β_{s} -Microglobulin—A Free Immunoglobulin Domain

(light and heavy chain/amino-acid sequence)

PER A. PETERSON, BRUCE A. CUNNINGHAM, INGEMAR BERGGÅRD[†], AND GERALD M. EDELMAN

The Rockefeller University, New York, N.Y. 10021; and †The University of Lund, Lund, Sweden

Contributed by Gerald M. Edelman, April 21, 1972

Analysis of the primary structure of β_2 -ABSTRACT microglobulin indicates that this human protein is homologous in sequence to the constant portion of immunoglobulin light chains (CL), and to the homology regions (C_H1, C_H2, and C_H3) of the constant portion of γ 1 (heavy) chains of immunoglobulin G. Homology with the $C_{\rm H}3$ region is particularly striking. No convincing homology could be demonstrated by similar comparisons with the variable regions of immunoglobulin light and heavy chains. β_2 -Microglobulin contains an intrachain disulfide loop of 57 amino-acid residues that is similar in size to disulfide loops found in the constant regions of immunoglobulin G. These findings suggest that β_2 -microglobulin is a free immunoglobulin domain, possibly serving an effector function similar to that of the $C_{\rm H}3$ domain of γ l chains of immunoglobulin G.

The distribution of homologous sequences and the arrangement of the intrachain disulfide bonds in the light and heavy chains of the myeloma protein Eu led to the prediction (1, 2)that antibody molecules are composed of a series of compact domains (Fig. 1), each contributing to an active site. Vregion domains $(V_L \text{ and } V_H)$ mediate antigen-binding functions, while C-region domains (C_L, C_H1, C_H2, and C_H3) mediate effector functions. Each domain contains about 100 amino-acid residues and has a single disulfide loop of about 60 residues. The overall structural features of γ G1 immunoglobulins have been confirmed by analysis of the primary structure of the heavy chain of another myeloma protein, He (3). Strong confirmation of the domain hypothesis has come from x-ray crystallographic studies on whole immunoglobulin G (IgG) (4) and on crystals of Fab fragments (5), from electron microscopic studies of IpA (6, 7), and from the results of limited proteolysis of immunoglobulins (8-11). Additional support has come from the reconstitution of heavy chain dimers (12) and analysis of the properties of isolated V_{L} and C_L regions (9, 10, 13).

As shown by Berggård and Bearn (14), the human protein β_2 -microglobulin contains about 100 amino-acid residues and has a single disulfide bond. This protein has no known function but appears in low amounts in the serum, urine, and cerebrospinal fluid of normal individuals and in increased amounts in the urine of individuals with malfunction of the renal tubules. Because of the size and amino-acid composition of this protein, it was reasonable to ask whether β_2 -microglobulin is related in any way to the polypeptide

chains of immunoglobulins. Smithies and Poulik (15) have recently reported the amino-acid sequence of 44 of the first 46 residues of β_2 -microglobulin and compared their sequence with that of protein Eu. On the basis of their data, they have postulated that the gene for this protein arose by an evolutionary event that resulted in a deletion of a large segment of an Eu-like ancestral gene.

We report here the tentative amino-acid sequence of the entire β_2 -microglobulin molecule. The sequence obtained is homologous to all of the constant domains (C_L, C_H1, C_H2, and C_H3) of the immunoglobulin Eu, particularly to C_H3. The protein also contains a disulfide loop similar in size to those found in each of the IgG domains. We suggest that β_2 -microglobulin is a free immunoglobulin domain, and propose that it represents a product of lymphoid cells that probably performs an effector or regulatory function in the immune system.

MATERIALS AND METHODS

 β_2 -Microglobulin was isolated from the urine of patients with chronic cadmium poisoning, as described by Berggård and Bearn (14). The amino-acid sequence was determined by isolation and characterization of tryptic, chymotryptic, thermolytic, and peptic peptides. Actual sequence determination was performed on peptides by the dansyl-Edman technique (16-18), and positions of asparaginyl and glutaminyl residues were determined by the electrophoretic mobility of the appropriate peptides at pH 6.5 (19). Details

FIG. 1. Diagram of the overall structure of immunoglobulin G illustrating the domain hypothesis (1, 2). Light chain (V_L, C_L) and heavy chain $(V_H, C_H1, C_H2, \text{ and } C_H3)$ domains are denoted by *circles*; the dyad axis is indicated by \mathcal{P} . Each domain is connected to the succeeding domain by a less tightly folded region of the polypeptide chain. V-region domains mediate antigenbinding functions, while C-region domains mediate effector functions.

