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ABSTRACT

Non-coding RNAs (ncRNAs) are known to play im-
portant functional roles in the cell. However, their
identification and recognition in genomic sequences
remains challenging. In silico methods, such as clas-
sification tools, offer a fast and reliable way for
such screening and multiple classifiers have already
been developed to predict well-defined subfamilies
of RNA. So far, however, out of all the ncRNAs, only
tRNA, miRNA and snoRNA can be predicted with a
satisfying sensitivity and specificity. We here present
ptRNApred, a tool to detect and classify subclasses
of non-coding RNA that are involved in the regu-
lation of post-transcriptional modifications or DNA
replication, which we here call post-transcriptional
RNA (ptRNA). It (i) detects RNA sequences cod-
ing for post-transcriptional RNA from the genomic
sequence with an overall sensitivity of 91% and a
specificity of 94% and (ii) predicts ptRNA-subclasses
that exist in eukaryotes: shRNA, shoRNA, RNase P,
RNase MRP, Y RNA or telomerase RNA. AVAILABIL-
ITY: The ptRNApred software is open for public use
on http://www.ptrnapred.org/.

INTRODUCTION

There are many different types of RNA with multiple func-
tions in the cell. Some RNA molecules contribute to the
translation of genetic information into protein and the reg-
ulation of genes. Others function enzymatically by catalyz-
ing biological reactions. While the non-coding regions in
the genome were first believed to be dispensable sequences,
they have been shown to code for RNA families that play
important roles in the eukaryotic cell. These so-called non-
coding RNAs (ncRNAs) do not code for protein but are
involved in many regulatory processes and can be divided
into a tremendous variety of highly plethoric and ver-

satile families that are essential for the cellular function
(1). Hence, they form a vast and to a large extent unex-
plored reservoir of potentially valuable medical biomarkers
(2,3). For their identification, modern techniques like next-
generation-sequencing and microarray-technologies are be-
ing employed (4,5). These techniques provide an immense
amount of data and offer ample opportunities to identify
novel classes of non-coding RNA. However, the experi-
mental analysis of new sequences is time-consuming and
complex, indicating the need to find alternative approaches
for their analysis. Promising and auspicious approaches are
given by in silico methods. Due to phylogenetic relation-
ships, sequences of non-coding RNA show similarities re-
garding their properties. They can be divided into subclasses
based on their conserved properties, meaning sequence con-
servation and structural conservation (6). Computational
methods, such as classification tools, offer a fast and re-
liable way to analyze and classify sequences by exploiting
conserved properties among the sequences (6,7).

Various classification systems have been developed to
predict different subsets of RNA, using machine learning
and phylogenetic approaches (8-12). So far, tRNAs can be
detected reliably using tRNAScan-SE (13). Furthermore,
various approaches have been established to detect miRNA
(14) and other small RNA subsets. Recently, snoReport was
introduced, which is designed to recognize small nucleolar
RNA (snoRNA) from the genome without using any target
information (15). Most of these systems achieve a satisfying
accuracy, however not every RNA family can be predicted.
For example, to this point, there is no tool for the prediction
of small nuclear RNA (snRNA), Ribonuclease P (RNase
P), Ribonuclease MRP (RNase MRP), Y RNA and telom-
erase RNA. Facing the continuing increase in the number
of human RNAs in databases like Rfam (16,17), it is neces-
sary to extend the current possibilities of RNA prediction.
SnRNA, RNase P, RNase MRP, Y RNA and telomerase
RNA have in common, that, besides snoRNA, they are in-
volved in post-transcriptional modification or DNA repli-
cation in eukaryotes (18-23).
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The aim of this study was to develop a tool that can
predict and differentiate among sequences coding for these
RNA families, for which, for the sake of convenience, we
here use the term ‘post-transcriptional RNA (ptRNA)’.

