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ABSTRACT Empirical functions, such as n,,(V) and
T,(V) (of the Hodgkin-Huxley type), can be recast in terms
of more fundamental functions F(V) (related to a con-
formational free energy change) and @(V) (related to the
corresponding free energies of activation). Examples of
F(V) and @(V) are given, for squid and frog node. F(V) is es-
sentially a quadratic function of V. The possible molecular
origin, for protein-like subunits, of the linear (e.g., net
charge) and quadratic (e.g., polarizability) terms in F(V)
is discussed. The F(V), 9(V) kind of analysis leads rather
automatically to a simple explanation of the well-known
approximate coincidence in location (V value) of the maxi-
mum in Tr(V) (time constant) and the steeply rising part
of n0,(V) (also m, 1 - h).

In a previous paper (1) we introduced the working hypothesis
that the separate potassium and sodium channels or gates in
the membrane of the squid axon are protein complexes.
Further, we assumed that the subunits of which the com-
plexes are constructed undergo V-dependent (V = mem-
brane potential) conformational changes which, in turn,
determine whether a channel is open or closed to K+ or Na+
transport.
The composition of the channel material has still not been

demonstrated experimentally, let alone its molecular struc-
ture. However, protein, lipoprotein, or polypeptide seem the
most likely candidates at the present time. In any case, what-
ever the nature of the molecules, voltage clamp kinetics, as
first analyzed by Hodgkin and Huxley (2), suggest a multi-
subunit organization, though the number of subunits is also
not certain. The fact that the conformational change, in
Hodgkin-Huxley (HH) kinetics, occurs on a time scale of
milliseconds probably requires that the subunits be fairly
large molecules.
The possible origin of the rather sensitive V-dependence of

the conformational equilibrium constant was considered
briefly in ref. 1. The analysis given there made it clear, how-
ever, that it is necessary to first establish the degree of co-
operativity, if any, between the subunits of a complex before
the "intrinsic" equilibrium constant, as a function of V, can
be deduced from the experimental data.
We considered this preliminary question in previous pub-

lications (3, 4). We found that K+ channels (or gates) are not
likely to have any significant amount of cooperativity. We
have not attempted a similar study of Na+ channels.
With cooperativity (in K+ channels) excluded, we can re-

turn, then, to the subject introduced in ref. 1 and push our

analysis a little further. Actually, what we shall do here
amounts merely to a recasting of illustrative experimental data
into a form suitable for possible future theoretical analysis.
We shall discuss the appropriate theory very briefly, but a
serious attempt to "explain" the empirical functions F(V)
and 9(V) seems to us to be premature. For this, one really
needs much more information about channel composition
and structure than is presently available.

In the remainder of the paper, we shall have K+ channels
in mind, primarily, but the same approach would apply to
Na+ channels if the intrinsic (i.e., with interaction effects
separated out) properties of the (presumably) two kinds of
subunit were known. Actually, in the absence of information
to the contrary, we shall assume that the "m" subunits (1)
in the Na+ channel can be treated in the same way (i.e.,
with interactions omitted) as the "n" subunits in the K+
channel. However, there now seems to be ample evidence
(5-9), especially in the paper by Goldman (9), that the "h"
subunit interacts with the "m" subunits. Hence, we de-
emphasize h below, to some extent.

I. GENERAL CONSIDERATIONS

The quantity

K(V) = n~(V) = -AG(V)/RT a(V)
1 - n.(V) M(V) [1]

is the equilibrium constant between two conformations
(i >. ii) of a (presumably -protein) subunit, expressed in
Hodgkin-Huxley notation. The dependence of K on V arises
from the V-dependence of a free energy change, AG(V) (this
is the negative of AG in Eq. 20 of ref. 1). Also, K(V) is related
to the rate constants of the process, as shown. The V-de-
pendence of a(V) and ,(V) have their origin in the V-de-
pendences of the two corresponding free energies of activa-
tion.
We define the functions F(V), f(V), and @(V), in that order,

by
F(V) = AG(V)/RT
F(V) = F(O) +f(V)