Abbreviations: Ig, immunoglobulin; PBS-BSA, phosphatebuffered saline (800 g NaCl, 1.15 g Na₂HPO₄, 0.20 g KH₂PO₄, 0.20 g KCl per liter of H₂O, pH 7.4) containing 0.2% bovine serum albumin.

1 10 20 1 LE-GLN-ARG-THR-PRO-LYS-ILE-GLN-VAL-TYR-SER-ARG-HIS-PRO-ALA-GLX-ASX-GLY-LYS-SER-21 30 40 ASX-PHE-LEU-ASN-CYS-TYR-VAL-SER-GLY-PHE-HIS-PRO-SER-ASP-ILE-GLU-VAL-ASP-LEU-LEU-41 50 60 LYS-ASP-GLY-GLU-ARG-ILE-GLX-LYS-VAL-(ASX, HIS, SER, GLX)-LEU-SER-PHE-SER-LYS-ASN-SER-61 70 TRP-PHE-TYR-LEU-(LEU, TYR, SER)-TYR-THR-GLU-PHE-THR-PRO-THR-GLU-LYS-ASP-GLU-TYR-ALA-81 90 CYS-ARG-VAL-ASX-HIS-VAL-THR-LEU-SER-GLX-PRO-LYS-ILE-VAL-LYS-TRP-ASP-ARG-ASP-MET FIG. 2. Amino-acid sequence of β_2 -microglobulin.

of the sequence determination will be reported elsewhere (manuscript in preparation).

Estimates of the number of β_2 -microglobulin molecules on leukocytes were made with ¹²⁵I-labeled rabbit antibodies to the human protein. Antisera were obtained by injection of β_2 -microglobulin in complete Freund's adjuvant intramuscularly into rabbits. IgG was purified from the antisera by precipitation with ammonium sulfate (37% saturation) at 21° followed by chromatography on diethylaminoethyl (DEAE)-cellulose (20). The rabbit anti- β_2 -microglobulin was labeled with ¹²⁵I (21) (3.1 \times 10⁵ cpm/µg). Leukocytes were prepared from whole human blood by differential sedimentation in 3% gelatin prepared with mammalian Ringer's solution (22). The binding of 125 I-labeled anti- β_2 -microglobulin to human leukocytes was determined by incubation of 2×10^6 leukocytes with various concentrations of the labeled antibody in 750 μ l of phosphate-buffered saline (pH 7.4)-0.2% bovine serum albumin (PBS-BSA) for 30 min at room temperature (21°). The cells were then washed four times with PBS-BSA, and counted for radioactivity in a Nuclear Chicago model 4320 gamma spectrometer.

RESULTS AND DISCUSSION

The tentative amino-acid sequence of β_2 -microglobulin is shown in Fig. 2. The protein contains 100 amino-acid residues and the sequence is in excellent agreement with the reported composition (14). The sequence within the first 46 residues is identical with that determined by Smithies and Poulik (15), and the two residues [31 and 45], not identified in their study have now been determined. The single outstanding feature of the structure is a cluster of residues with aromatic side chains near the center of the molecule [residues 61-71]. Because the protein exists predominantly as a monomer of molecular weight 12,000 and contains no free-SH groups (14), we conclude that the two half-cystinyl residues at positions 25 and 81 participate in an intrachain bond, forming a loop of 57 amino-acid residues.

When aligned as shown in Fig. 3, the sequence of β_2 -microglobulin is homologous with the constant region of the Eu light chain (C_x) and with the homology regions of the Eu heavy chain (C_H1, C_H2, and C_H3). Of the 93-97 positions compared (Table 1), 26 are identical with C_L (C_x), 22 with C_H1, 22 with C_H2, and 28 with C_H3. A similar comparison with C_{\lambda} (23) indicated identical residues in 21 positions. The same comparisons among the various homology regions of protein Eu (Table 1) yielded identical residues in 28-34 positions (2); when similarly aligned, C_x and C_λ are identical in 38 positions. No convincing homology was obtained with the variable regions.

