels by oligodendrocytes in the central 

nervous system and Schwann cells in the peripheral nervous system, is used as a marker to 

identify these cell types [26]. S100, a low-molecular weight protein found in cells derived 

from the neural crest, is expressed in glial cells and is up regulated in reactive astrocytes 

[27] and expressed in a variety of different cancers [28-30]. Ionized calcium binding adaptor 

molecule 1 (Iba1) is a marker of microglia/macrophage-lineage cells [31]. Glut-1 is a major 

glucose transporter in the mammalian blood-brain barrier and is expressed in erythrocytes 

[32] and endothelial cells in the brain [33]. Aberrant Glut-1 has been shown to correlate with 

poor survival in a variety of human and canine cancers [34-36]. Antibodies were also used 

to test for the presence of viral antigens for simian virus 40 (SV40), cytomegalovirus 

(CMV), and EBV-homologue lymphocryptovirus (LCV).

Formalin-fixed, paraffin-embedded sections were deparaffinized, rehydrated, and blocked 

with 3% hydrogen peroxide. See Table 2 for detailed immunohistochemistry protocols. 

Briefly, all steps were followed by washing with Tris-buffered saline. All antibodies except 

for p53 required blocking with avidin-biotin (Invitrogen Corporation, Frederick, Maryland) 

prior to blocking with Dako protein block (DakoCyomation, Carpinteria, California) for ten 

minutes. Following washing with Tris-buffered saline, antigen-antibody complex formation 

was detected using diaminobenzadine (DAB; DakoCytomation) and counterstained with 

Mayer’s hematoxylin. In all cases, control sections were incubated with isotype-specific 

irrelevant antibody controls. Positive controls consisted of tissue from brain (GFAP, Glut-1, 

Iba1, and CNPase), intestine (vimentin, Ki67), pancreas (S100), SIV and SV40 encephalitis, 

cytomegalovirus (CMV) orchitis, and colon cancer (p53) samples. To prevent irregularities 

between runs, each immunohistochemical staining was performed in a single batch. 

Detection of virion-associated RNA by in situ hybridization (ISH) for SIV RNA was 

performed as previously described [37].

Results

Histology

Histologic examination revealed multifocal perivascular nodular foci of variable size (Table 

1) in the gray and white matter of various structures of the brain, including the cerebral 

cortex, globus pallidus, thalamus, and cerebellum, and brain stem (Fig. 1A). The nodules 

were composed of densely cellular, interlacing plump to elongate spindle cells with 

abundant eosinophilic cytoplasm and large, reactive nuclei (Fig. 1B). Nodules were often 

interlaced around small capillaries. In Case 3, effacing the hypothalamus, there was a large 

focus three mm in diameter (Fig. 1C) composed of multiple coalescing nodules 100-200 μm 

in diameter (Fig. 1D) with smaller nodules 20-50 μm in diameter surrounding adjacent small 

capillaries.

Petrosky et al. Page 3

J Med Primatol. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Immunohistochemistry

Characterization and phenotype of cells in lesions—To determine the cellular 

phenotype of the cells within the lesions, brain sections were analyzed using 

immunohistochemistry using several CNS cell-type specific markers: GFAP and vimentin 

for astrocytes, CNPase for oligodendrocytes, S100 for histiocytic / dendritic cells and other 

cells of neural crest origin, IBA-1 for microglia/macrophages, and Glut-1 for endothelial 

cells. Spindle cells composing the nodular lesions exhibited robust immunoreactivity with a 

homogenous distribution of cytoplasmic vimentin in all cases (5/5, Figs. 2B, 3B) and 

cytoplasmic GFAP in four cases (4/5, Figs. 2A, 3A). Additionally, prominent GFAP+ 

activated astrocytes (gemistocytes) with strong immunoreactivity were present surrounding 

nodules in all cases. Spindle cells composing the nodular lesions lacked immunoreactivity 

for CNPase (0/5, data not shown), although occasional CNPase+ oligodendrocyte processes 

were evident trapped or traversing the lesions. CNPase immunoreactivity was restricted to 

the white matter in the sections around the lesions. Robust cytoplasmic S100 

immunoreactivity was seen in both spindle cells composing the nodular lesions and in S100 

immunoreactive microglia (5/5, data not shown). In addition, IBA-1 immunoreactive 

microglia were present in the nodules; however the proliferative cells had no 

immunoreactivity (0/5, Fig. 2C, Fig 3C). Most vessels, including capillaries not associated 

with the nodular lesions, displayed Glut-1 immunoreactivity. Glut-1 immunoreactive 

endothelial cells were present as numerous small, proliferative capillaries within the nodular 

lesions (4/5, Fig 2D) and there were profoundly hypertrophic vessels in Case 3 (1/5, Fig. 

