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Abstract

Calcific aortic valve disease (CAVD) affects 25% of people over 65, and the late-stage stenotic 

state can only be treated with total valve replacement, requiring 85,000 surgeries annually in the 

US alone [1]. As CAVD is an age-related disease, many of the affected patients are unable to 

undergo the open-chest surgery that is its only current cure. This challenge motivates the 

elucidation of the mechanisms involved in calcification, with the eventual goal of alternative 

preventative and therapeutic strategies. There is no sufficient animal model of CAVD, so we turn 

to potential in vitro models. In general, in vitro models have the advantages of shortened 

experiment time and better control over multiple variables compared to in vivo models. As with all 

models, the hypothesis being tested dictates the most important characteristics of the in vivo 

physiology to recapitulate. Here, we collate the relevant pieces of designing and evaluating aortic 

valve calcification so that investigators can more effectively draw significant conclusions from 

their results.
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1. Introduction

Aortic stenosis, which has an estimated prevalence of 2% in patients between 70 and 80 

years of age, is most often caused by calcific aortic stenosis, the late-stage presentation of 

calcific aortic valve disease (CAVD; note all acronyms and abbreviations used in this article 

can be found in Table 1) [2]. Prevalence of any aortic valve calcification was investigated in 

a randomized trial, and, for those aged 75–76, the prevalence was 48%; this further 

increased in the 80–81 and 85–86 year-old cohorts [3]. The incidence of this age-related 

disease is expected to grow dramatically as the US population over 65 nearly doubles over 

the next 25 years [4]. Calcific aortic valve stenosis is the main indication for valve 
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replacement, which necessitates open chest surgery and is currently the only cure [5]. If the 

biological mechanism of valvular calcification was better understood, we could create more 

targeted, non-invasive therapeutics; a comprehensive review of CAVD therapeutic targets 

can be found in Hutcheson et al. [6]. To elucidate the important mechanisms that regulate 

the progression of CAVD, we first need to design models that recapitulate the in vivo human 

process.

In vivo models offer the complexity found in the human and can prevent overlooking an 

important variable. However, this complexity comes at the expense of confounding factors, 

especially because the experiments are performed in animals significantly different from 

humans. For example, leporine models must be fed very high cholesterol diets to induce the 

advanced disease observed in humans [7] or vitamin D2 to generate calcification [8]. Murine 

models require dietary and or genetic modification as well [9–11] to induce calcification; 

Ldlr−/− mice must be fed a high-cholesterol diet and while Apoe−/− mice develop 

hypercholesterolemia over time [12] it is unclear whether it progresses through the same 

mechanism as the human disease [13]. A full review of animal models of CAVD can be 

found in Sider et al. [13]. Since in vitro models allow better isolation and manipulation of 

variables and the in vivo models are far from perfect, we focus on in vitro models and their 

usefulness.

Once believed to be a passive process, aortic valve calcification is now thought to be an 

active process mediated largely by aortic valve interstitial cells (AVICs) [14]. AVICs are a 

heterogeneous population of fibroblast-like cells present in all three layers of the aortic valve 

and important in the structural maintenance of the valve, especially in maintenance of the 

extracellular matrix (ECM) [15, 16]. Progression of CAVD is marked by the formation of 

calcific nodules (CNs), which are cellular aggregates characterized in humans by a mixture 

of calcium phosphate phases [17]. Two well-established hypothetical mechanisms of CN 

formation exist: 1) transforming growth factor β1 (TGF-β1) mediates activation of 

myofibroblasts, causing calcification via apoptotic mechanisms [18], and 2) a population of 

myofibroblasts spontaneously transdifferentiate into osteoblast-like cells and these cells 

regulate mineralization (Figure 1) [19, 20]. In a study of human valves, 83% of the group 

demonstrated evidence of dystrophic calcification and 13% of those valves had mature 

lamellar bone and evidence of active bone remodeling [21]. It is unclear whether these 

processes occur simultaneously or sequentially [22]. Recent progress and the need for a 

robust in vitro system with which we can probe and clarify the mechanism of aortic valve 

calcification motivate this review.