 β_2 -Microglobulin is therefore homologous to all of the constant homology regions in x, λ , and γ chains, but appears to be most closely related to the $C_{\rm H}3$ region of $\gamma 1$ chains. On the basis of the number of identical residues, β_2 -microglobulin is as closely related to the $C_{\rm H}3$ region as the various homology regions of Eu are related to each other. When the sequences C_x , C_{H1} , C_{H2} , and C_{H3} are aligned as shown in Fig. 3, all four sequences give identical residues in eleven positions. β_2 -Microglobulin has identical residues in 10 of these positions, the outstanding exception being the absence of a tryptophanyl residue at position 39. The tryptophanyl residues in protein Eu show a characteristic linear distribution (2) that is not apparent in the sequence of β_2 -microglobulin (Fig. 2). While this difference requires nonconservative mutations and might have functional significance, none is apparent at this time.

Comparison of the same sequences (Fig. 3, Table 1) by the method of Fitch (24) emphasized the similarity between β_2 -microglobulin and the C_H3 region. When no deletions were made (Fig. 4), the homology with C_H3 was particularly outstanding. When the sequences are aligned as shown in Fig. 3, all the regions show homology with β_2 -microglobulin, but that for C_H3 is still particularly pronounced.

The similarity of β_2 -microglobulin to the homologous regions of light and heavy chains suggests that this protein might be the product of proteolytic cleavage of a larger immunoglobulin. Limited proteolysis of immunoglobulins has been shown to lead to cleavage between homologous segments of both light and heavy chains (8-11), and the products are often seen in urine. Although we cannot rigorously rule out this possibility, it seems unlikely for several reasons. There is no indication of internal cleavage or of fraying at the carboxyl- or amino-terminal ends as is often seen in such proteolytic cleavages. Moreover, the amino-acid sequence does not correspond exactly to any known immunoglobulin sequence nor does β_2 -microglobulin react with antisera to any of the known classes of immunoglobulins, to the J chain, or to the transport piece of secretory IgA (14, 15). Similarly, antisera against β_2 -microglobulin do not react with

