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ABSTRACT

Proper cell functioning depends on the precise
spatio-temporal expression of its genetic material.
Gene expression is controlled to a great extent by
sequence-specific transcription factors (TFs). Our
current knowledge on where and how TFs bind and
associate to regulate gene expression is incom-
plete. A structure-based computational algorithm
(TF2DNA) is developed to identify binding specifici-
ties of TFs. The method constructs homology mod-
els of TFs bound to DNA and assesses the relative
binding affinity for all possible DNA sequences us-
ing a knowledge-based potential, after optimization
in a molecular mechanics force field. TF2DNA predic-
tions were benchmarked against experimentally de-
termined binding motifs. Success rates range from
45% to 81% and primarily depend on the sequence
identity of aligned target sequences and template
structures, TF2DNA was used to predict 1321 mo-
tifs for 1825 putative human TF proteins, facilitat-
ing the reconstruction of most of the human gene
regulatory network. As an illustration, the predicted
DNA binding site for the poorly characterized T-cell
leukemia homeobox 3 (TLX3) TF was confirmed with
gel shift assay experiments. TLX3 motif searches in
human promoter regions identified a group of genes
enriched in functions relating to hematopoiesis, tis-
sue morphology, endocrine system and connective
tissue development and function.

INTRODUCTION

Gene regulation depends to a great extent on site-specific
transcription factors (TFs) that recognize and bind specific

DNA sequences in or near promoter regions of genes. TFs
often act in concert to modulate the transcriptional activity
of RNA polymerase II (1,2). Extensive knowledge of TF
binding specificities provides insight into gene regulatory
network architectures and functions (3), making it possible
to study network level phenomena, such as mutational ro-
bustness (4) or subfunctionalization upon gene duplications
(5).

Several high-throughput experimental techniques have
been developed to determine TF binding specificity, such
as protein binding microarrays, mechanically induced trap-
ping of molecular interactions, high-throughput SELEX
procedures and several more, which have been comprehen-
sively reviewed by Stormo and Zhao (3). All these tech-
niques are providing in vitro binding specificities that are
not trivial to transfer for in vivo conditions, where a com-
bined effect of additional interactions with co-factors, with
enhancers, the accessibility of chromatin and the combina-
torial nature of multiple TF binding sites can all influence
binding (2). A limited collection of experimentally deter-
mined TF binding motifs are cataloged in databases, such
as JASPAR (6), UniPROBE (7) and TRANSFAC (8).

Computational techniques have been developed to aug-
ment our knowledge about TF binding specificities and,
currently, there are close to 200 sequence-based (9) and
around 17 structure-based (10) algorithms in the litera-
ture. Sequence-based methods exploit statistical (11,12) or
enumerative approaches to identify TF binding sites from
ChIP-chip, ChIP-seq, promoter or genomic sequences (13–
16). The prediction accuracies of nine of these sequence-
based algorithms were compared on TF binding data sets
from RegulonDB (17) using the Motif Tool for Assessment
Platform, showing similar performances (9,18). Structure-
based algorithms take advantage of known 3D structures
of TF-DNA complexes. These algorithms have a variety of
implementations, including the use of crystal structures and
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computational models obtained from homology modeling
or computational docking techniques. Threading and var-
ious types of enumeration of bound DNA sequences can
be used to explore possible binding complexes. Structure-
based methods also differ in the level of structural opti-
mization employed and in the type of scoring function used
to evaluate binding affinity (19–24). Despite the fact that
experimental structures cover only about 1% of a typical
genome, accurate computational models could be built for
about half of the genome (25). Nevertheless, the use of ho-
mology models for TF binding site prediction has only been
anecdotally used (19–24) and has not been explored system-
atically.

Until now, the primary focus of structure-based meth-
ods was to recapitulate binding as observed in experimen-
tally solved crystallographic structures (10). Additionally,
all structure-based methods are described as protocols and
no software packages are available to allow calculations for
TFs of interest.

We developed the TF2DNA program for the prediction
of TF binding preferences. TF2DNA is based on a novel
structure-based computational method for the determina-
tion of TF regulatory sites. TF2DNA builds a homology
model of a provided TF sequence using the most simi-
lar available template TF structure, from a manually cu-
rated structural collection of TF-DNA complexes. Starting
from the homology model, the algorithm enumerates and
constructs TF-DNA structural models for every possible
DNA sequence. Possible steric clashes at TF-DNA inter-
faces are resolved and proper alignment of side chains and
nucleotides is achieved by applying an energy minimization
protocol in a molecular mechanics force field. Finally, an
atomistic knowledge-based potential is used to obtain the
relative binding affinities in every complex structure.

The accuracy of TF2DNA was benchmarked by com-
paring TF binding motif predictions to a set of 311 exper-
imentally verified Position Weight Matrix (PWM) models
of TF motifs, obtained from the JASPAR and UniPROBE
databases. TF2DNA correctly predicts motifs in 81.4% of
the cases where target-template sequence similarities are
greater than 40%. Below 40% target-template sequence
identity the success rate is 44.6%.

Subsequently, TF2DNA was used to predict 1321 bind-
ing preferences of 1825 putative human TF sequences, for
which accurate homology models could be constructed.
Given the benchmarked accuracy of the method, we es-
timate that about 945 of these motifs should be correct.
As an anecdotal experimental validation of the approach,
we functionally characterized the human T-cell leukemia
homeobox 3 TF (TLX3). The predicted DNA binding
motif for TLX3 was experimentally confirmed using gel
shift assays. The TLX3 motif was searched within all hu-
man promoter sequences, identifying 2173 potentially reg-
ulated genes The 1000 best-ranking TLX3-regulated genes
were used for functional enrichment analyses. In qualitative
agreement with earlier studies (26,27) these genes fall into
broad functional categories of hematopoiesis, tissue mor-
phology, endocrine system and connective tissue develop-
ment and function. We believe that the current method is
broadly applicable for similar functional characterization of

other TFs of interest or for the analysis of genome-wide TF
regulation studies.

MATERIALS AND METHODS

Collection of curated TF-DNA structural templates

A manually curated collection of TF domains in complex
with DNA was obtained from the available crystal struc-
tures in the Protein Data Bank (PDB) (28). The following
protocol was used: (i) All PDB structures were collected that
contain both protein and DNA molecules and had a crys-
tallographic resolution better than 2.5 Å; (ii) Entries were
manually filtered and proteins that are not sequence-specific
TFs were removed; (iii) Redundancy was removed at 90%
sequence identity using the cd-hit clustering program (29);
(iv) Protein chains were separated into single files except
in case of obligate TF homodimers. We kept only the part
of DNA molecules that make contact with the protein, re-
quiring a maximum distance cutoff of 4.5 Å between any
two atoms of the protein and the DNA. We also kept crys-
tal water molecules intact on the interface, since in many
cases these mediate protein-DNA interactions; (v) Com-
plexes with unnatural and missing bases were removed. Ul-
timately, the curation process resulted in 171 high quality
TF-DNA complexes.