2. Defining Aortic Valve Interstitial Cells

Human aortic valves consist of three layers: 1) the fibrosa faces the aorta and is composed 

mostly of type I fibrillar collagen arranged circumferentially in parallel bundles in a matrix 

of elastin, 2) the spongiosa is the middle layer composed of glycosaminoglycans that act as 

shock absorbers for the valve, and 3) the ventricularis faces the left ventricle and is primarily 

composed of elastin fibers oriented radially [23]. AVICs are present throughout the leaflets 

and are a heterogeneous population of myofibroblasts, fibroblasts, and smooth muscle like 

cells. Aortic valve endothelial cells (AVECs) sheath the surface of the leaflets and are 
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oriented circumferentially and form single cell monolayers, expressing Von Willebrand 

factor and nitric oxide (NO) [24–26]. Circulating cells have recently been implicated in the 

progression of calcification as well; elevated levels of endothelial progenitor cells with an 

osteoblastic phenotype and osteogenic precursor cells have been associated with severe and 

early heterotopic ossification, respectively [27, 28]. Early stages of CAVD develop lesions 

similar to atherosclerotic lesions, which suggests a role for inflammatory cells and 

biochemical signals [29, 30]. Elevated levels of macrophages and T-lymphocytes have been 

found in human calcified aortic valves [21, 31–33]. These cell populations all contribute to 

CAVD progression, but it is likely that it is through secretion of factors that influence AVIC 

behavior.

As the AVIC population is heterogeneous, we should consider the characteristics of various 

subpopulations. Recently, AVICs were categorized into five groups based on their 

phenotypic behavior: embryonic progenitor endothelial/mesenchymal cells, quiescent VICs 

(qVICs), activated VICs (aVICs), progenitor VICs (pVICs), and osteoblastic VICs (obVICs) 

[34]. We will refer to these subtypes for ease of discussion. Embryonic progenitors are 

usually present in the cardiac cushions and give rise to qVICs via endothelial to 

mesenchymal transformation (EMT). While these are very important in valve development, 

there is also evidence that these progenitors participate in adult valve repair. qVICs are 

responsible for maintaining physiological valve structure and function. The exact activity of 

these cells is undefined, but they are believed to regulate low-level matrix degradation and 

synthesis and inhibition of angiogenesis. pVICs are considered valve stem cells and they are 

likely responsible for VIC proliferation in response to tissue injury. pVICs may originate 

from AVECs that undergo an EMT-like process [34–36]. These EMT-related events are 

likely directly mediated by the mechanical forces present in the valve. In a recent study 

using chick explanted atrioventricular canals, EMT was found to occur preferentially in 

higher regions of strain [37]. This developmental process is likely recapitulated in an 

unregulated fashion during CAVD progression. This suggests that as the valve stiffens, more 

AVECs are transformed into pVICs and qVICs, allowing subsequent activation.

aVICs are qVICs that have become myofibroblasts characterized by alpha smooth muscle 

actin (αSMA) and increased contraction [34]. This activation occurs under pathological 

injury cues or abnormal mechanical stress via cytokines and growth factors produced by 

activated AVECs and macrophages. aVICs are associated with increased ECM secretion and 

degradation, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase 

(TIMP) expression, proliferation and migration, and secretion of cytokines including TGF-

β1. If apoptotic pathways become abnormal, aVICs can lead to calcification; this is referred 

to as the dystrophic pathway. obVICs are VICs that have undergone osteoblastic 

differentiation and promote calcification in vitro. This differentiation is induced by the 

addition of organic phosphate to culture media and subsequent calcification depends on the 

upregulation of alkaline phosphatase (ALP) activity. Adding bone morphogenic protein 2 

(BMP2) and 25-hydroxycholesterol increased the rate of CN formation, as did TGF-β1, 

which induced calcification via an apoptotic mechanism [38]. BMP2 has been shown to be 

higher in stenotic human aortic valves [39] and upregulates osteogenic pathways involving 

Msx2 and Wnt signaling [40] and Runt-related transcription factor 2/core-binding factor 
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subunit alpha-1 (Runx2/Cbfα-1) [41]. It is likely that AVECs are regulating aVIC or obVIC 

function and that, given the presence in vivo of both BMP2 and TGF-β1, a combination of 

osteogenic and dystrophic pathways is occurring. Therefore, we are most concerned with the 

transitions to and behavior of aVICs and obVICs.