	110
R MICROCLOBULIN	ILE GLN ARG THR PROLYS ILE GLN VAL TYR SER
$p_2^{-mickode observe}$	THR VAL ALA ALA PRO SER VAL PHE ILE
	SER THRIVS GLY PRO SER VAL PHE PRO
EU C _H 1 (RESIDUES 119-220)	SER THE ELV OF THE LEU
EU C _H 2 (RESIDUES 234-341)	
EU C _H 3 (RESIDUES 342-446)	GLN PRO ARGIGLU PRO GLN VAL TTRITIR
	20
ARCHISPROALA - GUU	ASX GLY LYS SER ASX PHE LEU ASN CYS TYR VAL
	LYS SER GLY THE ALA SER VAL VAL CYS LEU LEU
PHE PRO PRO SER ASP GLOGEN	
LEU ALA PRO SER SER LYS SER THR	SER GET GET THE ARA ALL LED GET OTO LED THE
PHE PRO PRO LYS ASP THR LEU MET	TLE SER ARG THE PRO GEO VAL THE CTS VAL VAL
LEU PRO PRO SER ARG GLU GLU MET	THR LYS ASN GLN VAL SER LEU THR CYS LEU VAL
20	40
SER GLYPHEHLSPROSERASPILE GLUVAL] ASP LEU LEU LYS ASP GLY GLU ARG ILE
ASN ASN PHE TYP PRO ARG GLU ALA LYS VAL	GLN TRP LYS VAL ASP ASN - ALA LEU
ASW ASW THE THE PRO CLU PRO VAL THE VAL	- SER TRP ASN SER - GLY - ALA LEU
LYS ASP TTR PHE PROJECT PRO VAL THR VAL	
VAL ASP VAL SER HIS GLUIASPIPRU GLNIVAL	LYS PHE ASN TRP TTR VAL ASP GET = - VAL
LYS GLY PHE TYR PRO SER ASP ILE ALA VAL	J GLU TRP GLU SER ASN ASP GLY
50	60
GLX LYS VAL ASX - HIS SER GLX LEU SER	60 PHE SER LYS ASN - SER TRP PHE TYR LEULEU
GLX LYS VAL ASX - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU
50 GLX LYS VAL ASX - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU
GLX LYS VAL ASX - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA GLN VAL HIS ASNALA LYS THR LYS PRO ARG	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL
GLX LYS VAL ASX - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA GLN VAL HIS ASN ALA LYS THR LYS PRO ARG	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL
GLX LYS VAL ASX - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLN SER VAL HIS THR PHE PRO ALA GLN VAL HIS ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU
50 GLX LYS VAL ASX GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA GLN VAL HIS ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU 80
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR SER TYR - THR GLU PHE THR PRO THR	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL
50 - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA GLN VAL HIS ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR SER TYR - THR GLU PHE THR PRO THR SER SER THR LEU THR LEU SER LYS ALA ASP	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL
50 - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA GLN VAL HIS ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR SER TYR - THR GLU PHE THR PRO THR SER SER THR LEU THR LEU SER LYS ALA ASP SER SER VAL VAL THR VAL PRO SER SER SER	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR SER THR LEU SER SER THR LEU SER SER VAL VAL THR VAL PRO SER SER SER VAL SER VAL VAL THR VAL PRO SER SER SER	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO YR SER THR LEU THR LEU SER LYS ALA ASP SER SER VAL VAL HU THR VAL PRO SER SER SER VAL SER SER VAL VAL HU THR VAL ASP LEU THR VAL ASP LYS SER ARG	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL TRP GLU ASN VAL PHE SER CYS SER VAL
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR SER TYR - THR GLN SER VAL VAL THR LEU THR LUS SER LYS ALA ASP SER SER THR LEU THR VAL PRO SER SER SER VAL SER VAL LEU THR VAL LEU H1S GLN ASN TYR SER LYS LEU THR VAL ASP LYS SER ARG	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL TRP GLN GLN GLY ASN VAL PHE SER CYS SER VAL
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL HIS ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR SER TYR - THR SER SER THR LEU THR NO PRO YAL YAL VAL THR PRO PRO PRO TYR SER SER THR LEU THR LEU SER LYS ALA ASP SER SER VAL VAL THR VAL PRO SER SER SER SER VAL SER VAL LEU THR VAL PRO SER SER SER VAL SER LYS LEU THR VAL ASP LYS SER ARG	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL TRP GLN GLN GLY ASN VAL PHE SER CYS SER VAL
50 - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA THR SER GLY - VAL HIS THR PHE PRO ALA GLU PRO GLU ASN TYR LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR SER TYR - THR GLU PHE THR PRO THR SER SER THR LEU THR LEU SER LYS ALA ASP SER SER VAL VAL THR VAL PRO SER SER SER VAL SER VAL LEU THR VAL ASP LYS SER ARG 90 ASX HUS VAL THR LEU SER GLY SER GLY SER	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL TRP GLN GLN GLY ASN VAL PHE SER CYS SER VAL
50 - HIS SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL HIS THR PHE PRO ALA GLN VAL HIS - VAL HIS THR PHE PRO ALA GLN VAL HIS ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO TYR - THR SER THR LEU SER SER THR LEU THR LEU SER LYS ALA ASP SER SER VAL VAL THR VAL PRO SER SER SER VAL SER VAL LEU THR VAL ASP LYS SER ARG ASX HIS VAL THR LEU SER GLX PRO - ASX HIS VAL THR LEU SER GLX PRO -	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL TRP GLN GLN GLY ASN VAL PHE SER CYS SER VAL - LYS ILE VAL - LYS TRP ASP ARG ASP MET - LYS GLO GED RUS
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ALA LYS THR LYS PRO ARG GLU PRO GLU ASN TYR LYS THR THR PRO PRO SER SER THR LEU THR LEU SER LYS ALA ASP SER SER VAL VAL THR VAL PRO SER SER SER VAL EU THR VAL ASP LYS SER ARG YAL SER LYS LEU THR VAL ASP LYS SER ARG ASX H1S VAL THR LEU SER GLX PRO THR H1S GLN GLY LEU SER SER PRO VAL THR	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR GLU LYS HIS LYS VAL TYR GLU LYS HIS LYS VAL TRP GLN GLY LYS GLU TYR LYS CYS LYS VAL TRP GLN GLN GLY ASN VAL PHE SER CYS SER VAL - LYS ILE VAL - LYS TRP ASP ARG ASP MET - LYS SER PHE ASN ARG GLY GLU CYS
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL H1S ASN ALA LYS THR PRO ARG GLUPRO GLUASN TYR LYS THR THR PRO PRO SER SER THR LEU THR LEU SER LYS ALA ASP SER SER VAL VAL THR VAL PRO SER SER SER VAL SER LYS LEU THR VAL ASP LYS SER ARG ASX H1S VAL THR LEU SER GLX ASX H1S VAL THR LEU SER SER PRO VAL THR ASN H1S LYS LEU SER SER PRO VAL THR	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLU LYS HIS LYS VAL TYR ALA CYS GLU VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL TRP GLN GLN GLY ASN VAL PHE SER CYS SER VAL - LYS ILE VAL - LYS TRP ASP ARG ASP MET - LYS SER PHE - ASN ARG GLY GLU CYS ASP LYS ARG VAL - GLU PRO LYS SER CYS
50 - H1S SER GLX LEU SER GLN SER GLY ASN SER GLN GLU SER VAL THR THR SER GLY - VAL H1S THR PHE PRO ALA GLN VAL HIS ASN ASN SER GLN GLU SER VAL THR GLN VAL HIS ASN ALA LYS THR PHE PRO ALA GLU PRO GLU ASN TYR LYS THR PRO PRO GLU PRO GLU ASN TYR LYS THR PRO PRO TYR SER THR LEU THR VAL PRO SER SER SER SER SER VAL SER VAL LEU THR VAL ASP LYS SER ARG VAL SER LYS LEU THR VAL ASP LYS SER ARG ASX H1S VAL THR LEU SER SER PRO - THR HIS GLN GLY LEU SER PRO - - ASX H1S LHR LEU SER SER PRO - - ASX H1S LHR LEU SER SER PRO - - SER ASN SLYS SER	60 PHE SER LYS ASN - SER TRP PHE TYR LEU LEU GLU GLN ASP SER LYS ASP SER THR TYR SER LEU VAL LEU GLN SER - SER GLY LEU TYR SER LEU GLU GLN GLN TYR - ASP SER THR TYR ARG VAL VAL LEU ASP SER - ASP GLY SER PHE PHE LEU - GLU LYS - ASP GLU TYR ALA CYS ARG VAL TYR GLULYS HIS LYS VAL TYR ALA CYS GLV VAL LEU GLY THR GLN - THR TYR ILE CYS ASN VAL TRP LEU ASP GLY LYS GLU TYR LYS CYS LYS VAL TRP GLN GLN GLY ASN VAL PHE SER CYS SER VAL - LYS ILE VAL - LYS TRP ASP ARG ASP MET - LYS SER PHE - ASN ARG GLY GLU CYS ASP LYS ARG VAL - GLU PRO LYS SER CYS GLU LYS THR ILE SER LYS ALA LYS GLY