Building homology models of TF-DNA complexes

For each TF sequence (target), we built homology mod-
els using our collection of curated TF-DNA complexes as
templates. Target to template sequence alignments were ob-
tained using hidden Markov models (HMM). HMMs were
constructed using the package HHalign (30), with the fol-
lowing settings: 3 Psi-Blast iterations with e-value cutoff of
10−4 and profile construction using a minimum sequence
identity with target sequences of 30%. HHalign also uses
secondary structure information to produce a more sensi-
tive local alignment. Each target TF sequence is aligned to
all TF sequences in our curated structural collection. The
resulting hits are filtered by requiring full coverage of the
DNA binding site residues in the template and an HHalign
probability score higher than 70%. Protein homology mod-
els were built with Modeller in complex with DNA (31). All
DNA bases in the TF-DNA complex homology model were
swapped in all possible combinations. In this way, 4k TF-
DNA derived models are generated, where k is the length
of the DNA motif in contact with the protein in the crys-
tal structure (within 4.5 Å between of any protein-DNA
atomic pair). For computational feasibility, we restricted
the modeling exercise to templates where the DNA had
at most nine base pairs contacting the protein. The orig-
inal nucleic acid bases were stripped from the coordinate
file and replaced by those corresponding to the desired se-
quence using the program psfgen from NAMD. The triad
of one nitrogen and two carbons attached to the sugar ring
were retained to maintain the directionality and planarity
of the base. TF structures remained untouched. To opti-
mize the interactions between interfacing atoms, the result-
ing TF-DNA complexes are minimized for 100 steps using
the conjugate gradient algorithm in NAMD 2.6 with the
CHARMM force field (32). The simulation took place in
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vacuum, retaining all interface water molecules resolved in
the crystal structure.

Obtaining binding site preferences

An all-atom, distance-dependent knowledge-based poten-
tial (33) was used to obtain scores (SRV) that estimate the
free energy of binding of the modeled TF bound to each
of the 4k possible k-mers. The potential function considers
protein and nucleic acid heavy atoms in a residue-specific
manner and maps the observed distances dij, between atoms
i and j, to a set of distance bins. The following energy func-
tion parameters were used: (i) a maximum cutoff distance
of 10 Å, considered between any two interface atoms, (ii) a
3 Å distance for the first bin and (iii) 1 Å distance for the
remaining 7 bins, giving a total of 8 distance bins. The po-
tential was trained using the database of 171 TF-DNA crys-
tal structures. Each complex was re-modeled with Modeller
using its own PDB structure as template and their TF se-
quences as targets to generate a ‘self-modeled’ version of
the database.

The knowledge-based potential scores, SRV, are normal-
ized in the following way:

Snorm = (SRV − Slowest
RV )/(Shighest

RV − Slowest
RV ),

where 0 represents the strongest protein-DNA association
and 1 the weakest. The normalized scores are later trans-
formed into relative binding affinities, Ka, by considering

the bimolecular binding reaction (T + D
Ka↔ TD), where T

represents the unbound TF, D the unbound DNA and TD
the TF-DNA complex:

Ka = e− A
KB T ·Snorm

where A is a proportionality constant in units of Kcal/mol,
T is the temperature in Kelvin and KB the Boltzmann con-
stant in Kcal/mol·K. A controls the slope of the exponen-
tial. This transformation gives near-zero binding affinities
to the majority of the putative binding sites. We further ap-
plied a cutoff, Kcutoff

a , which defines the set of specific TF
binding sites. We explored these two parameters and found
the best results with A = 4.74 Kcal/mol at 298 K and Kcutoff

a= 0.25. The number of TF binding sites was restricted to a
maximum of 300 in cases, where Kcutoff

a produced a larger
number.

Building position weight matrices

Binding motifs were generated to model binding prefer-
ences for each TF. From the set of 4k DNA sequences tested
for binding, only those with affinity values above a relative
affinity cutoff of γ = 0.25 were selected to build a PWM.
The sequences were aligned and their corresponding affin-
ity values were used to weight the contribution of each base
in the final PWM model.

Benchmarking with RosettaDNA

We modified our algorithm and replaced the knowledge-
based potential with the RosettaDNA energy function to

estimate binding strengths. The algorithm produces mod-
els of the TF in question bound to every possible DNA se-
quence of length k and binding strengths are calculated with
the RosettaDNA potential, which includes a protein-DNA
interaction component that describes base-readout (direct-
readout) mechanisms and deformation energies of the DNA
sequence to include shape-readout mechanisms (indirect-
readout) (23). Precise protocols used with the RosettaDNA
program are provided in the Supplementary Material.

Computing similarity between motifs

The similarity between PWMs of two motifs was assessed
by computing P-values using the Fisher–Irwin exact test
(34). One motif was allowed to slide over the other and the
P-value was evaluated for each alignment. We also calcu-
lated sliding P-values for the forward and reverse comple-
ment versions of the sliding motif. Finally, the best align-
ment was determined by identifying the best P-value. P-
values depend on the length of the motif alignment, there-
fore these cannot be used to compare motifs with differ-
ent alignment lengths. Short motifs with lengths of 3–4
nucleotides will easily find good matches (better P-value)
virtually within any other motif than longer ones (poorer
P-value). To alleviate this problem, we transformed motif
similarity P-values to motif alignment length-independent
statistical Z-scores by comparing P-values against a non-
redundant set of experimentally determined motifs that we
used as decoys. A non-redundant set of decoy motifs was
constructed using a conservative Fisher–Irwin P-value cut-
off of less than 0.05 between any two experimentally de-
termined motifs within the set. The final set contained 106
protein-DNA complex decoys (Supplementary Table S13).
Motif Z-scores are computed by considering equal-length
comparisons within the 106 decoy motifs. Therefore, high
Z-scores would not only measure relative similarity but also
the specificity or ‘uniqueness’ of the match.

