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ABSTRACT Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other
evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements.
Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test
a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data
polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the
branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect
on recovery of the topology. When error is high, correction improves topological inference; however, when
error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of
both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has
not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate.
This study shows that correction with an approximate error rate is generally preferable to ignoring the issue.
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As originally developed, maximum likelihood (ML) phylogeny infer-
ence assumes that the data are known without error (Felsenstein 1981).
A straightforward extension to incorporate a known sequencing error
rate was proposed by Felsenstein (2004). As far as we know it has
never been implemented despite its obvious potential usefulness. We
speculate that the correction has been neglected because it requires
committing to an estimate of the error rate, and researchers fear that
an inaccurate correction would be worse than no correction at all.

We have implemented sequencing error correction in the PHYLIP
(Felsenstein 2005) programs Dnaml and Dnamlk, which infer phylog-
enies via DNA-based ML with a molecular clock (Dnamlk) or without
one (Dnaml). Using simulated data, we test both the usefulness of er-
ror correction in obtaining a correct phylogeny and its vulnerability to
misstatement of the sequencing error rate.

Topological accuracy of phylogenies is important for purposes such
as taxonomic classification (see, for example, the discussion in De
Queiroz and Gauthier 1990) and detection of cospeciation patterns

(for example, Machado et al. 2005). Accuracy of branch lengths is
critical in any use of phylogenies in the context of time, such as dating
of key events (reviewed in Rutschmann 2006), inference of mutation
rates (for example, Drummond et al. 2006), and parameter inference
via coalescent theory (for example, Kuhner 2009). Thus, sequencing
error correction is broadly relevant to the use of ML phylogenetics.
We also discuss its potential use in Bayesian phylogenetics.

MATERIALS AND METHODS

Sequencing error correction
In the standard DNA- or RNA-based ML algorithm, values stored at the
tips of the tree indicate the probability of the observed data given the
underlying true base. For example, in a no-error case when base A is
observed, the four values stored will be (1,0,0,0), corresponding to
a probability of 1 for (A observed|true base A) and a probability of 0 for
(A observed|true base C, G, or T/U). These values form the basis for the
peeling algorithm (Felsenstein 1981), which calculates probabilities work-
ing from the tips back to the root. Note that these numbers represent the
probability of the observation, not the probability of the underlying base,
and need not sum to 1; for example, a completely uninformative obser-
vation (missing data) corresponds to values of (1,1,1,1).

Following Felsenstein (2004), we use a simple model of sequencing
error in which a base is misread as a random different base with
probability e and this probability is the same across sequences and
sites. Under this model, the probability of observing A given that the
underlying base is A becomes 1 2 e, and the probability of observing
each of C, G, or T, given that the underlying base is A, becomes e/3. More
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complex models, including sequence-specific or site-specific error rates,
can readily be derived by the same approach. (This discussion assumes
DNA, but RNA is handled identically, substituting U for T.)

Nucleotide ML algorithms often allow for the International Union
of Pure and Applied Chemistry nucleotide ambiguity codes (Cornish-
Bowden 1985). To handle these, we must decide what an observation
of, say, M (meaning that the base is ambiguous between A and C)
implies. We assume that sequencing error generates incorrect calls of
specific bases, which are then converted to ambiguity codes. (This
relieves us from needing a separate model for the probability of ob-
serving M if the underlying base is A.) Under this assumption, if the
true base is A, an observation of M could result either from a correct
call of A (probability 12 e) or an erroneous call of C (probability e/3)
and therefore has probability 12 2e/3, and similarly if the true base is
C. If the true base is G, the chance of observing M is the chance of an

erroneous call of G as either A or C, or 2e/3, and similarly for a true
base T. Similar reasoning gives tip values for the other IUPAC codes.
A representative sample of these probabilities is given in Table 1.

An analogous approach could be used for amino acid ML algorithms.
Application to codon-based algorithms would be more complex but is
possible in principle.

Simulation design
We used the program rantree.c (J. Felsenstein, unpublished data) to
create random clocklike branching-process trees of 20 tips for a given
value of the tree-size scaling parameter t. The t parameter establishes
the scaling of the tree: for example, the interval between the rootward
and next-rootward splits has an expected mean length of t/2. We then
used the program rectreedna.c (J. Felsenstein andM. Kuhner, unpublished

n Table 1 Example probabilities for resolved nucleotides and
IUPAC ambiguity codes under an error model

Code Meaning Probabilities (A, C, G, T)

A A 1 2 e, e/3, e/3, e/3
M A or C 1 2 2e/3, 1 2 2e/3, 2e/3, 2e/3
V A or C or G 1 2 e/3, 1 2 e/3, 1 2 e/3, e
N Any base 1, 1, 1, 1

IUPAC, International Union of Pure and Applied Chemistry.

n Table 2 Mean SNPs per kilobase in data sets for each condition

Error
Scaling Parameter t

1024 1023 1022

0.0 4.8 47.2 376.4
1024 6.75 49.1 ND
1023 24.4 65.9 388.8
1022 185.8 220.7 489.8
1021 ND 883.9 923.5

SNPs, single-nucleotide polymorphism; ND, not done.