PtRNA-subclasses are not only distinct regarding their
function, but also regarding their sequence. Therefore, we
hypothesized that implementation of certain algorithms
would make it possible to identify ptRNA from a ge-
nomic sequence. Machine learning algorithms, such as sup-
port vector machines (SVMs), have shown high accuracy
in the development of classification systems (24-26). Re-
cent advancement in small non-coding miRNA prediction
has achieved high performance using machine learning ap-
proaches (27-30). Moreover, SVMs are also employed in the
prediction of sequence based secondary structure of RNA
(31,32). The available tools for designing the machine learn-
ing classifier, like SVM-Light (33) and LibSVM (34) are of-
ten used for the development of new algorithms for RNA
prediction.

With the introduction of ‘ptRNApred’, this study offers
a novel opportunity to detect and classify ptRNA without
using any target information. ‘ptRNApred’ (i) detects RNA
sequences coding for post-transcriptional RNA from the
genomic sequence and (ii) predicts ptRNA-subclasses that
exist in eukaryotes: snRNA, snoRNA, RNase P, RNase
MRP, Y RNA or telomerase RNA.

MATERIALS AND METHODS
Dataset

2040 sequences of ncRNA were obtained from the NON-
CODE database (35), including 268 sequences of RNase P,
14 sequences of RNase MRP, 1443 sequences of snoRNA
(1430 + 13 scaRNA), 46 sequences of telomerase RNA,
14 sequences of Y RNA and 255 sequences of snRNA
(Table 1). These sequences were used as a dataset for the
multiclass-classifier and as a positive set for our binary
classifier. The negative set was made up of sequences of
tRNA, 5s ribosomal RNA and miRNA that were derived
from Rfam (17). Since our classifier focuses on eukaryotes,
our selection of miRNA-sequences was restricted to se-
quences from the species Homo sapiens, Mus musculus and
Drosophila melanogaster. The redundancy of the sequences
within a set was removed using CD-Hit (36) at a thresh-
old of 0.9 for the positive set and at 0.8 for the negative set
of sequences. After removal of redundancy, the ratio of se-
quences in the negative to positive set was 3:2. Comparable
ratios have been frequently used for the generation of SVMs
(37,38).

All sets of sequences were divided into two parts: two-
third of each set of sequences were used for training the clas-
sifiers and one-third was used for testing the performance
of the classifier. Table 1 gives an overview on the number of
training and testing sequences of each ptRNA-subclass.

A detailed list of the sequences is provided on the classi-
fier’s website http://www.ptrnapred.org/. For testing its per-
formance on RNase P, 329 RNase P sequences were down-
loaded from ‘The Ribonuclease P Database’ (48). Perfor-
mance on coding RNA was tested using 10 000 randomly
downloaded mRNA sequences from Ensembl (Release 72,
June 2013).
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Features for classification

Feature selection and SVM training was performed using
two sets of input parameters: The first set was based on
the primary sequence and the second set considered the sec-
ondary structure which was predicted with RNAfold (Ver-
sion 2.0.7) (39). Primary sequence properties were mainly
derived from dinucleotide properties employing DiProGB
(40), using a sliding window approach (window size: 2 nu-
cleotides). Some of the properties in DiProGB are highly
correlating to each other. The use of highly correlating fea-
tures for classification would not only be redundant in in-
formation, but would overfit the classifier. In order to deter-
mine which of the features that we derived from DiProGB
were correlating, we determined the Pearson correlation co-
efficients among all possible dinucleotide properties. Two
features were considered as highly correlating when the
Pearson coefficient was >0.9. As an example, the dinu-
cleotide property ‘stacking energy’ was highly correlated to
the property ‘melting temperature’. Whenever one of two
features were highly correlating, one of them was randomly
discarded. In our example, we used ‘stacking energy’ as
an input feature and discarded ‘melting temperature’ from
consideration as a feature for classification. A table of the
selected dinucleotide properties as well as their dinucleotide
values (40) is provided in the supplement (Supplementary
Table S1).

Secondary structures of every sequence were calculated
via RNAfold (39), accessing the Vienna RNA Package (41).
Fifty-two different properties were derived from the sec-
ondary structure, e.g. the number of loops, the number
of bulges, the number of hairpins or the frequency of nu-
cleotides involved in substructures.