[2]
[31

a(V) = a(O)e-()f(v), j(V) -= #(O)e[19-(V))f(V). [4]

Eqs. 4 are consistent with Eq. 1, and only one of the pair is
independent. It follows from the definitions that RTF(O) =

AG(O) is the "unperturbed" (i.e., V = 0) free energy change
(for i ii) while RTf(V) is the additional contribution to
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the conformational change in a more fundamental way than
the original functions (n. and r). The theoretical problem is
then to try to understand F(V) and 0(V) [as well as a(O)

o \ and 3(0)]. The F(V) problem (see below) does not seem
fundamentally difficult, but the explanation of 0(V) [and
a(0), 0 (O)] will presumably require :detailed structural in-
formation about the subunit conformational change, including

;-I \wS the intermediate activated complex.
To illustrate, we use the n and m empirical functions from

Hodgkin-Huxley (2) (squid) and from Dodge (13) as modi-
-2 - fied by Hille (14) (frog node). The solid curves in Figs. 1-4

show the functions F(V). The four @(V) functions are given
in Fig. 5. The somewhat atypical behavior of m(DH) (DH =
Dodge-Hille) in Figs. 4 and 5 originates in the form of the

-3 experimental a",(V) (13, 14). Otherwise, F(V) appears to be a
simple quadratic function of V (see below), and 0(V) is rather
insensitive to V (but 0 = constant = '/2 is clearly inappli-

-4 | s . .cable).

V(MV) The particular curves shown in these figures obviously
depend (via n., 7, etc.) on the number of subunits assumed

1. The function F(V) from n, (Hodgkin-Huxley) (solid (four for n, three for m), but not on the assumption that the
The dashed curve is the least squares best fit of a quadratic subunit material is protein. This kind of analysis should be

onlto F(V). useful whatever the number of subunits and whatever the
molecular natu re of the subunit.

that arises on imposition of a nonzero membrane We have suggested previously (1, 11, 12, 15) that F(V)
tial V (the "perturbation"). The factor 0(V) "splits" might be a quadratic function of V. The possible physical
7) between the two (forward and backward) activatin. basis for this is the subject of the next section. Thus, we ap-v) between the two (orward and backwarda actpvation
nprrip.q, aunt and R(O) qarp the iinn~rrtirhl (Vt = ()4 rate proximate F(V) byI I Ur, r11iirua X k\V) aLL P kV) al1 t111 HlleJl Tto~LUU k V - VI I a UV

constants for the conformational change. The most obvious
simple guess (10-12) about 0 would be 0 = constant- 1/2
(i.e., the effect of V on the free energy of the activated com-
plex is the average of its effect on the two states, i and ii).
As we shall see, this is a considerable oversimplification here.

Given the empirical functions nD(V) and r(V) = (a +
)-71, from experiment, one can easily calculate F(V) and

0(V) from Eqs. 1-4. These latter functions contain no new
information, of course, but they express the V-dependence of
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FIG. 2. The function F(V) from m<,, (Hodgkin-Huxley) (solid
curve). The dashed curve is the least squares best fit of a quadratic
function to F( V).

F(V) = q + 6V + yV2 [51

where q, 5, and oy are constants. The dashed curves in Figs. 1-4
show the best possible (least squares) fit of Eq. 5 to the solid
curve in each case. We would, of course, have preferred to fit
the original data points. [Incidentally, in addition, excellent
fits were obtained to the empirical functions from 1 - h(HH)
and 1 - h(DH).] Table 1 gives the values of q, 5, and Sy found.
The preliminary values for n(HH) found in ref. 1 (Table 1,
Y2 = 1.0, convert x to V and Q to q) were -2.37, -3.44, and
+2.12, respectively.