Figure 1 Inference accuracy with true error 0. (A, C) Dnaml and (B, D) Dnamlk. (A, B) RF (topology only) and (C, D) RFL (topology and branch length).
RF, topology-only metric of Robinson and Foulds; RFL, branch-length metric of Robinson and Foulds.
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data) to simulate 20,000 bp of DNA data per taxon on these trees using
the Kimura 2-parameter model with transition/transversion rate 2.0. We
inferred trees from these DNA data with versions of Dnaml and Dnamlk
from PHYLIP 3.69 (Felsenstein 2005), which was augmented with the
error correction described previously. For each value of t, 100 trees were
simulated, and a no-error data set was made for each tree; with-error data
sets were derived by independent addition of varying degrees of error to
these 100 data sets.

We considered a range of true values of e and t, as shown in Table
2, which also gives mean single-nucleotide polymorphisms (SNPs) per
kilobase. The proportion of SNPs due to error rather than mutation
can be roughly inferred by comparing the zero-error case to the others.
We then inferred trees using no error correction and a range of error
corrections bracketing the true value, or in cases where the true error
was zero, from 0 to 1022. We did not simulate the most unbalanced
cases: for these sequence lengths, when e = t � 1000 inference is expected
to be nearly impossible, and when e = t/1000 error will have almost no
effect.

To compare the inferred trees to the true trees, we used the topology-
only metric of Robinson and Foulds (“RF,” Robinson and Foulds
1981) to assess topological correctness, and the branch-length metric
of Robinson and Foulds (“RFL,” Robinson and Foulds 1979) to assess
correct recovery of branch lengths. Our simulation conditions were
chosen to represent between-species phylogenies (hence the use of
branching-process rather than coalescent trees) and to explore both

fairly easy and more difficult phylogeny reconstructions. We used
both RF and RFL because of the finding (M. K. Kuhner and J. Yamato
2014) that branch-length tree comparison metrics are more informa-
tive for closely related trees (corresponding in this case to highly
successful inferences) and topology-only metrics are more informative
for discordant trees (relatively poor inferences).

RESULTS
We show our main results as a series of figures relating actual and
declared error to phylogenetic inference accuracy. In the upper panels,
RF measures accuracy of the inferred topology only; an increase of
2 units indicates an average of 1 additional error per inferred tree. In
the lower panels, RFL measures inference of topology and branch
length; its values should be considered relative to the tree scaling factor
t. (We did not rescale proportionate to t as in some plots this obscures
readability.) Throughout, we observe that trees with t = 1024 (red
lines) had poor topological accuracy due to a scarcity of SNPs, whereas
trees with greater values of t were well inferred topologically (and had
relatively more accurate branch lengths) unless error intervened.

For comparison purposes, Sanger sequencing can achieve error rates
down to 1024 (Ewing and Green 1998), while estimated error rates for
next-generation sequencing methods vary between 1023 and 4 · 1022

(Glenn 2014). Error rates can be further reduced from these levels by
taking a consensus of multiple reads. Even in sequences with high read
depth, errors can be introduced in assembly: the frequency of such

Figure 2 Inference accuracy with true error 1024. (A, C) Dnaml and (B, D) Dnamlk. (A, B) show RF (topology only) and (C, D) show RFL (topology
and branch length). Dashed lines indicate performance with actual error 0 and declared error 0 for comparison. RF, topology-only metric of
Robinson and Foulds; RFL, branch-length metric of Robinson and Foulds.
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errors depends on genome, algorithm, and the error rate of the un-
derlying sequencing method (Haiminen et al. 2011).

Figure 1 shows results when an error correction is erroneously
imposed on data generated without error. Dnaml’s topology inference
is robust across the range of declared error tested here, whereas
Dnamlk sees some worsening of topological inference with high de-
clared error values. Both algorithms see worsening of branch-length
inference with increased declared error; this was least pronounced
with the highly informative t = 1022 trees.