FIG. 3. Comparison of the amino-acid sequence of β_2 -microglobulin with the homology regions C_L, C_H1, C_H2, and C_H3 of the γ G1 immunoglobulin Eu. Deletions, indicated by *dashes*, have been inserted to maximize homologies. Identical residues are enclosed in *boxes*. Numbering is for β_2 -microglobulin.

purified IgG, or with any other serum protein. This would suggest that if β_2 -microglobulin does come from a larger molecule, it would have to be derived from an as yet unknown immunoglobulin via a relatively specific cleavage. Finally, β_2 -microglobulin does not appear to bind γ G1 immunoglobulins, even if the light and heavy chains are separated and then reconstituted in its presence.

If we assume that β_2 -microglobulin is the product of a distinct structural gene, two questions arise: (a) how is the protein related to immunoglobulins?, and (b) more important, what is its function? Analysis of the structural features of the myeloma protein Eu has provided convincing support for the hypothesis (25, 26) that immunoglobulins evolved by the duplication of a precursor gene of a size sufficient to specify a polypeptide chain of 100-110 residues—the size of β_2 -microglobulin. Many schemes can be envisioned to explain the evolution of the gene for β_2 -microglobulin. These range in complexity from direct evolution from the immunoglobulin precursor gene to evolution via some mechanism that occurs after the duplication event. The data provide no direct support for more complex mechanisms, such as that suggested by Smithies and Poulik (15). The choice between the simple

mechanism that we favor and more complicated schemes will depend upon genetic studies of this protein in various species, as well as upon knowledge of its function.

Studies of the function of β_2 -microglobulin are hampered by the fact that this protein has been found only in humans. Our preliminary experiments to establish the exact location and possible function of this protein suggest that the molecule may be localized specifically in lymphoid tissue. Attempts to

TABLE 1. Number of identical residues among the sequences of β₂-microglobulin and the constant homology regions of protein Eu*

	β2	Eu C _L	Eu C _H 1	Eu C _H 2	Eu C _H 3
β_2	—				
Eu CL	26				
Eu C _H 1	22	32	_		
Eu C _H 2	22	34	28		
Eu C _H 3	28	32	30	29	

* Sequences were aligned as shown in Fig. 3, and the alignment was kept constant for all comparisons.