AVIC-AVEC co-culture systems have provided some insight into the complex regulation of 

AVICs. When porcine AVICs were cultured with the same number of AVECs in a 3D 

model, they demonstrated decreased αSMA, cell number, and increased total protein and 

sulfated glycosaminogly can content compared to AVICs cultured alone in the 3D collagen 

gel [42]. Given osteogenic differentiation media, AVICs in 3D collagen hydrogels showed 

much higher levels of calcification via Alizarin Red stain, but the addition of AVECs 

brought calcification, osteocalcin, Runx2, and αSMA back down to at least control levels 

[43]. A more recent co-culture model utilizes magnetic nanoparticles to layer AVICs and 

AVECs and allow them to freely float in media [44]. While it would necessitate a system 

capable of flow, including relevant circulating cells, precursor and/or inflammatory, in a co-

culture system would help elucidate their role in calcification.

3. The Appropriate Model Organism

The ideal in vitro model would use primary human AVICs, but availability is the chief 

limiter of using human-derived samples. The next best cell would retain all characteristics of 

the human cells important to CAVD. Since it is believed that the important mediators of 

calcification are AVICs, we can narrow our search to finding a species with AVICs 

comparable to human AVICs.

Non-human primates are a logical choice because of their genetic similarity. However, 

maintenance of these organisms requires more space, time, money, and permissions than 

other organisms. Likely for these reasons, non-human primate AVICs have not been 

isolated, though Macaca nemestrina aortic smooth muscle cells have been isolated to 

investigate proteoglycan expression [45]. Porcine hearts are both anatomically and 

physiologically similar to human hearts. The growth of the heart in swine from birth to four 

months is analogous to that in humans from birth to mid-teens [46] and remodeling in 

atherosclerosis of micropigs closely resembles human pathology [47]. Interestingly, their 

valves contain the same αSMA-positive population of cells in the ventricularis [15]. Swine 

can also develop spontaneous valvular atherosclerotic lesions, a precursor to calcification 

[20, 48]. The first isolation of porcine AVICs noted that they appear more homogenous than 

murine or leporine VICs and had a high recovery rate after being frozen, leading to the 

extensive use of porcine AVICs in in vitro studies [49]. Though these cells are widely used 

and multiple research groups have reported calcification and mineralization, Cloyd et al. 

reported that porcine AVICs cultured in osteogenic media with TGF-β1 (which should 

activate both dystrophic and osteogenic pathways) did not form mineral deposits. They used 

Raman spectroscopy to show that even Alizarin Red-positive nodules did not exhibit 

mineralization [17]. While pig anatomy is highly similar to human anatomy, porcine AVICs 

in vitro is still a limited model. One important limitation specific to in vitro cell culture 

systems is the age of the cells. In 20% of long-term cell culture, AVICs become contact-

inhibited monolayers and behave unstably [50]. Also, metabolic activity of porcine AVICs 
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was found to be passage number dependent [51]. Late-stage cultured AVICs demonstrated 

higher numbers of myofibroblasts [52–54]. Thus, porcine AVICs are generally used no later 

than passage 7. Though porcine AVICs have limitations, they are the best available model.

Ovine AVICs have been shown to form CNs when treated with TGF-β1 within 72 hours, 

and to calcify, assayed via Alizarin Red staining, within two weeks [18, 55]. Canine AVICs 

were also considered early in the development of CAVD research [38]. Specifically, beagles 

demonstrate age-related changes to aortic valves, including calcification; changes were 

especially apparent in the fibroblasts, suggesting a similar mechanism to human calcification 

[56]. In vitro, canine AVICs spontaneously formed CNs containing hydroxyapatite over two 

to three weeks, compared to human AVICs developing nodules in about six weeks under the 

same conditions [38]. Also, while an imperfect model, many similarities exist between 

canine and human myxomatous mitral valve disease, reinforcing the likeness between 

human and canine valves [57]. While canine AVICs were deemed very similar to humans’, 

they are not often used, likely as a function of convenience – dogs have longer life spans 

than small animal models and are not maintained at a large scale for another purpose, as pigs 

are for food. Rabbits are used for in vivo studies, but not as often in vitro, likely because 

they require high cholesterol diets to develop calcification [5, 58–60].