Figure 2 shows results with a true error of 1024 miscalls per base.
Topological accuracy was unaffected by error correction within the
bounds tested here. Branch length inference was improved by error
correction, particularly for the lower value of t. The apparent optimal
value of the correction was somewhat higher than the actual error
rate, and there was only modest worsening with overcorrection up
to 2x the actual error rate. Both algorithms recovered branch lengths
very close to the no-error case (dashed lines) using their optimal
correction values. Dnamlk recovered branch lengths more success-
fully than Dnaml, as expected for data which match Dnamlk’s clock
assumption.

Figure 3 shows results with a true error of 1023 miscalls per base.
Again, topological accuracy was unaffected, but branch length infer-
ence improved markedly with correction, especially for t = 1024.
Although branch lengths worsened with overcorrection in most cases,
this was generally less severe than noncorrection.

At a still higher error rate of 1022 miscalls per base, Figure 4 shows
topological inference beginning to react negatively to overcorrection,
especially in Dnamlk and with lower values of t. At this error rate, the
effect of the correction on branch length inference is dramatic, with
undercorrection worse than overcorrection in all cases. A novel pat-
tern appears for t = 1024 (red line) in which branch length inference
apparently continues to improve beyond the point where declared error
equals true error.

Finally, at the enormous error rate of 1021 miscalls per base, Figure
5 shows this tendency much more strongly. Topological inference
worsens with both undercorrection and, especially, overcorrection.
Branch length inference is very poor with undercorrection, decreases
to a level close to the no-error case with correction, and then increases
only slightly with overcorrection; but this apparently correct branch
length inference is associated with increasingly poor topology inference.

We hypothesized that this pattern of apparently good branch
length inference combined with increasingly poor topology inference
represents inferred trees with extremely short branches and semi-
randomized topologies due to interpretation of essentially all of the
data as sequencing error. To test this, we plotted the mean length of
the Dnaml inferred trees divided by the mean length of the trees on
which the data were generated. These plots are shown in Figure 6,
with the tree length ratio plotted on a natural-log scale. Figure 6 makes
it clear that branch lengths are fairly robust to error correction except
when the true error is greater than t. For extreme error cases, however,

Figure 3 Inference accuracy with true error 1023. (A, C) Dnaml and (B, D) Dnamlk. (A, B) RF (topology only) and (C, D) RFL (topology and branch
length). Dashed lines indicate performance with actual error 0 and declared error 0 for comparison. RF, topology-only metric of Robinson and
Foulds; RFL, branch-length metric of Robinson and Foulds.
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mean tree length starts out much too high in the inferred trees, be-
comes correct around the point where declared error is equal to true
error, and then becomes much too low with further correction. This
confirms our understanding of the anomalous results in Figures 4 and
5: branch lengths appear good only because they are extremely short,
and topology cannot be inferred because the ordering of these short
branches is randomized.

DISCUSSION

Error correction generally improves inference
In almost all of the cases examined, declaration of the true error rate
produced the most accurate branch lengths; in a few cases with very
low error, slight overcorrection was actually superior. Topology in-
ference was less sensitive to error, but in cases in which it varied with
error rate, declaration of the true error rate again produced the best
results.

Some improvement was seen even when the error rate was quite
low (see Figure 2), showing that the correction is not deadweight even
for highly accurate sequences. However, the greater the error rate the
greater the need for the correction. Somewhat to our surprise, even
with an error rate of 0.01 errors per base, recovery of branch lengths
with a correct declared error was only a little worse than the associated
no-error case.

Aggressive overcorrection can lead to pathologies
A declared error of 0.2 errors/base, applied to data with an actual error
of 0.1 errors/base and a low tree scaling (so that nonerror SNPs were
rare), caused essentially all of the variable sites to be interpreted as
error, resulting in extremely short branch lengths and randomized
topologies. In general, overcorrection appeared problematic when
e exceeded t, but we did not test intermediate values of e so this cannot
be treated as an exact rule.

Type of inference matters
When error was low, the clock-assuming program Dnamlk pro-
duced more accurate branch lengths than Dnaml, presumably
because it has fewer degrees of freedom in branch length inference.
However, as error increased Dnamlk showed increasing difficulties.
The error correction implementation is identical in both programs,
but in Figure 5 Dnamlk performed substantially worse than Dnaml.
This is particularly striking in that these data were simulated with
a molecular clock. The clock constraint means that sufficient dis-
tortion of branch lengths can lead to an incorrect topology. For
phylogenetic inference in the context of very dirty data, non-
clocklike methods are more robust and should be preferred unless
the clock assumption is essential (for example, in phylogenetic
dating).