3

FCV)

V(mV)

FIG. 3. The function F(V) from n,. (Dodge-Hille) (solid
curve). The dashed curve is the least squares best fit of a quadratic
function to F(V).
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Of course q = AG(0)/RT, and K(0) = em is the equilibrium
constant (i ;± ii) at V = 0 (see q values in Table 1). The
often remarked steep rise of the functions n. (V), m. (V), and
1 - h, (V) is reflected here in a negative 5 and a positive y,
since dn./dV at na, = 1/2 is equal to - (5 + 2'yV,/2)/4. In-
cidentally, y > 0 is necessary to obtain an iso-osmotic K+
steady-state negative conductance at positive V (1, 11, 12,
16). The -function n. (V) reaches a maximum, in this case
(a <0,O. > 0), at Vmx==-6/2'y. Table 1 gives, for n(HH),
Vmax = +78 mV which happens to agree with the location
of the maximum 'in gR(V) found by Gilbert and Ehrenstein
(16) (curve IV, Fig. 2). Table 1 suggests that this phenomenon
would be absent in frog node since y < 0 for n(DH).

II. SV AND -V2 CONTRIBUTIONS TO AG(V)/RT
We have discussed this subject, or parts of it, on previous
occasions (1, 11, 15, 17), but we recapitulate and add a few
further comments here. The essential point is that elementary
numerical examples, which we omit to save space, show that
it is possible to obtain the observed orders of magnitude
of a and y (table 1) from the ionic properties of protein-like
molecules. We give below a list (1, 15) of some rather obvious
possible contributions to the 5V and yV2 terms in F(V). It is
important to remember that a and Sy represent differences
(e.g., a = bit -s), and hence both can have either sign (in
principle).

(A) Net Charge. If the two conformations differ in net
charge by only several charges (e.g., from a difference in pro-
ton or ion binding), a linear term 5V of adequate magnitude
can arise (see Eq. 7). Also possible, but numerically less
plausible, is a translation (as a consequence of the conforma-
tional change) of a fixed set of charges in the subunit to a
location with a significantly different local electrostatic po-
tential.
A quadratic term yV2 (a kind of polarizability) would also

occur here if the electric field pulls the charged part (or parts)
of the subunit out of its equilibrium (V = 0) location or con-
figurationi, against a restoring force (this being the force re-

5
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FIG. 4. The function FMV from m.: (Dodge-Hille) (solid
curve). The dashed curve is the least squares best fit of a quadratic
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FIG. 5. The functions e(V) for na,(HH; Hodgkin-Huxley);
m.,(HH), n.,(DH; Dodge-Hille), and ma,(DH). The arrows

show the location (V value) of Tm..

sponsible for the equilibrium configuration in the first place).
As a simple example, consider (in a subunit conformation)
a charge ze (e = charge on proton) located at a distance y

from the outside surface of the membrane, in a linear electro-
static potential = yV/d (d = width of membrane), under
a restoring force -a(y -yo) (yo = equilibrium location of
ze when V = 0). Then the total potential energy with ze at
y is

U(y) = (zeyV/d) + ('/2)a(y yo)2. [6]

The equilibrium position y' at V follows from (dU/dy),' =

0. Then Uaty'is

U(y') = (zeyOV/d) - (1/2a)(ZEV/d)2, [7]

which has terms in V (see above) and V2. The P2 term will
contribute to yV2 if either z or a is different in the two con-
formations. Numerical examples indicate that the latter case
is a very good possibility, but the former is less likely. That
is, a reasonable zj - Zi will give an adequate value for a (see
above) but an additional source, for example a11 - a1, is prob-
ably needed for y (see also below).

(B) Polarizablity. This source of a contribution to _yV2 has
already been discussed in some detail (1, 11, 17, 18). Proton
migration in the electric field (18) is an especially good possi-
bility for proteins. The two conformations might differ in
polarizability, electric field strength at the location of the
subunit, or orientation of subunit axes (if the polarizability is
different along different axes).