Additionally, we included 32 triplet element properties
employed by miPred, a triplet SVM for the classification
of miRNA (42): MiPred considers the middle nucleotide
among the triplet elements, resulting in 32 (4 x 8) possible
combinations, which are denoted as ‘U(((, ‘A((.’, etc.

Altogether, ptRNApred uses 91 features for classifica-
tion. A detailed description of the feature selection is pro-
vided in the supplement (Supplementary Section S1).

Classification system

To create optimal conditions for classification, we com-
pared the outcome of two different algorithms.

On the one hand, we employed a Random Forest accord-
ing to Breiman (43) as a sophisticated classification method.
Random Forests operate by constructing a multitude of de-
cision trees at training time and outputting the class that is
the mode of the classes output by individual trees.

On the other hand, we employed LibSVM (34), a library
of SVM, which serves as an interface to train and build
SVMs based on certain vectors. LibSVM was a superior
machine learning algorithm for training our classifiers, since
it gave us a better accuracy than Random Forest prediction.
Further information is provided in the ‘Validation of the al-
gorithm’ part of the ‘Results’ section.
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Table 1. Total number of test and training sequences
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Training sequences

Testing sequences

RNase P 178
RNase MRP 9
snoRNA + scaRNA 978 +9
telomerase RNA 29

Y RNA 9
snRNA 170

90

5

452 +4
17

5

85

The table displays the number of training and testing sequences of each ptRNA-subclass used for the SVM.

Implementation of LibSVM

The SVM algorithm defines a hyperplane in the feature
space with maximum margin distinguishing positive in-
stances from negative (44). LibSVM provides a python
script to optimize the grid parameters C and gamma (y).
C stands for cost function, i.e. penalty for the misclassifi-
cation in the training set and vy is a free parameter decid-
ing upon the impact of each training vector. The parame-
ters are thus used for designing the classifier from a training
set. Therefore, we used a (Gaussian) Radial Basis Function
(RBF) (45) kernel for classification.

In order to decide the parameters C and y, LibSVM ob-
tains cross validation (CV) accuracy for each possible pa-
rameter setting. Regarding our binary classifier, the highest
CV accuracy was achieved when C was set to 32768 and y
was set to 0.008 (Figure 1a). These parameters were used to
train the whole training set and to generate the final model.

For multi-class classification, under a given (C, y), Lib-
SVM uses the one-against-one, one-against-all and sparse
method to build hyper planes and to obtain the CV ac-
curacy. Hence, the parameter selection tool suggests the
same (C, y) for all k(k—1)/2 decision functions. Yuan et al.
(46,47) discuss issues of using the same or different param-
eters for the k(k—1)/2 two-class problems. In our case, C =
4 and y = 0.5 as well as usage of the sparse method gave us
the best CV accuracy for the multi-class classification (Fig-
ure 1b).

Work flow and output of ptRINApred

The web server implementation accepts sequences in a
FASTA-format as an input that can be either uploaded as a
file or pasted into the text box (Supplementary Figure S1).
By checking ‘Post-Transcriptional RNA’, an in-built Perl
script calculates input vectors for the pre-trained model to
predict whether or not the input sequence belongs to the
group of post-transcriptional RNA. Additionally selecting
‘RNA family’, the server also predicts the RNA-subclass.

Altogether, the output includes the prediction for ptRNA
as well as the classification of the RNA class within the
ptRNA. Additionally, it displays the minimum free energy
using RNA-fold (39) as well as the secondary structure, us-
ing VARNA (Version 3.1) (48) (Supplementary Figure S2).
The output can directly be downloaded.

RESULTS

We created a two-step classifier to distinguish sequences of
ptRNA and non-ptRNA in a binary classification, and for
the prior separate six classes of post-transcriptional RNA

(snRNA, snoRNA, RNase P, RNase MRP, Y RNA or
telomerase RNA) in a multi-class classification. Since the
binary and multi-class classifiers were trained with separate
data and thus function independently, the accuracy was cal-
culated for each individual classifier.