Figure 4 Inference accuracy with true error 1022. (A, C) Dnaml and (B, D) Dnamlk. (A, B) RF (topology only) and (C, D) RFL (topology and branch
length). Dashed lines indicate performance with actual error 0 and declared error 0 for comparison. RF, topology-only metric of Robinson and
Foulds; RFL, branch-length metric of Robinson and Foulds.
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The results presented here involve ML inference. Bayesian inference
with a reasonable prior on e might be able to tolerate higher declared
error rates than ML for two reasons: the prior could help to direct
attention away from zero-length trees, and even if near-zero trees were
produced they would be accompanied by longer trees and the credi-
bility intervals would therefore reflect topological signal. Presenting the
single ML tree, in contrast, foregrounds the “all SNPs are errors” solu-
tion even though more resolved trees would have only slightly lower
likelihood. This error correction should be tested in Bayesian inference
programs with e as a parameter. It would also be interesting to see
whether the relaxed clock approach of Drummond et al. (2006) could
be combined with sequencing error correction to allow successful in-
ference of clocklike trees in the presence of extreme sequencing error.

Sequencing error may not be constant
We have assumed that all sequences in a data set have the same error
rate. This will not always be true in practice due to variation in se-
quencing methods, read depth, sample condition, and other factors. If
the error rates of various sequences are known, it is trivial to set a
separate e for each one: we plan to add this capability to upcoming
versions of our software. When the rates are unknown, any constant
value of e will be wrong for some sequences. Our results suggest that
tree distortion is likely if the unknown values vary by more than a factor

of two. Novel analytic tools will be needed to correct the inference in
such cases. In the meantime, it is likely that even use of an average
correction which is wrong for some sequences will be better than use of
no correction, which is wrong for all sequences.

We have also assumed that errors occur independently across the
length of the sequence. This is not necessarily true: for example, assembly-
based errors may tend to occur in clusters where the wrong fragment
has been chosen. For conventional phylogenetic applications like the
ones studied here, the main effect of this clustering is to introduce
additional stochastic variability into the error rate per sequence, and
the comments above apply. Clustered errors are a greater concern for
models in which site locations are significant: codon likelihood models,
models of secondary structure, and ancestral recombination graphs.
Further work will be needed to appropriately handle clustered sequencing
error in such models.

We find that the sequencing error correction for ML analysis pro-
posed by Felsenstein (2004) improves recovery of branch lengths across
a wide range of parameter values. In general, overcorrection does less
harm than undercorrection. For any but the most extreme sequencing
error rates, there is little effect of error correction on topological in-
ference. When the error rate is extremely high, however, values of the
declared error different from the true error are poorly tolerated in both
branch length inference and topology inference, with undercorrection

Figure 5 Inference accuracy with true error 1021. (A, C) Dnaml and (B, D) Dnamlk. (A, B) RF (topology only) and (C, D) RFL (topology and branch
length). Dashed lines indicate performance with actual error 0 and declared error 0 for comparison. RF, topology-only metric of Robinson and
Foulds; RFL, branch-length metric of Robinson and Foulds.
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particularly detrimental to branch length inference and overcorrection
to topological inference.

We strongly recommend incorporation of sequencing error cor-
rection into ML phylogeny algorithms. In human SNP typing, it has been
common to rely on allele frequency cutoffs as a correction for sequencing
error (since independent errors generally manifest as singleton SNPs),
but McGill et al. (2013) have shown that the sequencing error correction

used here is more statistically powerful than omission of rare SNPs,
which also removes considerable signal from the data. While this
study did not test the usefulness of specifying sequence-specific error
rates, it is very likely that a best-practices implementation should
include this capability.

It will also be important for the creators of sequencing and
assembly pipelines to develop and publish accurate estimates of their

Figure 6 Ratio of inferred tree length to true tree length as a function of declared error. Dashed line indicates equality of inferred and true length.
(A) True error 0.0. (B) True error 1024. (C) True error 1023. (D) True error 1022. (E) True error 1021.
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error rates, in order to facilitate correct analysis of the resulting data.
Although inference of the sequencing error rate from phylogenetic
data might be possible, direct measurement will be more powerful and
should be prioritized. When a study contains sequences of very dif-
ferent quality (ancient vs. modern DNA, model vs. nonmodel organ-
isms, shallow vs. deep read depth, different sequencing platform) it will
be important to develop and use sequence-specific error rates.

SOFTWARE AVAILABILITY
The sequencing error correction described here has been implemented
in the LAMARC program since version 2.1.5. It will also be im-
plemented in the next release of PHYLIP. The unpublished programs
rantree.c and rectreedna.c used to simulate and analyze data are ar-
chived in Supplementary Materials File S1, along with example pa-
rameter files.
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