Mice are another popular model organism, perhaps because of their low cost, easy 

management, short life spans, and availability of genetic mutants. Murine cell lines can be 

easily immortalized, allowing for near indefinite expansion and use without regard for 

passage limitations. AVICs could be harvested from a variety of genetically-altered models 

such as ApoE−/−, Notch1+/−, and LDLr−/− [10, 20, 61–65]. Though some of these models 

are the only ones to exhibit the hemodynamic effects of aortic valve stenosis, murine 

valvular structure is significantly different from human [20, 66]. Specifically, human valves 

have trilaminar structure, but murine valves only have a fibrosa and spongiosa [66]. While 

non-ideal, murine AVICs would provide a convenient model that facilitates genetic 

manipulation allowing for further exploration of CAVD mechanisms. A summary of the 

advantages and limitations of the AVICs derived from each model organism can be found in 

Table 2.

4. The Environment

4.1 Mechanical Characteristics

As a human ages, aortic valves remodel: AVIC density and proliferation decreases, elastin 

content increases, and collagen fibers become more aligned [67]. However, in CAVD, 

elastin content is fragmented and decreased, while collagen content increases and is 

disorganized, and the valve leaflet thickens. Remodeling of the ECM via MMP activity, and 

subsequent stiffening that is characteristic of CAVD has been shown to regulate cellular 

processes [31]. For example, AVICs cultured in the presence of TGF-β1 on type I fibrillar 

collagen gels or fibrin coated tissue culture plastic or hydrogels of ~25kPa formed 

osteogenic CNs, whereas nodules on ~120kPa formed through the dystrophic pathway via 

myofibroblastic differentiation [68, 69]. This suggests that after the initiation of disease, a 

positive feedback exacerbates the progression, at least in the dystrophic case.

Bowler and Merryman Page 5

Cardiovasc Pathol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Substrate composition has also been shown to affect calcification. AVICs cultured on fibrin 

or tissue culture polystyrene exhibited significantly more nodules than on collagen, 

fibronectin, or laminin [70]. In addition, the presentation of RGD to AVICs resulted in far 

more calcification than the presentation of YIGSR or DGEA. RGD, YIGSR, and DGEA are 

ECM-derived peptide sequences derived from fibronectin/fibrin/laminin/collagen, laminin, 

and collagen, respectively. Their receptors are αvβ3/α5β1/α1β1, 67-kDa laminin receptor, and 

α2β1, respectively. Further investigation showed that disruption of the α5β1 integrin or 67 

kDa laminin receptor mediated binding between AVICs and ECM results in increased 

calcification [70]. Fibronectin coated tissue culture polystyrene suppressed calcification 

markers, while fibrin coated tissue culture plastic enhanced calcification as demonstrated by 

CN number, ALP activity, αSMA expression, Cbfα-1 expression, and calcium content via 

the o-cresolphthale in complex one method. However, both fibronectin and fibrin coating 

soft hydrogels suppressed calcification [71]. This suggests that substrate stiffness may be 

more important than specific ECM component interactions. However, the method in which 

stiffness is modulated (i.e. by increasing crosslinking) is often coupled to the presentation of 

ECM components, especially integrins.

Also important to consider are the effects of trying to recapitulate a 3-dimensional (3D) in 

vivo environment with a 2-dimensional (2D) environment in vitro. When porcine AVICs 

were encapsulated in peptide-modified polyethylene glycol hydrogels, results were 

consistent with 2D experiments [70]. However, in 3D spheroids, fibroblasts become much 

less sensitive to TGF-β1 than when arranged as a monolayer [72]. This suggests that the 

threshold for pathologic behavior induced by relevant biochemical cues may vary depending 

on the environment. Similarly, fewer isolated porcine AVICs express αSMA in 3D collagen 

type I gels when compared with those in 2D tissue culture flasks [73]. It appears that in a 3D 

environment, fewer aVICs are present and qVICs are less sensitive to TGF-β1 and thus more 

difficult to activate. This suggests that the concentration of TGF-β1 used to induce 

pathological behavior should vary dependent on the dimensionality of the system to best 

match in vivo levels. Similarly, porcine AVICs in a 3D collagen hydrogel were not 

susceptible to osteogenic media mediated calcification until mechanical stress was added 

[43]. It appears that a 3D environment may require more dramatic treatment to induce the 

same behaviors as a 2D environment.