In a 5-fold cross validation, using balanced amounts of
randomly selected sequences throughout the positive and
negative sets, the binary classifier yields an accuracy of 93%
within the training set (Figure 1a) and the multi-class clas-
sifier yields a 5-fold cross validation accuracy of 87% (Fig-
ure 1b).

When testing the classifiers with the test set of sequences,
the binary classifier showed an accuracy of 93%, with a sen-
sitivity of 91%, a specificity of 94% and an overall preci-
sion of 90%. The multi-class classifier showed an accuracy
of 91%.

The fact that the accuracy in the test set is higher than
the 5-fold cross validation accuracy in the training set sug-
gests that an increase in the number of sequences leads to
a more accurate prediction. Regarding this matter, we ob-
served an increase of the accuracy of the multi-class classi-
fication when adding more sequences to the training set.

Validation of the method

In order to validate our tool by comparing it to existing
tools that can predict ptRNA, we found snoReport (15)
as an advanced tool for the prediction of snoRNA. snoRe-
port can predict orphan snoRNA without using target in-
formation and is therefore similar to our approach. To com-
pare our tool to snoReport, we derived snoRNA sequences
from a mouse genome from Ensembl (49) and used them
as an independent set. In total, we used an input of 1603
sequences of snoRNA. As a result, snoReport identified
733 sequences correctly. In contrast, our classifier identi-
fied 1589 sequences correctly. Furthermore, we abstracted
a human dataset with 1641 sequences of snoRNA from
Ensembl. While snoReport identified 852 of the snoRNA-
sequences correctly, our tool identified 1611 (Table 2).

In order to analyze the low sensitivity of snoReport we
inspected the sequences that it fails to classify. We found
that snoReport was not able to detect a major snoRNA-
subclass snoU13. snoU13 was identified in 1989 (50). It has
been well characterized in 35 species by both functional as-
say and prediction. It is involved in the nucleolytic cleavage
at the 3’ end of 18S rRNA where it works as a trans-acting
factor (51).

snoReport was unable to assign any of 245 snoU13-
sequences in a human cohort to snoRNA. Our tool ptR-
NApred however identified all of them correctly (Table 2).
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Figure 1. C and y determination and 5-fold cross validation using LibSVM. The figure shows graphs for different values of the parameters C (a trade-off
for misclassification) and vy (inverse width of RBF kernel) on a logarithmic X and Y axis. The ranges of the axes describe the different values that were
tested, searching the optimal C and -y values in the grid space. The different colors in the diagram display the different accuracies obtained while optimizing
C and v values. We chose the C and v values according to the green graphs, respectively, representing the C and y value with the highest accuracy. (a) C
and vy determination and 5-fold cross validation of the two-class SVM. The green graph represents the optimal values for C and gamma. In this case, the
highest 5-fold cross validation accuracy (92.89%) is achieved when C = 32768 and y = 0.008. (b) C and -y determination and 5-fold cross validation of the
multi-class SVM. The green graph represents the optimal values for C and gamma. In this case, the highest 5-fold cross validation accuracy (86.69%) is

achieved when C =4 and y =0.5.

Table 2. Comparison between snoReport and ptRNApred

Total number of

Number of sequences
identified by snoReport (%
of total number of

Number of sequences
identified by ptRNApred (%

Organism RNA class sequences?® sequences) of total number of sequences)
M. musculus snoRNA 1603 737(46%) 1589(99%)
H. sapiens snoRNA 1641 852(52%) 1611(98%)

snoU13P 245> 0(0%)° 245(100%)°

A murine and a human dataset of snoRNA was abstracted from Ensembl (49) and performance of ptRNApred was compared to snoReport as a well-
established tool for snoRNA prediction. ptRNApred achieved higher sensitivity than snoReport (99 versus 46% on the murine and 98 versus 52% on the
human set of sequences). Regarding snoU13, a member of the snoRNAs, there is an even larger difference in the sensitivity (100 versus 0%).