Clustering TF binding motifs

All-to-all similarity Z-scores (Z) were transformed to give
a distance (D) matrix, using the following equation:

D = abs(Z − 10)
11.1

The value 10 is the maximum Z-score we considered
(most similar motifs) and 11.1 is the observed range of Z-
scores. When Z equals 10, the equation assigns a distance
of zero corresponding to the most similar motifs. The trans-
formation was necessary to construct a phylogenetic tree us-
ing the program PHYLIP (35). PHYLIP generated a rooted
tree using the hierarchical clustering UPGMA (Unweighted
Pair Group Method with Arithmetic Mean) method. Clus-
ters were chosen based on a similarity Z-score cutoff of 2.0,
which means two motifs are similar with 95% confidence.

Experimentally determined TF binding motifs

The union of two databases JASPAR (6) and UniPROBE
(7) (854 entries in total) that contain experimentally deter-
mined binding sites was used to extract all the related TF
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protein sequences (1697 sequences). Redundancy was re-
moved at 90% sequence identity using the program cd-hit
(29), yielding 779 non-redundant TF sequences with known
binding preferences. This step was necessary because JAS-
PAR and UniPROBE do not always provide TF sequence
information directly. In those cases where TFs linked to
several sequences, only the first occurrence was considered.
The final set of TF sequences, with known binding prefer-
ences, was matched against our manually curated structural
collection using HMM to HMM alignments. This returned
311 matches in the 20–100% sequence identity range.

Protein production

Codon-optimized synthetic cDNA of TLX-3 was pur-
chased from GenScript. TLX-3 was cloned into the vector
pMCSG7 containing a TEV cleavable N-terminal hexahis-
tidine (His6) tag by ligation-independent cloning using a
previously described protocol (36). The resulting plasmid
was transformed into BL21(DE3)T1R (Sigma) containing
the RIL plasmid (RIL) from Stratagene containing copies
of genes that encodes tRNAs for rare codons. Transformed
bacteria were grown in PASM 5052 (37) containing ampi-
cillin and chloramphenicol (100 ug/ul and 34 ug/ul, re-
spectively), for 5 h at 37◦C. At that time the temperature
was lowered to 22◦C for overnight growth. The bacterial
cells were pelleted and resuspended in Buffer A (20mM
Hepes pH 7.6, 500mM NaCl, 20mM imidazole, 10% glyc-
erol, 0.01% Tween-20, 0.1% NaN3, containing 1 mM PMSF
and 4 u/ml of DNAse I). The cells were lysed using an Emul-
siFlex C3 (Avestin) and separation of the lysate from the
intact cells was achieved by centrifugation (16 500 g, 1 h).
The protein was purified using an AktaExpress system. The
clarified cell extract was passed through a His60 Ni Super-
flow 1 ml column (Clontech) at a flow rate of 0.75 ml/min.
The column was washed with 10 column volumes of Buffer
A. The protein was eluted with 5 ml of Elution Buffer B
(20 mM Hepes pH 7.6, 500 mM NaCl, 500 mM imidazole,
10% glycerol). Then, the protein is loaded into a HiLoad
16/600 Superdex 200 (GE Healthcare Life Sciences) equili-
brated with buffer C (20 mM Hepes pH 7.6, 150 mM NaCl,
5% glycerol and 5 mM DTT). The fractions containing the
protein fractions were pooled together and concentrated us-
ing a 10K Amicon R© Ultra Centrifugal Filters (EMD Mil-
lipore Corporation). The protein purity was determined by
sodium dodecyl sulphate-polyacrylamide gel electrophore-
sis and the sequence confirmed by mass spectroscopy.

Electrophoretic mobility shift assay (EMSA)

Complementary TF oligonucleotides (5′-
NNNTTAATGTGTNNN-3′) and scrambled oligonu-
cleotides (5′-NNNCGCTCAGACNNN-3′) were synthe-
sized, labeled with biotin and annealed. Cold oligonu-
cleotides (5′-NNNTTAATGTGTNNN-3′) were synthe-
sized and annealed. In EMSA experiments, samples were
prepared with 0.3 �g TLX3 recombinant protein, 1 �g
Poly d(I-C), 5 �l of 4× Binding Buffer (10 mM HEPES
pH 7.9, 100 mM KCl, 4 mM DTT, 0.5% Triton X-100
and 2.5% Glycerol), 0–12 �l of nuclease-free water and
biotin-labeled TF probe (20 ng). A negative control sample

was prepared without recombinant protein. In the cold
assay, the sample was incubated at room temperature for
20 min with 5-fold excess of the cold TF probe prior to the
addition of the biotin-labeled TF probe. In the scrambled
assay, the biotin-labeled TF probe was replaced with 2 �l
of the scrambled probe (200 �g). The binding reaction was
performed at room temperature for 30 min. Protein-DNA
complexes were then separated through gel electrophoresis
on a 6% non-denaturing polyacrylamide gel using 0.5×
tris-borate-EDTA buffer (TBE). Transfer was performed
on a Pall Biodyne B nylon membrane using an electroblot-
ting device with 0.5× TBE then fixed using a ultraviolet
crosslinker. The membrane was washed, blocked, incubated
with streptavidin-alkaline phosphatase and then developed
using CDP-Star according to the protocol for non-isotopic
detection of biotinylated DNA probes (Ambion Bright
Star Biodetect Kit). The membrane was then exposed to
autoradiography film for 5 min and developed.

Scanning human promoter regions with binding motifs

All promoter sequences from protein-coding human genes,
as present in the RefSeq database (38), were collected. Pro-
moter regions were defined as: 1500 bp upstream and 500 bp
downstream of transcription start sites (TSSs). The result-
ing 23 340 promoter regions were scanned using the Motif
Alignment and Search Tool (MAST) (39). MAST takes a
binding motif in the form of a PWM and searches the given
DNA sequences. It calculates match scores for each binding
site found by summing up the individual PWM frequencies
of the matching letters within promoter sequences. Finally,
it reports the set of binding sites with P-values calculated in
comparison to a set of background sequence decoys. Bind-
ing sites were identified using a P-value cutoff of 0.0001.

RESULTS

Obtaining TF-DNA complexes and their binding motifs

The TF2DNA algorithm utilizes a 3D model of a TF to pre-
dict its binding preferences. 3D models of TF proteins could
be obtained either from experimental sources or homology
modeling (40). For homology modeling we built a struc-
tural database of templates by collecting all available crystal
structures of TF-DNA complexes from the PDB (28). These
structures were manually curated to include only the bind-
ing domain of each TF. The resulting 171 TF-DNA com-
plexes were used as templates to build homology models
(Supplementary Table S1).