4.2 Dynamics

Many traditional CAVD in vitro studies have been investigated in a static environment, but 

the valves exist in a dynamic environment; this likely affects calcification mechanisms. 

Interestingly, calcific lesions occur preferentially on the aortic side of the valve in the 

fibrosa, which is the stiffer side [74–76]. As the aorta stiffens with age, axial stiffening and 

circumferential compliance increase [77]; this results in higher mechanical loads placed on 

the circumferentially-aligned collagen fibers, along which AVICs reside [78]. Also, an 

increase in transvalvular flow greater than 0.3m/s per year is a clinical predictive marker for 

patients who might benefit from surgery, suggesting that increased flow contributes to 

pathological progression [79]. NO release by AVECs is regulated by flow; under laminar 

shear stress, NO is released and helps maintain valvular homeostasis via signaling to AVICs. 

However, low and oscillating shear stress, as would occur on the aortic side of a diseased 
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valve, inhibits this release [80]. Also, while the AVICs themselves are not be directly 

exposed to fluid flow, it has been shown that flow alone can differentiate fibroblasts (the 

majority cell type of the AVIC population) into myofibroblasts [81]. This positive feedback 

of a stiffening valve that can no longer properly regulate its AVICs to maintain homeostasis 

is evidence of the importance of the dynamic environment on disease progression.

Several groups have begun probing CAVD progression in dynamic in vitro models. Fisher et 

al. showed that CN formation is strain dependent and that strain drastically reduced the time 

to nodule formation – 48 hours versus three days to three weeks [82]. At the tissue level, in a 

bioreactor under cyclic strain, porcine aortic valve cusps showed greater evidence of 

calcification under 15% (pathologic) strain than 10% strain (physiologic) [83]. In a related 

study of vascular calcification, 7% cyclic, equibiaxial strain yielded greater mineralization 

than unstrained calcifying vascular cells [84]. Strain alone was able to induce higher levels 

of myofibroblastic phenotype as measured by αSMA and collagen synthesis than untreated, 

unstrained cells, suggesting that strain exacerbates calcification via the dystrophic pathway 

[85]. In 3D culture of porcine AVICs, osteogenic media was unable to induce calcification, 

but the addition of mechanical stress via anchoring the gel led to significant calcification, as 

well as increases in αSMA, Runx2, and osteocalcin mRNA levels [43]. These studies 

demonstrate the critical role of the stress and strain placed on AVICs.

4.3 Biochemical Cues

Many cytokines are known to modulate AVIC behavior, including inducing disease 

progression in vitro. TGF-β1 is upregulated in diseased human valves, and when applied in 

vitro, exacerbates nodule formation [18]. TGF-β1 has been shown to activate myofibroblasts 

in valves leading to increased αSMA expression via Smads and p38 [86, 87]. As these 

myofibroblasts become more contractile, they likely activate latent TGF-β1 from the ECM 

[88]. This positive feedback loop provides a strong potential mechanism for dystrophic 

disease progression. Some experiments have shown that fibroblast growth factor 2 (FGF-2) 

treatment can block nodule formation and matrix contraction of AVICs, effectively 

counteracting TGF-β1 treatment [54]. In addition, antagonism of 5HT2B, a TGF-β1-

dependent cardiopulmonary serotonin receptor, has been shown to prevent myofibroblast 

differentiation and CN formation in porcine AVICs [87]. Another recent strategy is to target 

cadherin-11, a protein believed to mediate cell-cell tension in CAVD and that has higher 

expression in calcified human valves; siRNA knockdown of cadherin-11 in vitro prevented 

TGF-β1-mediated CN formation [89].