4Total number of snoRNA-sequences downloaded from Ensembl (49).
®snoU13 among the human snoRNA sequences.

Current approaches to identify different RNA families
heavily rely on their secondary structure conservation. Con-
sequently, these approaches are accurate as long as the RNA
families show high secondary structure conservation. How-
ever, as soon as a RNA-family lacks a secondary structure
because it e.g. has no complementary sequences within it-
self, it will be misclassified. This explains why snoReport
failed to identify snoU13 and possibly also the remaining
~550 snoRNA sequences: snoU13 does not form any sec-
ondary structure conservation as it forms a loop.

Validation of the algorithm

As mentioned in the ‘Materials and Methods’ section, we
compared the algorithm implemented in our tool to Ran-
dom Forest classification. As a result, implementation of
Random Forest yielded an overall accuracy of 82%. In com-
parison, using LibSVM, our multi-class classifier developed
yields an accuracy of 91%. Detailed results of the perfor-
mance of Random Forest based prediction of the ptRNA-

subclasses can be found in the Supplement (Supplementary
Table S2).

Variable importance

Classification features have an individual impact on the dif-
ferentiation of RNA-classes. To determine the importance
of each of the 91 features for classification of ptRNA, an
F-score was calculated for each feature, using LibSVM. F-
scores can be interpreted as a weighted average of the pre-
cision and recall, where an F-score reaches its best value at
1 and worst score at 0. Supplementary Table S3 depicts the
F-score corresponding to every feature.

Additionally, even though Random Forests did not con-
tribute to ptRNApred predictions, those provide useful in-
formation on feature importance. One of the measures of
variable importance in Random Forest is the mean decrease
in accuracy, calculated using the out-of-bag sample. The dif-
ference between the prediction accuracy on the untouched
out-of-bag sample and that on the out-of-bag sample per-
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muted on one predictor variable is averaged over all trees in
the forest and normalized by the standard error. This gives
the mean decrease in accuracy of that particular predictor
variable which has been permuted. Thus, the importance of
the predictor variables can be ranked by their mean decrease
in accuracy. Supplementary Table S3 depicts the Gini-Index
corresponding to every feature.

Interestingly, comparing the 25 most discriminative fea-
ture variables according to F-score and Gini-Index (Sup-
plementary Table S4), dinucleotide properties achieve high
ranks: 9 of the 10 most discriminative features according to
the F-score are composed of dinucleotide properties. Fur-
thermore, all of the 15 dinucleotide properties can be found
among the 25 most discriminative properties. According to
the Gini-Index, 12 properties can be found among the 25
most discriminative properties, whereas only three of them
can be found among the top 10, indicating the importance
of the secondary structure.

Validation of the feature number

As mentioned in the ‘Materials and Methods’ section, a
general concern for all machine learning approaches is that
one has too many features, i.e. that one trains on features
that are not relevant—referred to as overfitting. This was ex-
cluded by the above mentioned cross validation test. On the
other hand, too few features would lead to loss of (overall)
accuracy. In order to confirm that using less features would
lead to loss of accuracy, we selected the 78 most discrimina-
tive features based on Random Forest prediction, using the
R package ‘Boruta’. When using these 78 features instead of
91 features, the 5-fold cross validation accuracy decreased
from 92.89 to 74.46% (Supplementary Figure S3).

Performances on a non-eukaryotic system

Even though ptRNApred is designed to primarily predict
eukaryotic sequences, ptRNApred was tested for perfor-
mance on RNase P sequences, using 329 R Nase P sequences
from ‘The Ribonuclease P Database’ (52). RNAse P has not
only been described in eukaryotic systems (53), but rather
distributes among different organisms (20). Interestingly,
our tool predicted the RNAse P sequences with an accuracy
of 97.3%.