The method starts by aligning the target TF protein se-
quence to all known TF sequences in the template database
using HMM profile alignments, supplemented with pre-
dicted secondary structure information (Figure 1). The
most suitable template is selected by considering the extent
of coverage of the binding site residues and the sequence
identity of the aligned region. A comparative protein model
of the target sequence in complex with DNA is generated
with Modeller (31) using the target-template HMM-HMM
profile alignment. The program Modeller was suitable for
this task because of its ability to model protein-DNA com-
plexes, which functionality is not provided in most ho-
mology modeling programs. Next, the complete library of
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Figure 1. Flowchart of the TF2DNA method. For each TF target se-
quence a profile HMM is built. The HMM of the target is aligned to all
pre-calculated template HMMs in our collection of manually curated TF-
DNA structures. The best alignment is identified using 100% coverage of
the template binding site and highest sequence identity of the aligned re-
gion. The obtained alignment is then used to generate a homology model
of the target sequence. Alternative TF-DNA complex models are obtained
by swapping the DNA bases by all possible sequences of length k (length of
the DNA in the model structure). Using a knowledge-based atomistic pair
potential we score all the resulting 4k number of TF-DNA interfaces. The
scores are normalized in the range 0–1 and a cutoff is applied to identify
the group of sequences that define the target TF binding sites. The result-
ing binding sites are used to model the binding motif as a position weight
matrix.

bound DNA fragments is explored within the complex by
building additional TF-DNA complex models where the
DNA bases are replaced by all possible 4k sequences (k is
the length of the DNA in contact with the protein). Possible
atomic clashes at the TF-DNA interface are relaxed using a
minimization protocol in a molecular mechanics force field.
The resulting models are ranked based on their TF-DNA
relative affinities, which are calculated using a knowledge-
based potential (33) that was trained on structures of TF-
DNA complexes. The set of best scoring DNA segments are
used to construct position weight matrices, also referred to
as binding motifs, which model the binding preferences of
the TF.

The TF2DNA program generates ∼22 mutants per
minute, considering a system with ∼1000 atoms (e.g. PDB
code: 1AAY – Early Growth Factor 1 TF). Therefore, a TF
binding motif prediction can be completed in ∼2 days time
in case of an 8 base pairs long DNA sequence, using a single
core on an Intel R© CoreTM i7–870, 2.93GHz. The calcula-
tion is easily parallelizable, therefore the same job takes ∼6
h using an 8-core computer and it takes about a half hour if
a computing cluster with 10 such nodes is available. A com-
puter program fully implementing the algorithm is available
for download at http://www.fiserlab.org/our programs.htm.

Benchmarking the method with experimentally determined
binding motifs

The performance of the method was benchmarked using
a testing set of 311 TF non-redundant sequences with ex-
perimentally determined TF binding motifs as found in the
JASPAR (6) and UniPROBE (7) databases.

Several training schemes for the knowledge-based poten-
tial were considered depending on some aspects of the shape
readout (involving static features of the structure only) that
characterized the DNA and the secondary structures of the
TF involved in the interaction. For this purpose we divided
the set of 311 sequences according to six TF binding modes:
helix binding the major groove of the DNA, helix/loop
combination binding the major groove, strand/loop combi-
nation binding the major groove, strands binding the minor
groove, strands binding the major groove and helix bind-
ing the minor groove (Supplementary Table S2 and Figure
S1). A special training set of crystal structures modeled onto
themselves with Modeller (‘self-models’) was utilized. Sup-
plementary Figure S1 shows the overall performances for
each training scheme. Performances were comparable for
the case of training the potential with all the 171 crystal
and self-modeled structures in our database, and showed
that the potential is not sensitive to small diversifications of
the training structures. Training with subsets of TF struc-
tures that recognize the major groove of the DNA with he-
lices also resulted in a similar performance. This is proba-
bly a consequence of the fact that the training set, as well
as the testing set of 311 TF sequences, are overwhelmingly
composed of TFs binding the major groove of the DNA
molecule with helices (Supplementary Table S2). The effect
of relaxing the structures after mutations provides a rela-
tively modest but significant (3–5% improvement). A break-
down of results (Supplementary Figure S1) shows that the
increase in performance is localized to the most difficult
modeling cases (∼9% increase), indicating that structural
relaxation is particularly beneficial in cases where the target-
template identity is less than 50%.

Inherent uncertainties in the experimental determination
of TF binding motifs result in differently recorded prefer-
ences; for example, the MAT�2 TF binds the consensus se-
quences AATTACATG and AACAATAG, respectively, as
documented in the JASPAR and UniPROBE databases. To
avoid these ambiguities in the benchmark, we set up a con-
trol set of 11 TF sequences for which we found an available
TF-DNA complex crystal structure with at least 90% pro-
tein sequence identity, and where the experimentally deter-
mined binding motifs were essentially identical in both JAS-
PAR and UniPROBE databases. Predicted and experimen-
tally determined motifs were compared using a similarity
Z-score measurement (see Materials and Methods). A pre-
diction is assumed to be correct above 95% confidence level
(Z-score ≥ 2) when compared to the experimental data. The
similarity Z-scores of the control set (11 cases) span a range
from 1.9 to 10, with 10 cases above 2 (Supplementary Ta-
ble S3). In other words, the method returns correct predic-
tions when the TF-DNA complex structure is known or a
highly accurate structural model can be built (with more
than 90% target-template identity). Some motifs, such as
Gabpa, ETS1 and Mafb are only 3 base pairs long, but suf-

http://www.fiserlab.org/our_programs.htm
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Figure 2. Performance of TF2DNA at predicting TF binding motifs. (A)
Performance of the TF2DNA method as measured by the percent of
correctly predicted test cases. A prediction is correct when the predicted
and experimentally determined sequence motifs (from JASPAR and/or
UniPROBE) show a similarity Z-score of 2, or higher. A Z-score of 2
or higher means that two compared motifs are similar at 95% confidence
level. Performance is shown for eight test-sets of TF, which sets differ by
their target-template sequence identity. (B) Comparison of performances
between the Robertson–Varani knowledge-based potential (gray bars) and
the RosettaDNA potential (blue bars), similarly to panel A. Each test-set
bin contains 10 randomly chosen cases. Here, the plot shows the percent
of test cases above a motif similarity Z-score of 1 (i.e. correct prediction
is already assumed at 66% confidence level.). This lower expected confi-
dence level was chosen to enhance the signal produced by RosettaDNA,
which did not predict any motif correctly when Z-score expectation was
set at 2. (C) Four examples of predicted motifs at different TF target-
template sequence identities are shown with sequence logo representations:
Egr1 (early growth response protein 1), Otp (orthopedia homolog from
D. melanogaster), Foxa2 (forkhead box A2 protein) and Six4 (sine oculis-
related homeobox 4 homolog from D. melanogaster). The sequence iden-
tities to their templates (and their database motif similarity Z-scores) are:
100% (10), 69% (4.2), 49% (10) and 31% (2.1), respectively. (D) Boxplots
showing the distributions of template interface conservations (TIC), which
is measured as the percent target-template sequence identity of residues in
direct contact with DNA bases (within 4.5 Ang of any base atom in the
template structure). (E) Boxplot of distributions of residue contact ener-
gies in the modeled structures as estimated by ProSA energy scores (71).
Boxplot interpretation: filled squares show averages, boxes display quar-
tiles, whiskers are at 5% and 95% of data and crosses show minimum and
maximum values.