Early aortic valve morphogenesis is regulated by many signaling factors that are also 

important in bone formation. Transcriptional factor Sox9 activity in AVICs promotes a 

chondrocytic phenotype (obVIC), but prevents progression to osteogenic mineralization; 

Msx2 inhibits Sox9 function [90]. Sox9fl/+; Col2a1-cre mice developed calcific lesions in 

their heart valves, supporting the important role of Sox9 in vivo [91]. Msx2 has also been 

shown to promote calcification via the Wnt signaling pathway, involving Wnt3a, Wnt7a, 

and nuclear translocation of β-catenin [92]. C-type natriuretic peptide (CNP) promotes 

endochondral bone formation and has been found in ventricular side AVICs, supporting its 

role as a protective factor. It also has been shown to prevent the differentiation of porcine 
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AVICs to myofibroblasts or osteoblasts in vitro [93]. The combination of bone morphogenic 

protein 4 (BMP4), TGF-β1, and cyclic stretch can induce CN formation ex vivo in human 

leaflets and can be inhibited by noggin [83]. Wnt receptor low density lipoprotein receptor-

related protein 5 (LRP5) and β-catenin, factors in canonical Wnt signaling, show increased 

expression in diseased human aortic valves [94]. Reactive oxygen species (ROS) signaling 

has also been shown to upregulate Runx2 via AKT and Msx2 [95, 96], whereas Notch 

suppresses Runx2 signaling and sustains Sox9 level in AVICs, thus inhibiting mineralization 

[11, 97, 98]. ROS have also induced in vitro calcification in vascular smooth muscle cells 

via BMP2 activity and the osteogenic pathway [99]. Many experimental models involve 

treatment of AVICs with osteogenic media, usually supplemented with β-glycerophosphate, 

dexamethasone, and ascorbic acid. It is understood that these factors work in concert to 

promote osteogenesis over time; dexamethasone activates and regulates Runx2 expression 

via Wnt/β-catenin signaling, ascorbic acid is required for collagen1 formation and 

subsequent ECM-mediated upregulation of Runx2, and β-glycerophosphate is a source of 

phosphate required to produce hydroxylapatite mineral and inorganic phosphate regulates 

BMP2 via the ERK pathway [100]. One confounding effect of β-glycerophosphate is that it 

can induce dystrophic calcification detectable by Alizarin Red and von Kossa, which leads 

to false positive results for osteogenic calcification [100]; this may explain the Alizarin Red 

positive nodules lacking mineralization observed by Cloyd et al. [17]. Also, β-

glycerophosphate and high levels of inorganic phosphate have been shown to induce 

different calcification from in vivo mineralization [101], suggesting physiological levels of 

inorganic phosphate should be used to more accurately model in vivo processes.

Consideration of inflammatory pathways also provides insight since chronic inflammation 

often precedes calcification. Tumor necrosis factor-α (TNFα) has been shown to accelerate 

calcification, assayed via ALP activity, Alizarin Red, and von Kossa, in human AVICs via 

BMP2-Runx2 pathway [102]. Signals from the TNFα pathway also regulate Msx2-Wnt 

mediated calcification in LDLr−/− mice [103]. TNFα, interleukin 1-β (IL1-β), and IL6, have 

been shown to regulate the Notch signaling [104] and toll-like receptor 4 (TLR4) stimulation 

is enhanced by Notch1 in human AVICs via NF-κB [105]. Silencing TLR4 attenuates 

BMP2 expression, and stimulating TLR2 or TLR4 induces CN formation in human AVICs 

[106]. oxLDL increases Wnt3a, which drives osteogenic differentiation through LRP5 [107]. 

This links the early stage chronic inflammation to the osteogenic pathway of calcification. 

Receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL), a surface bound 

molecule of the TNF family, and peroxisome proliferator-activated receptor gamma (PParγ) 

have also led to increased calcification in vitro [108, 109].

It has been thought that statins may provide a protective effect against calcification, 

although this is controversial; in vitro experiments showed promise, but randomized human 

trials did not demonstrate the benefit of statin therapy [5]. NO donors have also been shown 

to reduce nodule formation, likely via soluble guanylyl cyclase activation [110]. Increasing 

the expression and activity of endothelial NO synthase (eNOS) in hypercholesterolaemic 

leporine aortic valves led to decreased calcification [111]. Porcine AVECs were able to 

inhibit AVIC calcification via NO secretion inhibiting the differentiation to obVICs. 

Additionally, blocking NO led to increased calcification even in 3D AVEC-AVIC co-culture 
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[43]. Ex vivo culture of porcine aortic valve cusps in osteogenic media demonstrated 

significantly more CN formation on the fibrosa side than the ventricularis, which was 

exacerbated with NO inhibition. In healthy human valves, eNOS levels were much higher on 

the ventricularis than the fibrosa, further supporting the important protective effect of NO 

[43].