Performances on coding RNA

Over the last few years, several tools have been developed
to distinguish coding from non-coding RNA (54-57). Even
though our aim was to develop a novel tool that can dif-
ferentiate between subclasses of non-coding RNAs and not
to distinguish between coding and non-coding RNAs, ptR-
NApred was tested for performance on mRNA. Therefore,
ptRNApred was challenged by 10 000 mRNA randomly
downloaded sequences from Ensembl. Surprisingly, only 15
of the sequences were misclassified as ptRNA. Therefore,
the accuracy of separating out mRNA is 99.85%.

DISCUSSION

RNA classes that are involved in post-transcriptional mod-
ification or DNA replication in eukaryotes not only have
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functional similarities, but rather form a distinct group of
ncRNA with sequence and conformational similarities, that
make it possible to accurately distinguish them from other
RNA classes.

We here present a novel user-friendly tool that employs
discriminative properties to (i) distinguish what we here call
‘post-transcriptional RNA’ from other classes of ncRNA
and (ii) discriminate between the different types of ptRNA.

An advantage of the tool is its highly accurate and there-
fore reliable output. This is based on its working principle:
More than 90 features that are derived from the primary
sequence and secondary structure are used to define prop-
erties for characterization and differentiation between the
subclasses. Analyzing the most discriminative feature vari-
ables according to F-score and Gini-Index, the most impor-
tant features are not only based on the secondary struc-
ture, but even more importantly on dinucleotide proper-
ties. This might be due to the fact that many nucleic acid
properties such as nucleic acid stability, for example, seem
to depend primarily on the identity of nearest-neighbor
nucleotides (58). Furthermore, the corresponding nearest-
neighbor model is also the basis for RNA secondary struc-
ture prediction by free-energy minimization (59). It has long
been known that also thermodynamic but also conforma-
tional nucleotide properties may play a role. It has been
shown, for example, that promoter locations can be pre-
dicted adopting dinucleotide stiffness parameters derived
from molecular dynamic simulations (60). Our tool under-
scores the value of these properties.

Recently, a focus has been on the characterization of
snoRNA. However, there has been no classifier that could
predict snRNA, RNase P or RNase MRP, even though
these subclasses have conserved secondary structures. Iden-
tification of those RNA classes has as yet been dependent
on sequence alignment. This technique frequently leads to
misidentification, especially if the particular homologous
sequence is not present in any database.

Furthermore, ptRNApred can be used to elucidate un-
known relations and derivation of RNA classes. Based on
the assumption that evolutionarily close RNA families have
similar sequence properties, one may speculate that tools
like ptRNApred will falsely arrange evolutionarily close
RNA families into the same group.

A deficiency of this tool is that its accuracy is depen-
dent on the amount of published ptRNA sequences. Some
classes of ptRNA, for example Y RNA, are to this point just
rarely available in the NONCODE database, making it hard
to define discriminative sequence properties and setting lim-
its to the accuracy. In the current era of high-throughput
next generation sequencing, where a large amount of ge-
nomic data is generated each day, ptRNA sequences that
will be added to the database in the future can be used
to increase training and test set, setting a base to improve
the classifier. On the other hand, discovery of new candi-
dates for ptRNA requires a method which can classify them
rapidly and reliably. Our tool offers a solution to this prob-
lem. Also, facing the huge amount of new sequences that
are found in Next Generation Sequencing (NGS) or RNA-
seq data (61), it is important to include such algorithms into
NGS pipelines. For such purposes, we provide a standalone
version.
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We implemented our method as a web-based server for
free public use. Transparent and user-friendly design makes
it possible for everyone to understand and employ the tool.
Data and scripts for the development of the tool can be
downloaded, allowing anyone to acquire the working prin-
ciple and improve ptRNApred.

Collectively, our tool offers a fast and reliable way to an-
alyze cDNA and RNA sequences and outperforms the ex-
isting classifiers. Furthermore, the tool provides compre-
hensive annotations. Therefore, ptRNApred introduces dif-
ferent opportunities to identify and classify new and un-
annotated RNA sequences.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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