ficiently unique among the set of 106 decoy motifs to return
a significant Z-score.

The sequence identities of the 311 protein sequences in
the test set range from 20% to 100% to a known TF se-
quence in the curated collection of TF-DNA complexes.
The set is divided into eight increasingly more challeng-
ing subsets (in terms of modeling difficulty), binned into
10% sequence identity intervals, except bins with less than
30% target-template sequence identity, which were com-
bined due to insufficient number of cases. TF models built
on target-template alignments with ≥40% sequence identi-
ties achieved an average success rate of 78.4%, using simi-
larity Z-score cutoff of 2, to define successful predictions,
which refers to 95% confidence level (Figure 2A). The per-

Figure 3. TF2DNA predictions are template independent. Examples of
template sequence independence of the motif predictions. On the first row,
motifs produced by the TF protein sequences of the templates: Klf4 (gut
Kruppel-like factor 4), Egr1 (early growth response protein 1), PBX1 (pre-
B-cell leukemia homeobox) and eve (even-skipped). The second row shows
the predicted motifs for the TF target sequences: SFP1 (Split finger protein
1), hb (hunchback protein), CG11617 (unknown protein with homology
predicted TF function) and Duxl (double homeobox B-like protein). Each
target sequence was modeled using the corresponding same-column tem-
plate structure. Their respective TIC values are indicated within parenthe-
sis. The third row shows their experimentally determined motif according
to the JASPAR or UniPROBE databases. Expected motifs are correctly
predicted (with Z-scores above 2) even in such cases, as SFP1, where the
residues at the protein-DNA interface were completely replaced.

formance remains fairly even across the bins in the range
40–100% (>70%) (Figure 2A and Supplementary Table S4).

Figure 2C shows four examples of predicted motifs that
are similar to their experimental counterparts (Z-scores ≥
2). These example predictions cover all the spectrum of
target-template TF sequence identities, going as low as 31%
in the case of the Six4 TF. The experimental motifs are
sometimes longer than the ones predicted by TF2DNA.
This could be due to the fact that while we start from TF-
DNA structural complexes and consider only those DNA
positions that make physical contacts with the TF, the high-
throughput experiments capture all positions with some
preference and may add extra nucleotides at each end. The
experimentally determined motif of EGR1 have 10 and 11
base pairs in JASPAR and UNIPROBE, respectively, de-
spite the fact that only 9 nucleotides make physical contact
with the protein (Figure 2C). In another example, DNA
binding domains of TFs Otp and Six4 contact a maxi-
mum of 6 bases and Foxa2 contacts 8 bases in the crystal
structures, while the experimentally derived motifs add ex-
tra bases. Another reason of differences in length of motif
definitions is due to the incorrectly captured preferences at
certain positions in the DNA, which situation is more of-
ten encountered when the target-template protein sequence
alignment is incorrect, due to low sequence similarities. The
latter reason would explain the loss of information in Figure
3’s TF2DNA predictions.

The success rates quickly decline when the target-
template sequence identity drops below 40% (Figure 2A).
This decay in performance coincides with a deteriorating
conservation of template protein residues in the modeled
binding site environment (expressed as the target-template
sequence identity of the residues at the protein-DNA inter-
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face; defined as residues within 4.5 Å of any DNA atom)
(Figure 2D and Supplementary Table S4). The ‘conserva-
tion of template interface’ (CoTI) remains high, with an av-
erage of 80%, even as low as 40% global target-template se-
quence identities. The CoTI decreases from ∼80% to 62%,
when the global sequence identity drops below 40%. An-
other factor influencing the performance of the method is
the quality of the homology models. The thermodynamic
stability of the structures, determined by their ProSA en-
ergy scores (41), is used as an estimate for the quality of the
models (Figure 2E). ProSA energy scores show that reason-
able models were constructed for almost all the test sets. The
exception is the lt30set (less than 30% global sequence iden-
tity), which shows an increased fraction of low quality mod-
els (higher ProSA energy scores). The prediction accuracy
seems to level off above 40% global sequence identity, to
about 80% success rate. This leveled performance could be
attributed to the limited choice of template structures, caus-
ing frequent reuse of templates. Out of the available struc-
tures, only 43% were used as templates in the control set,
from which 67% were reused. The lowest template reuse rate
is seen in the 90set, because the target-template sequence
similarity requirement is more stringent.

In general, the method shows good performance even
when target-template protein sequence identities are as low
as 40%. The method seems to be limited by template avail-
ability. The CoTI measure appears as a good predictor of
success, followed by model quality, as estimated by ProSA
protein energy scores.

Benchmarking against RosettaDNA

Currently, there are no alternative methods that provide
a software package for the prediction of TF binding mo-
tifs, however, our algorithm can accommodate other po-
tentials for the evaluation of TF-DNA binding interac-
tion strengths. Therefore, for benchmarking purposes, we
replaced the Robertson–Varani knowledge-based potential
in our program with the RosettaDNA (23) potential (see
Materials and Methods). The RosettaDNA potential takes
on average five times longer than TF2DNA to optimize
the protein-DNA interface and compute binding strengths,
therefore we predicted binding motifs for 80 representa-
tive TFs (out of the total 311 in our test set) (Figure 2B).
The 80 representative cases were compiled by randomly
choosing 10 cases from each of the eight test set bins. Ac-
cording to the results (see Supplementary Material), Roset-
taDNA was not able capture the specificity of any stud-
ied TF in a statistically significant manner (Supplementary
Figure S2 and Table S5). A possible explanation of this is
that RosettaDNA has been optimized to reproduce protein-
DNA affinities at the expense of losing specificity (23,42),
whereas the Robertson–Varani knowledge-based potential
was developed to distinguish binding sites among large sets
of decoy DNA sequences.