FIG. 4. Cumulative probability plots obtained in the comparison of β_2 -microglobulin with the C_L , $C_H 1$, $C_H 2$, and $C_H 3$ regions of the myeloma protein Eu according to the method of Fitch (24). In all cases, length of sequence examined (LSE) = 25. The *dashed line* denotes the normal probability distribution. Top row, comparison made with no deletions; *bottom row*, sequences aligned as shown in Fig. 3.

quantitate the number of β_2 -microglobulin molecules on peripheral leucocytes (Fig. 5) were made with ¹²⁵I-labeled rabbit anti- β_2 -microglobulin. If we assume uniform labeling of all cells, the results indicate an upper limit of 6×10^7 molecules per cell. Binding of the antibodies was inhibited by unlabeled β_2 -microglobulin, and nonspecific rabbit immunoglobulins similarly labeled with ¹²⁵I gave essentially no binding. Experiments to determine whether this labeling is restricted to any special class of lymphocytes are in progress.

Although it seems clear that V-region domains of immunoglobulins serve antigen-binding functions, the effector functions served by the individual C-region domains have not been completely defined. It has been suggested (27) that the C_H2 domains are involved in complement binding, but no function has been assigned to the C_H3 domain. Because of their similarity, it is tempting to suggest that this domain and β_2 -microglobulin serve a similar function, such as binding to the cell surface, although β_2 -microglobulin may bind to a different population of cells than does C_H3.

One structural feature clearly distinguishes β_2 -microglobulin from domains in the immunoglobulin molecule: in the immunoglobulin molecule domains occur in pairs (V_LV_H, C_LC_H1, C_H2C_H2, and C_H3C_H3), whereas the predominant form of β_2 -microglobulin is the monomer (14). This suggests the possibility that the excreted β_2 -microglobulin differs from the functional species that may exist as a dimer.

Regardless of such differences, β_2 -microglobulin is strikingly similar to the domains of IgG and the evidence is consistent with the hypothesis that it represents a free domain. From its homology with the C_H3 domain, we suggest that it serves a similar function. A more detailed interpretation must await efforts to analyze its function and its three-dimensional structure. Evidence for the genetic polymorphisms and for

FIG. 5. Binding of anti- β_2 -microglobulin IgG (*dark circles*) and nonspecific IgG (*open circles*) to human peripheral leukocytes. Various concentrations of rabbit [¹²⁵I]IgG obtained from antisera directed against β_2 -microglobulin and nonspecific rabbit [¹²⁵I]IgG, respectively, were added to 2 \times 10⁶ leukocytes in a total volume of 750 μ l of PBS-BSA.

the existence of this protein in other species will be key elements in extending these studies.

We thank Dr. W. E. Gall for help in analyzing the sequence homologies and Mr. John L. Wang for his assistance with the dansyl-Edman technique, and acknowledge the excellent technical assistance of Mrs. Martha O'Connor, Miss Joan Beck, and Mrs. Helvi Hjelt. This work was supported by Grants AM 14705 and AI 09273 from the U.S. Public Health Service, a Teacher-Scholar Grant from the Camille and Henry Dreyfus Foundation, and Grant 13X512 from the Swedish Medical Research Council. P. A. Peterson was on leave from the University of Uppsala and was supported by the Swedish Medical Research Council (Grant K7260F 3814).