5. Evaluation of Assays

5.1 Calcium Assays

Evaluation of valve calcification can be separated into two categories: direct, in which the 

level of calcium or mineralization is directly measured, and indirect, in which markers of the 

proposed dystrophic and/or osteogenic pathways toward calcification are measured. Direct 

evaluation has the advantage of determining whether the assay leads to a pathological 

outcome functionally, whereas the indirect measurements yield more mechanistic 

information (Table 3).

Direct evaluation techniques include von Kossa staining [19, 83, 89, 96, 98, 99, 102, 108, 

112, 113], Alizarin Red staining [17, 43, 55, 60, 70, 71, 82, 83, 87, 89, 93, 95, 96, 98, 102, 

103, 106, 110, 114–117], energy-dispersive X-ray spectroscopy (EDS) [19, 118], Raman 

spectroscopy [17, 119, 120], scanning electron microscopy (SEM) [17, 60, 118], 

transmission electron microscopy (TEM) [17, 118, 121], atomic absorption [117, 122], 

arsenazo III [60, 83, 112], and o-cresolphthalein complexone [71, 108, 117] measurements. 

While these are all used as measures of calcification, not all are perfectly specific and thus 

are often used in concert. The gold standard for calcium detection is atomic absorption 

spectroscopy. Atomic absorption spectroscopy is based on the principle that different 

elements absorb different wavelengths of light and it works by atomizing the sample, 

sending light usually from a hollow cathode lamp of a specific wavelength through the 

vaporized sample, and measuring the amount absorbed [123]. Samples with increased 

mineralization content exhibit higher absorbance levels compared to controls.

Probably the most common measure of calcification, Alizarin Red, or 1,2-

dihydroxyanthraquinone, stains hydroxyapatite mineralized matrix red-orange. Calcium, but 

also magnesium, manganese, barium, strontium, and iron, forms complexes with the dye in a 

chelation process, and results in a birefringent stain. Calcium is usually in much higher 

concentration than the other elements, allowing the inference that the areas stained have 

calcium present. Alizarin Red is often used to stain CNs to verify their mineralization and to 

help quantify the nodule assay, either by making the nodules easier to count or by extracting 

the dye for more rigorous quantification. Typical methods for quantifying the amount of dye 

involve staining of the cells or tissue, washing extensively, extracting via acetic acid or 

cetylpyridinium chloride, neutralization with ammonium hydroxide, and colorimetric 

detection at 405nm or 550nm. The acetic acid-ammonium hydroxide method is three times 

more sensitive than the cetylpyridinium method and results in better signal to noise ratio, 

especially for weakly stained samples [70, 124]. This method is also advantageous over 

Arsenazo III quantification because it has a higher and wider linear range of detection [124].
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Von Kossa is another common stain for mineralization, especially in tissue sections. The 

stain works by reducing the calcium ions with light and replacing them with silver deposits 

that appear dark grey or black in tissue [125]. This method is not specific for calcium 

phosphates [126], though it has been suggested that the yellow precipitates are specific 

[127]. Von Kossa can be further confused if performed on a C57BL/6 mouse, which has 

melanocytes that appear black in the aortic valve. Thus, von Kossa is performed frequently 

in combination with Alizarin Red staining.

Calcium content can be measured more directly by various methods, but it is important to 

note that these methods all require lysing of the sample, meaning that calcium from 

mineralized areas or calcific lesions is not differentiated from intracellular calcium. 

Arsenazo III is a metallochromogen that complexes with calcium at pH 6.75 without 

interference from any other cations commonly present in serum or plasma, and is measured 

at 650nm [128]. When compared with the o-cresolphthalein complexone method, accuracy 

and calibration stability increased [129]. The o-cresolphthalein complexone method involves 

a reaction of Ca2+ ions with o-cresolphthalein complexone in an alkaline solution (8-

Hydroxyquinoline at pH 10.6) and reading the sample absorbance at 660nm [130]. While 

these methods do not have a range of detection as large as Alizarin Red quantified via the 

acetic acid-ammonium hydroxide method, they are still useful for samples with low levels of 

calcium.