TF2DNA predicts motifs in a template-independent manner

Due to the relatively small size of the curated structural col-
lection of TF-DNA complexes, it is common that the same
templates are used to model different TF target sequences,

which may have different binding specificities. This provides
an opportunity to explore whether TF2DNA is able to cor-
rectly predict binding motifs for target protein sequences
modeled on templates whose sequences recognize different
motifs. Figure 3 shows four examples: SFP1 (Split finger
protein 1), hb (hunchback protein), CG11617 (unknown
protein with homology predicted TF function) and Duxl
(double homeobox B-like protein). Despite the very low
CoTI (0%, 9%, 33% and 40%), these example TFs produced
correct binding motif predictions. In the case of SFP1, not a
single template residue was conserved at the protein-DNA
interface in the model. Nevertheless, the TF2DNA correctly
predicted the experimental motif: AAAAT. Meanwhile, the
protein sequence of the template structure (KLF4) that was
used to model SFP1, recognizes an entirely different se-
quence: CCGCC. The results suggest that TF2DNA is able
to correctly capture binding preferences, even if all the TF
residues located at the binding site are built from scratch.

Prediction of human TF binding motifs

About 6–7% of all eukaryotic genes are estimated to be
DNA binding proteins (41). Previously, a census of human
sequences found 1987 genes (1825 after removing sequence
redundancy at 90% identity) to be sequence-specific DNA-
binding TFs (43), but only a small percentage of these TFs
have known binding motifs. Up to 380 experimentally ob-
tained human TF binding motifs have been collected by
Jolma et al. (44). Kulakovskiy et al. gathered ∼400 TF bind-
ing motifs by adding mined data (45). Table 1 shows the
availability of TF binding motifs in different organisms (43–
50,51). The best studied organism is Saccharomyces cere-
visiae or budding yeast, with 83% coverage of known ex-
perimentally determined TF binding motifs, although this
organism has only a total of 203 TFs to cover. The number
of expected TFs in humans is eight times greater than in
yeast, between ∼1500 and 1800. The coverage of TF bind-
ing motifs in humans is about 25% (39% considering unique
TFs from combining all human datasets; 586 in total), leav-
ing much room to achieve full coverage.

TF2DNA predicted human TF motifs whenever a reli-
able homology model could be built. A reliable model must
minimally cover all the binding site residues in the template
structure. Additionally, the target-template protein HMM
alignment probability should be higher than 70%. This re-
sulted in 1321 human TF models, which means that cur-
rently ∼72% of all considered sequences can be reliably
modeled. The models were built using 106 different tem-
plate structures (out of a total of 171 in our curated struc-
tural collection); where 16 were used only once and 1 was
used 501 (53%) times (Supplementary Table S6).

The predicted human TF binding motifs were grouped in
bins of 10% width according to the percent sequence iden-
tity of the target-template aligned regions (Table 2). About
87% of all modeled human TFs were built on a template
with more than 30% sequence similarity. If we consider the
observed TF2DNA success rates from the benchmarking
(fourth column in Supplementary Table S4), an estimate of
923 motifs would be accurately predicted, which accounts
for a total of 71.5% of all 1321 modeled human TF se-
quences. In summary, our TF2DNA predictions approxi-
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Table 1. TF binding motif and general statistics for different organisms

Organism name Genome Size [Mb] # proteins # TFs # binding motifs

Homo sapiens 3209.29 19 226 1825a 380 (25%)g

268 (18%)h

1500b 127 (8%)i

4 (<1%)j

Mus musculus 2798.79 20 616 1266b 295 (28%)j

76 (7%)i

Drosophila melanogaster 139.49 13 929 1052c 131 (13%)i

Caenorhabditis elegans 100.29 20 362 934d 23 (3%)j

15 (2%)i

Saccharomyces cerevisiae 12.16 5906 203e 177 (87%)i

92 (45%)j

Escherichia coli 4.64 4141 314f 202 (64%)k

a(Vaquerizas et al., 2009) (43).
b(Fulton et al., 2009) (47).
c(Pfreundt et al., 2010) (48).
d(Reece-Hoyes et al., 2005) (49).
e(Harbison et al., 2004) (50).
f(Pérez-Rueda and Collado-Vides, 2000) (51).
g(Jolma et al., 2013) (44).
hHOCOMOCO database (Kulakovskiy et al., 2013) (45).
iJASPAR database (Bryne et al., 2008) (6).
jUniPROBE database (Newburger and Bulyk, 2009) (7).
kRegulonDB (Gama-Castro et al., 2011) (17).
General statistics for the most widely used model organisms and human. The number of proteins (column 3) was taken from the RefSeq database (38)
and consists of the unique counts of all gene names (HUGO names (46)) annotated as ‘protein-coding’ (RefSeq transcript identifiers starting with ‘NM’).
Column 4 contains the number of TFs as estimated by their corresponding sources. Column 5 shows the number of TF binding motifs that are available
on different databases. The percent coverage based on the smallest number of TFs reported in column 4 is displayed within parenthesis.

mately double the current knowledge on human TF bind-
ing motifs, from 586 to 923 motifs according to the data
collected on Table 1.

Human TF regulatory network

Each of the 1321 predicted TF binding motifs were used
to search human promoter sequences and identify lists of
putative protein-coding gene targets (regulated genes), in
order to reconstruct the human TF regulatory network.
The search was conducted on all available human promoter
DNA regions, defined as 1500 bp upstream and 500 bp
downstream of protein-coding gene TSSs. All human pro-
moters were downloaded from the RefSeq database (38),
reaching a total of 23 340 promoters that correspond to
18 515 unique genes. Analysis of promoter multiplicity (the
number of promoters per gene) shows that 81.9% of genes
have 1 promoter and 98.3% have less than 4 promoters (Sup-
plementary Table S7). All the data was stored and organized
in an SQL database called ‘TF2DNA database’ (accessible
at http://www.fiserlab.org/tf/) which can be queried for gen-
eral statistics, such as the distribution of the number of TFs
that regulate each promoter (Supplementary Figure S3).
According to TF2DNA predictions, a promoter is normally
regulated by a median of 215 putative TFs. In addition, a TF
can generally regulate a median of 3026 genes (Supplemen-
tary Figure S4). Similar amounts of regulated genes are ob-
served in ChIP-chip or ChIP-seq experiments; for example:

Satoh and Tabunoki (52) found 1441 target genes for the
signal transducer and activator of transcription 1 (STAT1)
protein, Satoh et al. (53) identified 2470 regulated genes for
the nuclear respiratory factor 1 (NRF1) and Cheng et al.
(54) found 3689 targets for the mouse signal transducer and
activator of transcription 4 (STAT4). These high numbers
seem odd, but promoter searches with short DNA bind-
ing motifs may return many false positive results. Similarly,
ChIP experiments suffer from artifacts, where binding is de-
tected at non-specific regions termed ‘hyper-ChIPable’, as
observed by Teytelman et al. (55). It has been also exten-
sively discussed in the literature that only a fraction of in
vitro binding motifs (determined in in vitro experiments or
predicted computationally) are true in vivo binding sites and
only a fraction of these are functional (2).