3D). Results are summarized in Table 3.

Indices of cellular proliferation and cell cycle control—To assess the proliferative 

nature of the lesions, Ki-67 was used as a marker of mitosis and cellular proliferation. 

Unexpectedly, the cells in the nodular lesions demonstrated limited Ki-67 immunoreactivity 

(0/5) (Fig. 4A, C). Since alterations in p53 expression have been associated with astrocytic 

masses, sections were analyzed for p53. Spindle cells composing the nodular lesions 

exhibited immunoreactivity with coarsely stippled nuclear localization of p53 in four of four 

cases available (Fig. 4B, D). 40% of the spindle cells composing the lesions exhibited strong 

immunoreactivity, while the remaining 60% showed lesser immunoreactivity. Rare cells 

scattered throughout the white and gray matter exhibited p53 immunoreactivity. Case 1 had 

insufficient tissue remaining for p53 immunohistochemistry. Percentage of immunoreactive 

nuclei found within the proliferative lesions, determined by averaging results from five 

lesions, are shown in Table 4.

Viral detection—SIV viral RNA as well as viral antigens of possible opportunistic CNS 

viruses (SV40, CMV, and LCV) were examined within the nodular lesions. In situ 

hybridization for SIV RNA was negative in all sections (0/5, data not shown). SV40 and 

LCV immunoreactivity were negative in all sections (0/5, data not shown). 

Immunoreactivity for CMV antigen was negative in the astrocytic foci for all cases, (0/5, 

data not shown), but Case 3 had occasional isolated meningeal nuclear CMV 

immunoreactivity distant to the nodular lesions. Results are summarized in Table 3.
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Discussion

The cases shown herein demonstrate unique perivascular nodular lesions in the brain of SIV-

infected rhesus macaques. The positive immunoreactivity for GFAP and vimentin in the 

perivascular nodular lesions are consistent with astrocytic origin. The nodular lesions in the 

outlier, case 3, displays immunoreactivity to vimentin but not GFAP. Given that in vitro 

cultures of astrocytes typically express only low levels of GFAP, the spindle cells in case 3 

may also be astrocytes [38]. Astrocyte activation in response to aberrant endothelial cells is 

unlikely given the normal appearance of the endothelial cells composing the proliferative 

capillaries within the nodular lesions in the other four cases.

SIV encephalitis is commonly associated with multinucleated giant cells and occurs in 

almost a quarter of all SIV-infected macaques [39, 40] . Following SIV infection of 

macrophage and microglia, the sustained inflammation and release of inflammatory 

cytokines may lead to astrocytosis [41]; however these nodular lesions have not been 

previously described as part of the late stage neuroprotective response.

Numerous viruses are known to cause infection and pathology within the central nervous 

system of SIV-immunosuppressed rhesus macaques. Primary SV40 infection of 

oligodendrocytes and astrocytes is associated with meningoencephalitis in SIV-infected 

rhesus macaques [15, 42], while progressive multifocal leukoencephalopathy (PML) has 

been reported in cases of SV40 recrudescence in oligodendrocytes following SIV infection 

[15, 43-45]. Rhesus CMV infection of ependymal cells, pia mater, and neurons is associated 

with meningitis and myelitis in SIV-infected rhesus macaques with AIDS [46]. Of interest, 

is the recent association of CMV with astrocytic tumors in humans [47, 48]. Primary central 

nervous system lymphoma, an AIDS-related non-Hodgkin’s lymphoma [49], in SIV-

immunosuppressed macaques contain rhesus LCV [50], a virus with 64% homology to 

human Epstein Barr Virus [51]. Encephalitis has been induced in rhesus macaques with 

rhesus LCV infected B-cells [52]. None of these viruses were detected within the 

proliferative astrocytic nodules.