- 1. Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U. & Waxdal, M. J. (1969) "The covalent structure of an entire γG immunoglobulin molecule," *Proc. Nat. Acad. Sci. USA* 63, 78-85.
- Edelman, G. M. (1970) "The covalent structure of a human γG immunoglobulin. XI. Functional implications," Biochemistry 9, 3197-3205.
- Cunningham, B. A., Gottlieb, P. D., Pflumm, M. N. & Edelman, G. M. (1971) "Immunoglobulin structure: diversity, gene duplication and domains," in *Progress in Immunology 1. First International Congress of Immunology*, ed. Amos, B. (Academic Press, New York), pp. 3-24.
- Davies, D. R., Sarma, V. R., Labaw, L. W., Silverton, E. W. & Terry, W. D. (1971) "Three-dimensional structure of immunoglobulins," in *Progress in Immunology*. I. First International Congress of Immunology, ed. Amos, B. (Academic Press, New York), pp. 25-32.
- Poljak, R. J., Amzel, L. M., Avey, H. P., Becka, L. N. & Nisonoff, A. (1972) "Structure of Fab' New at 6 Å resolution," Nature New Biol. 235, 137-140.
- Green, N. M., Dourmashkin, R. R. & Parkhouse, R. M. E. (1971) "Electron microscopy of complexes between IgA (MOPC 315) and a bifunctional hapten," J. Mol. Biol. 56, 203-206.
- Dourmashkin, R. R., Virella, R. & Parkhouse, R. M. E. (1971) "Electron microscopy of human and mouse myeloma serum IgA," J. Mol. Biol. 56, 207-208.
- 8. Turner, M. W. & Bennich, H. (1968) "Subfragments from the Fc fragment of human immunoglobulin G," *Biochem.* J. 107, 171-178.
- 9 Karlsson, F. A., Peterson, P. A. & Berggård, I. (1969) "Properties of halves of immunoglobulin light chains," Proc. Nat. Acad. Sci. USA 64, 1257-1263.
- Solomon, A. & McLaughlin, C. L. (1969) "Bence-Jones proteins and light chains of immunoglobulins. I. Formation and characterization of amino-terminal (variant) and carboxyl-terminal (constant) halves," J. Biol. Chem. 244, 3393-3404.
- Gall, W. E., D'Eustachio, P. G. & Edelman, G. M. (1972) "A new enzymatic cleavage of human γG immunoglobulin," *Fed. Proc.* 31, 446 Abstr.

- 12. Björk, I. & Tanford, C. (1971) "Gross conformation of free polypeptide chains from rabbit immunoglobulin G. I. Heavy chain," *Biochemistry* 10, 1271–1280.
- Björk, I., Karlsson, F. A. & Berggård, I. (1971) "Independent folding of the variable and constant halves of a lambda immunoglobulin light chain," *Proc. Nat. Acad. Sci. USA* 68, 1707-1710.
- 14. Berggård, I. & Bearn, A. G. (1968) "Isolation and properties of a low molecular weight β_2 -globulin occurring in human biological fluids," J. Biol. Chem. 243, 4095-4103.
- 15. Smithies, O. & Poulik, M. D. (1972) "Initiation of protein synthesis at an unusual position in an immunoglobulin gene," *Science* 175, 187-189.
- 16. Gray, W. R. (1967) "Sequential degradation plus dansylation," Methods Enzymol. XI. 469-475.
- Cunningham, B. A., Gottlieb, P. D., Konigsberg, W. H. & Edelman, G. M. (1968) "The covalent structure of a human γG-immunoglobulin. V. Partial amino-acid sequence of the light chain," *Biochemistry* 7, 1983-1995.
- Gottlieb, P. D., Cunningham, B. A., Rutishauser, U. & Edelman, G. M. (1970) "The covalent structure of a human γG-immunoglobulin. VI. Amino-acid sequence of the light chain," *Biochemistry* 9, 3155-3161.

- 19. Offord, R. E. (1966) "Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups," *Nature* 211, 591-593.
- Levy, H. B. & Sober, H. A. (1960) "A simple chromatographic method for preparation of gamma globulin," Proc. Soc. Exp. Biol. Med. 103, 251-252.
- McConahey, P. J. & Dixon, F. J. (1966) "A method of trace iodination of proteins for immunological studies," Int. Arch. Allergy Appl. Immunol. 29, 185-189.
- Coulson, A. S. & Chalmers, D. G. (1964) "Separation of viable lymphocytes from human blood," Lancet I, 468-469.
- Milstein, C., Clegg, J. B & Jarvis, J. M. (1967) "C-terminal half of immunoglobulin λ chains," Nature 214, 270-272.
- Fitch, W. M. (1966) "An improved method for testing for evolutionary homology," J. Mol. Biol. 16, 9–16.
- Hill, R. L., Delaney, R. Fellows, R. E. Jr. & Lebovitz, H. E. (1966) "The evolutionary origins of the immunoglobulins," *Proc. Nat. Acad. Sci. USA* 56, 1762–1769.
- Singer, S. J. & Doolittle, R. E. (1966) "Antibody active sites and immunoglobulin molecules," Science 153, 13-25.
- Kehoe, J. M. & Fougereau, M. (1969) "Immunoglobulin peptide with complement fixing activity," Nature 224, 1212-1213.