Clustering human TFs by binding motif similarity

Predicted human TF binding motifs were clustered accord-
ing to their similarity (see Materials and Methods). The
clustering generated 294 clusters (Supplementary Table S8),
with the largest cluster containing 66 motifs. Qualitative in-
spection of TF names on each cluster serves as additional
validation of the motifs. The largest cluster (cluster #1) is
formed by homeobox (HOX) genes and other related TFs.
For example, the TF BARHL1 (BarH-like homeobox 1)
and its known homolog DLX2 (distal-less homeobox 2)
also cluster together in this group. SOX (sex determining

http://www.fiserlab.org/tf/
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Table 2. Models of human TFs

%ID range Reliable models
Reliable models
(cumulative)

TF2DNA
performance Correct targets

Correct targets
(cumulative)

≥90 90 90 74.8 67 67
80–90 54 144 77.8 42 109
70–80 60 204 81.2 49 158
60–70 246 450 78 192 350
50–60 312 762 76.8 240 590
40–50 200 962 81.8 164 753
30–40 188 1150 49 92 845
<30 171 1248 45.2 78 923

The total number of targeted TF sequences is 1825 (obtained from list of Ensembl identifiers provided by Vaquerizas et al. (43)). First column shows
the percent sequence identity between human TF target and their structural template. The fourth column shows the fraction of successful predictions by
TF2DNA (at 95% confidence level) (from Supplementary Table S4). The fifth column shows the estimated numbers of correctly predicted targets, which
is obtained by multiplying the number of reliably modeled targets (second column) and the calculated TF2DNA performance (fourth column).

region Y-box) TFs also cluster together along with the SRY
(sex determining region Y) protein (cluster #11). Distribu-
tions of cluster sizes (Supplementary Figure S5) show that
most clusters have few members and most TFs are grouped
together in few clusters.

Experimental validation of TLX3 binding sites with EMSAs

To experimentally test the prediction accuracies, a group of
five proteins were selected from the set of human TF pro-
teins described in the previous section: ARNTL2 (aryl hy-
drocarbon receptor nuclear translocator-like 2), LBX1 (la-
dybird homeobox 1), MSGN1 (mesogenin 1), NOTO (no-
tochord homeobox) and TLX3 (T-cell leukemia homeobox
3). These proteins were chosen because they have some lim-
ited experimental functional annotation but their binding
preferences are unknown meanwhile their target-template
similarities were below 60%, where TF2DNA predictions
are more challenging. Two proteins, ARNTL2 and MSGN1
failed in the protein expression and purification process.
The remaining three successfully purified TFs were tested
for their binding to the top three predicted DNA sequence
motifs using EMSA. In one out of the three cases, TLX3,
the EMSA experiment produced a gel shift due to bind-
ing of TLX3 to the second predicted motif (TTAATGTGT)
(Figure 4). This shift was confirmed against a negative con-
trol, a scrambled probe and a competition assay. In case of
the other two TF a failed EMSA is not necessarily an indi-
cation of a mispredicted binding motif. The protein binding
domains may not be folded correctly or completely or the
DNA binding domain is not sufficient to provide efficient
binding, perhaps the TF may bind as a (hetero or homo)
dimer. It is also important to note that the three TLX3 pu-
tative binding sequences were picked from 262 144 (49) se-
quences, meaning that in this case the TF2DNA program
was able to produce close to 100 000-fold enrichments of
binding sequences. Also, in line with the in silico predicted
success rates (Figure 2), about 40% of these test cases were
expected to be correct.

Genetic targets of TLX3

T-cell leukemia homeobox 3 (TLX3; also Hox11L2 or Rnx)
is a sequence-specific TF with known functions in nervous
system cells. Kondo et al. (26) found that overexpression of

Figure 4. Experimental validation of predicted human TLX3 binding se-
quences. Left panel: Prediction of binding preferences for the human TLX3
TF. The top three predicted binding sequences, which were used for EMSA
assays, are displayed as well as the consensus binding motif. The sequence
highlighted in blue showed binding to TLX3 in the EMSA assay. Right
panel: Results of the EMSA assay using sequence #2 (predicted sequence
highlighted in blue), referred to as probe. Lane 1: Negative control (probe
only). Lane 2: Biotinylated probe. Lane 3: Cold probe (competition assay).
Lane 4: Scrambled probe. The yellow circle marks the shifted, bound motif
with TLX3.

TLX3 in mesenchymal stem cells induced sensory and glu-
tamatergic neuron markers. In another study, Lopes et al.
(27) observed that overexpression of TLX3, in conjunction
with RUNX1, induced ectopic expression of sensory chan-
nels and receptors in dorsal root ganglion cells in mice.
Huang et al. showed that TLX3 was required for the ex-
pression of both proteins vasoactive intestinal polypeptide
(VIP) and somatostatin (SST) in cholinergic neurons dur-
ing late mice development (56). TLX3 has also been impli-
cated in disease states in humans, such as in T-cell acute lym-
phoblastic leukemia or T-ALL. A common translocation of
the TLX3 coding region places it under the control of an ac-
tive promoter in T-ALL (57), interfering with critical stages



Nucleic Acids Research, 2014, Vol. 42, No. 22 13509

Figure 5. Predicted function of the TLX3 TF. (A) Protein expression lev-
els of TLX3 as reported in the Human Protein Atlas (60). The tissue types
were broadly grouped and the percent of observed expression levels were
calculated for the tested subtissues within each category. Detailed expres-
sion levels in subtissues are presented in Supplementary Table S9. (B) In-
genuity pathway analysis of observed targets genes of TLX3 obtained with
the TF2DNA predicted binding motif. The figure shows the five most sig-
nificantly enriched networks in the physiological system development and
function category. Sphere sizes are proportional (logarithmic scale) to the
amount of genes populating the category. The TLX3 target genes that were
enriched within this category are listed in Supplementary Table S12.

of T cell differentiation (58). A systems biology analysis (59)
of the regulatory circuit controlled by TLX1 and TLX3 in
T-ALL found these factors as master regulators and iden-
tified the runt-related TF 1 (RUNX1) as a tumor suppres-
sor. In addition, TLX3 is expressed in a diverse variety of
tissue types but, despite the functional evidence discussed
above, the normal function of TLX3 in cells other than ner-
vous system cells remains unidentified. According to The
Human Protein Atlas (60), TLX3 protein expression is ob-
served in epithelial cells (squamous, glandular and transi-
tional), hematopoietic, endocrine, messenchimal and other
types of cells (Figure 5A and Supplementary Table S9).