(C) Second Wien Effect. This is the effect of an electric field
on the degree of dissociation of a weak electrolyte (19, 20).
The contribution to F(V) is proportional to IVI. Because of

TABLE 1. Free energy parameters

a X 102 y X 104
q (mV-1) (mV 2)

n (HH) -2.33 -3.24 +2.08
m (HH) -3.66 -8.14 +2.76
n (DH) -3.80 -7.85 -2.34
m (DH) -3.22 -7.69 +0.526
1 - h (HH) (-6.10) (-6.16) (+5.61)
1 - h (DH) (-11.06) (-14.34) (+1.54)

function to F(V).

Proc. Nat. Acad. Sci. USA 69 (1972)
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symmetry about V = 0, this would appear (approximately)
as a contribution to 'yV2.

(D) Rotation of Permanent Moment. Suppose the subunit
has a permanent dipole moment and that the axis of the
dipole has a different orientation to the field in the two con-
formations. This is the rotational analogue of the "translation
of charges" [see II (A)]. Further, if the axis orientation of
each conformation at V = 0 can be altered somewhat by the
field (V $ 0), but resisted by a restoring force, then we would
also have the rotational analogue of the yV2 term (ai - aj)
[see II (A)].
Another possibility, used in effect by a number of authors,

is that the two orientations are the same but the two mo-
ments are different.

III. LOCATION OF THE TIME CONSTANT MAXIMUM

Appreciable interest has been expressed in the approximate
coincidence in the location (V value) of the maximum in the
rj(V) curve and the steeply rising part of the j0(V) curve,
where j = n, m, 1 - h and rj = (aj + j)l = time constant.
The kind of analysis in Section I provides a simple explana-
tion. The case 0 = 1/2, below, as applied to black lipid mem-
branes with EIM (excitability inducing material), has been
considered independently and in a different way by H. Lecar
and G. Ehrenstein (personal communication).
To begin with, let us make the approximation that 0

constant around the maximum in T(V) (dropping the sub-
script j). The arrows in Fig. 5 locate rmax. These examples
indicate that the approximation ought to be fairly good (see
also below). We substitute Eqs. 4 into r = (a + ,B) ', set
dT/dV = 0, and find

1 - 0 a(O)e (V')
0 PM(0

where V' is the value of V at Tmax. Comparison with the re-
sult of substituting Eqs. 4 into Eq. 1 shows that j.o(V') =
1 - 0 is the value of joo at Tma.. Thus, if 0 is, say, in the range
0.2 < 0 < 0.8 (see Fig. 5, for example), then V' would fall
within the steeply rising portion of jo, (V) (roughly 0.2 <
j. < 0.8). Also, it is easy to show that, at V =V'

Id2T\ -Tmax dj. 2 O. [9]
\dV2 VI ((11-)<dV0V]

Hence, the maximum in T should be (as a rough rule) sharper
the steeper jo,(V) at V'. This correlation can be noticed in
the squid (2) and modified frog node (13, 14) curves.

The exact relation (i.e., with 0 a function of V) between 0
and jo at V' is found to be

0(V') = 1 - j(V')- f(V')(d0/dV)v,(df/dV)v,-1. [10]

The approximation used above follows on setting (do/dV)v, =
0.
A fair test of the approximation (as:it applies to the present

question) is to compare V' with V", where VW is defined as
the value of V at which 1 - jo is equal to 0(V'). From the
squid (2) and modified frog node (13, 14) empirical functions,
we find six values of V' - V' which range between +3.3
and +7.8 mV, a rather small difference. The six 0(V') values
vary from 0.31 to 0.76 (see arrows in Fig. 5 for four of these
values). The six jo (V') values vary from 0.63 to 0.16.

We are indebted to Dr. Kenneth Cole for first bringing the
problem in Section III to our attention, and to Dr. F. A. Dodge
for providing us with information from Hille's thesis (14). One of
us (Y. C.) was supported in part by a grant from the National
Science Foundation to the University of California (Santa Cruz).
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