The perivascular nodular astrocytic lesions shown here resemble some features of astrocytic 

neoplasms seen in HIV-infected patients. The histologic characteristic of a perivascular 

distribution of the nodular lesions suggests a hematogenous or blood-brain barrier 

association and it is possible that these lesions are an aberrant response to SIV viremia. The 

strong immunoreactivity of p53 in the lesions compared to adjacent tissue suggests the local 

derangement in astrocyte proliferation and function of a pre-neoplastic or neoplastic process. 

Surprisingly, Ki67 immunoreactivity is restricted to hypertrophic vessels and the cells noted 

within the lesions did not exhibit strong Ki67 immunoreactivity suggesting that they are now 

removed from the proliferative phase of development and are residual lesions secondary to 

the primary inciting cause. Ki67 is a marker for cellular proliferation [53]. Lower grade 

tumors also have less p53 expression, lower Ki67 index, and fewer microglia compared to 

higher grade astrocytic tumors (Grade III-IV) [54]. In adult grade II low-grade diffuse 

glioma, which include diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma, 

higher Ki67 index correlates with shorter overall patient survival [55]. Another 

interpretation is that these nodules are part of a neuroprotective response by astrocytes [56] 
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in slow-progressing animals. However, the organization of the astrocytes into interlacing 

cells and into coalescing nodules suggests a possible preneoplastic lesion.

The cases presented herein do not have features of an astrocytoma; however with the altered 

p53 immunoreactivity it suggests that there has been local derangement in astrocyte 

proliferation and may be a pre-neoplastic change. To our knowledge, this report is the first 

to describe the histopathologic and immunohistochemical features of perivascular nodular 

astrocytosis in SIV-immunosuppressed macaques.
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Figure 1. 
Brain, rhesus macaques (Macaca mulatta). Multifocal perivascular nodular foci with densely 

cellular, interlacing populations of elongated spindle cells with abundant eosinophilic 

cytoplasm. Case 2: Representative nodules, 200 μm in diameter (A). Dashed box indicates 

enlarged area that shows a single nodule (B). Case 3: Nodules coalesce to form a mass five 

mm in diameter (C). Dashed box indicates enlarged area that shows nodule (D). Scale bar = 

200 μm (A, C) and 50 μm (B, D).
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Figure 2. 
Brain, rhesus macaques (Macaca mulatta). Immunohistochemical findings, Case 2. Nodules 

exhibit strong GFAP immunoreactivity (A) and strong vimentin immunoreactivity (B). The 

proliferative nodules are infiltrated by numerous reactive microglia (C). Glut-1 

immunoreactivity is localized to small capillaries (D). Scale bar = 50 μm.
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Figure 3. 
Brain, rhesus macaques (Macaca mulatta). Immunohistochemical findings, Case 3. There 

are gemistocytic astrocytes surrounding markedly hypertrophic vessels (A). Hypertrophic 

vessels exhibit strong vimentin immunoreactivity while the surrounding lesion also displays 

vimentin immunoreactivity (B). The proliferative lesions and hypertrophic vessels are 

infiltrated by numerous reactive microglia (C). There is profound endothelial hyperplasia of 

the vessels found within the lesions (D). Scale bar = 50 μm.
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Figure 4. 
Brain, rhesus macaques (Macaca mulatta). Case 2 (A, B) and Case 3 (C, D). Limited Ki67 

immunoreactivity (A, C), and extensive p53 immunoreactivity (B, D). Scale bar = 50 μm.
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Table 1

Nodular astrocytosis in SIV-infected rhesus macaques.

Case1 Sex Age SIV variant
(inoculation

route)

Days post
SIV (first

inoculation)

SAIDS Location of
nodular

astrocytosis

Neurologic
signs2

Diameter of
representative
nodule (μm)

1 M adult SIVmac239g46
(iv)

624 + Cerebral cortex
(frontal,

temporal,
occipital),

cerebellum,
brainstem

Present 100-200

2 F 8 yr SIVmac239Δnef
(iv, ip)

2,080 + Cerebral
cortex,

cerebellum

None
noted

300-800

3 M 4 yr SIVmac239 (iv) 639 + Cerebral cortex None
noted

100-200

4 F 10 yr SIVmac239Δnef
(iv), SIVmac251

(intravaginal)

1,777 − Globus pallidus None
noted

200

5 F 5 yr SIVmac251
(intravaginal)

338 + Frontal cortex,
thalamus,

cerebellum

Advanced 100-200

1
1,206 total cases (0.4% incidence)

2
including head tilt, ataxia, falling off of perch, etc.
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Table 2

Antibody source, dilution, and antigen retrieval for immunohistochemistry protocols.