Our reconstructed human regulatory network identifies
2173 TLX3 putative target genes (Supplementary Table
S10). We used the best ranking 1000 genes (ranked by bind-
ing site scores) to perform a functional enrichment anal-
ysis using the IPA R© software package (Ingenuity R© Sys-
tems, www.ingenuity.com). The most enriched functions in
the ‘physiological system development and function’ cat-
egory include (1) hematological system development and

function, (ii) hematopoiesis, (iii) tissue morphology, (iv) en-
docrine system development and function and (v) connec-
tive tissue development and function (Figure 5B). Other en-
riched categories are shown in Supplementary Table S11, in-
volving TLX3 in cancer, intestinal, hematological and im-
munological diseases as well as in metabolism and energy
production. Further details about enriched subcategories
within the ‘physiological system development and function’
category are provided as a supplement in Supplementary
Table S12.

DISCUSSION

We introduced a novel structure-based computational al-
gorithm, TF2DNA, for the prediction of TF binding pref-
erences. The approach relies on the use of available TF-
DNA complexes as template structures in model building,
each of which were subjected to careful manual curation.
While conformational changes in DNA also play an im-
portant role in determining TF specificity (61), this work
advances our understanding of binding specificities by con-
sidering the protein structure. As opposed to other methods
in the literature (19–24), TF2DNA scores the TF-DNA in-
terface of models generated by fully enumerating DNA se-
quences. This can avoid the often used, but questionable, as-
sumption of considering interactions in an additive manner
(62,63). TF2DNA prediction accuracies fall in the range of
45–82%, depending primarily on target-template sequence
identities (spanning the range of 0–100%), conservation of
binding site environment and quality of TF-DNA models.
The method is able to correctly predict DNA motifs that
are very different from those observed using the protein se-
quence of the template complex (e.g. in the case of the cor-
rectly predicted SFP1 TF where the residue conservation of
the template interface is 0%).

The main bottleneck of the method is finding suit-
able structure templates to generate high quality homol-
ogy models for the target TF sequences. Reliable homol-
ogy models could not be generated for 28% of the tar-
get sequences, due to the limited availability of TF-DNA
complex structures in the PDB (including sequence vari-
ants of similar structures). However, we expect this prob-
lem to be alleviated in the near future, as suitable tem-
plates continue to emerge, given the rapid expansion of the
PDB and the ongoing worldwide structural genomics ef-
forts (64,65). Additional bottlenecks are associated with
inaccurate TF modeling, which is especially aggravated in
cases of water-mediated protein-DNA interactions (66,67),
and incorrectly captured TF-DNA binding affinities, par-
ticularly due to the contributions of shape-readouts.

We compared the Robertson–Varani knowledge-based
potential against the RosettaDNA ab initio potential for the
description of TF-DNA interaction specificities. We found
that the ab initio potential was not able to distinguish bind-
ing from decoy DNA sequences in any of the tested cases,
whereas the knowledge-based potential was very precise
at ranking TF binding sites. One possible explanation is
that the Robertson–Varani potential was specifically devel-
oped and optimized to discriminate cognate from decoy
sites, regardless of their precise affinity for the TF. On the
other hand, RosettaDNA was created to measure affinity in

http://www.ingenuity.com
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protein-DNA interactions (42). Therefore, RosettaDNA al-
ways optimizes the protein-DNA interface to maximize its
affinity, causing a loss of information about the specificity of
the interaction because affinity and specificity seldom cor-
relate in nucleic acid interactions (68).

When exploring a large-scale application of the method
in the human genome we found that we can generate 1321
binding motifs out of the 1825 estimated human TF se-
quences (43). As an anecdotal verification we experimen-
tally confirmed the binding motif for the TLX3 TF. Pro-
moter searches with the TLX3 motif identified a set of
putative human regulated genes that were used for func-
tional characterization via network enrichment studies. The
functional enrichment implicates TLX3 as functioning in
hematopoiesis, tissue morphology, connective tissue func-
tion and endocrine system function. It is also associated
to hematological and intestinal diseases and cancer. These
functions are generally consistent with the tissue types in
which TLX3 is also known to be expressed (reported in
The Human Protein Atlas (60)), such as hematopoietic, en-
docrine and epithelial cells.

TLX3 function has been found to be related to the es-
tablishment of sensory neuron phenotypes (26,27). TLX3 is
also involved in the development of T-ALL disease (58,59).
The oncogenic T-ALL predicted transcriptional network of
Della Gatta et al. shows TLX1 and TLX3 as master regu-
lators and identify the protein RUNX1 (runt-related TF 1)
as a tumor suppressor gene from ChIP-chip experiments.
The RUNX1 TF is known to regulate hematopoietic de-
velopment (69). Our list of TLX3 targets also predicts di-
rect regulation of the RUNX1 gene (rank 535). Another
work showed that TLX3 is required for the acquisition of
cholinergic phenotype in neurons during the prenatal de-
velopment of the mouse (56). Furthermore, they demon-
strate that TLX3 is required for the expression of the cholin-
ergic peptide VIP and SST hormones. We find VIP (rank
39) in the list of TLX3 putative targets but not SST. In-
stead of SST, we find the SSTR2 (SST receptor 2) in the
list (rank 187). This suggests TLX3 could directly regulate
expression of VIP but not of SST. Alternatively, SST may
be indirectly affected by SSTR2-mediated autoregulation,
probably through the negative regulation of the STAT5A
(signal transducer and activator of transcription 5) protein
via SSTR2 signaling pathway (70), since we find STAT5A
as a regulator of SST in our predictions.

The method described in this work is sufficiently general
and can be applied to any set of TF sequences to investigate
or supplement existent but incomplete regulatory networks
for any organism of interest.
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