Marker Epitope
Retrieval

Primary
Antibody

Incubation
Time

Dilution Secondary
Antibody

Dilution
(all 20
min)

Tertiary
Antibody

(all 30 min)

GFAP None PAH1, Dako
(Carpinteria, CA)

45 min, room
temperature

1:340 GAR-b2 1:200 Vectastain
ABC Elite3

Vimentin Proteinase K
(5 min, RT)

MAH4, Clone 3B4,
Dako

Overnight,
4°C

1:162 HAM-b5 1:200 Vectastain
ABC

Standard3

Glut-1 Microwave6 PAH1, Millipore
(Billerica, MA)

30 min, room
temperature

1:1000 GAR-b2 1:200 Vectastain
ABC

Standard3

CNPase Microwave6 MAH4, Clone 11-
5B, NeoMarkers
(Fremont, CA)

60 min, room
temperature

1:200 HAM-b5 1:200 Vectastain
ABC Elite3

S100 Microwave6 PAH1, S100, Dako 60 min, room
temperature

1:3200 GAR-b2 1:200 Vectastain
ABC Elite3

Iba1 Microwave6 PAH1, Wako
(Richmond, VA)

30 min, room
temperature

1:1000 GAR-b2 1:200 Vectastain
ABC Elite3

Ki67 Microwave6 MAH4, Clone MIB-
1, Dako

Overnight,
4°C

1:35 HAM-b5 1:200 Vectastain
ABC Elite3

p53 Microwave6 MAH4, Clone DO-
7, AbD Serotec
(Raleigh, NC)

Overnight,
4°C

1:500 Dual Link
System,

Dako

None None

SIV Microwave6 MAH4, HIV-1 p247 Overnight,
4°C

1:400 HAM-b5 1:200 Vectastain
ABC Elite3

SV40 Microwave6 MAH4, SV40 large
T antigen, Clone

Pab416,
Oncogene

(Billerica, MA)

Overnight,
4°C

1:25600 HAM-b5 1:200 Vectastain
ABC Elite3

CMV Microwave6 serum, CMV, IEI
(exon4), PA

Barry, UCD-CCM
(Davis, CA)

30 min, room
temperature

1:1600 GAR-b2 1:200 Vectastain
ABC

Standard3

LCV Microwave6 MAH4, EBNA2,
Clone PE2, Leica

(Buffalo Grove, IL)

Overnight,
4°C

1:600 HAM-b5 1:200 Vectastain
ABC Elite3

1
Polyclonal anti-human

2
Biotinylated goat anti-rabbit, Vector Laboratories, (Burlingame, CA, USA)

3
Vector Laboratories

4
Monoclonal anti-human

5
Biotinylated horse anti-mouse, Vector Laboratories

6
Microwave in sodium citrate buffer for 20 minutes, followed by cooling at room temperature for 20 minutes

7
The following reagent was obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: HIV-1 

p24 Monoclonal Antibody (183-H12-5C) from Dr. Bruce Chesebro and Kathy Wehrly.
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Table 3

Immunohistochemistry of nodular lesions in SIV-infected rhesus macaques for cellular markers and viral 

antigens.

Case
No. GFAP Vimentin S100 Glut-1 CNPase Iba1 SV40 CMV LCV

1 + + + − − − − − −

2 + + + − − − − − −

3 − + + − − − − − −

4 + + + − − − − − −

5 + + + − − − − − −
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Table 4

Percentage of immunoreactive nuclei within nodular lesions in SIV-infected rhesus macaques for indices of 

cellular proliferation and cell cycle control. Average of five lesions.

Case
No. Ki67 P53

1 0% Not tested

2 <5% >90%

3 10% >90%

4 <5% >90%

5 <5% >90%
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