Other elemental methods include SEM, TEM, and Raman spectroscopy. SEM yields 

topographical and compositional information about the sample’s surface with a resolution on 

the order of nanometers. It can be performed on fixed, dehydrated, and gold-/platinum-/or 

carbon-sputter-coated samples or in wet conditions via environmental SEM (ESEM) [131]. 

TEM yields information about the sample’s chemical identity based on how it absorbs 

electrons and has a resolution on the order of picometers [132]. It can be performed on 

fixed, dehydrated, and stained samples. EDS analysis allows one to determine particular 

elements and their proportions in the sample. It functions on the principle that different 

elements will absorb different energy x-rays and the amount absorbed corresponds to the 

amount of element present [133]. EDS can be performed during SEM and ESEM; the 

advantage to using ESEM is that the samples do not have to be coated and high accelerating 

voltages can be used. EDS performed during ESEM is better because of the lack of 

interference from the coating and because the lack of sample preparation yields more 

authentic data. EDS coupled with ESEM yields quantitative data as well as qualitative [131, 

133]. Raman spectroscopy is unique in that it can be performed on live cells. This allows 

calcification to be measured over time. Raman has also been shown to be an effective 

diagnostic for human heart valve calcification. Given the appropriate training data, an 

algorithm based on spectral shifts could predict whether the tissue was calcified with 100% 

sensitivity and specificity [119, 120].

5.2 Indirect Assays

In addition to quantifying mineralization, there are assays commonly employed to assess the 

progression of calcification by investigating mechanistic markers in the context of CAVD. 

For example, characterizing the phenotypic changes of AVICs toward myofibroblasts is 
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commonly accomplished via immunofluorescence staining, western blotting, or ELISA for 

αSMA, collagen gel contraction assays, and wound assays. While ELISA is the most 

quantitative method for detecting changes in αSMA, immunofluorescence provides 

information about the protein’s localization and both immunofluorescence staining and 

western blots provide a high enough resolution to see changes in expression level. Collagen 

gel contraction assays indirectly quantify the myofibroblastic differentiation of AVICs based 

on the principle that higher levels of αSMA will result in higher contractility, measured by 

the change in size of the collagen gel after being seeded with cells. The wound assay 

involves disruption of a cell monolayer with a pipette tip and it measures the tension 

between cells via the wound area. The larger the wound, the more neighboring cells there 

are pulling on those that were disrupted [89].

Alternatively, the osteogenic process of calcification is often evaluated via ALP activity, 

RT-PCR, immunofluorescence staining, ELISA, and/or western blotting for Runx2 and 

osteocalcin. ALP activity is measured by how much p-nitrophenyl phosphate is 

dephosphorylated by ALP, which turns the solution yellow and can be quantified by 

absorbance at 405nm [134]. Runx2/CBFα-1 is a transcription factor associated with 

osteoblast differentiation and osteocalcin/BGLAP is a protein secreted only by osteoblasts. 

Runx2 is often used as an early stage marker of osteoblast activity, and osteocalcin and ALP 

are later stage indicators of osteoblast activity. MMPs have also been investigated via 

zymography, collagenase activity, immunofluorescence staining, and western blots to 

determine which were most important for pathological matrix remodeling [135].

Atomic force microscopy (AFM) has also been used to characterize the composition of 

calcified valves ex vivo in an effort to better understand the mechanism of formation. The 

ultra-fine structure of calcified regions of a human aortic valve was examined on a 

nanometer scale and found to contain 30–70nm diameter closely connected crystals. They 

suggest the mechanism of formation is deposit from supersaturated interstitial fluid and the 

crystals then grow on the organic substrate regulated by volume diffusion of interstitial fluid 

[136]. Recently, an AFM technique for evaluating the mechanical stiffness of valves has 

also been developed. This technique allows researchers to characterize mechanical 

properties of small animal models of CAVD, which can be extended to larger animal models 

and other diseases as well, while leaving enough tissue for concurrent histological studies 

[75]. Also, AFM comparison of human aortic valves with current valve replacement 

materials can yield insight into development of better prosthetics and a possible mechanism 

of the calcification that is common in prosthetics [137].

6. Conclusions

Utilizing a combination of CAVD models to investigate the factors important to its 

progression will likely yield information critical to the development of new therapeutic 

strategies. In vitro models are useful because they allow the quick and controlled 

manipulation of a large set of variables. While this simplifies the task of clarifying each 

factor’s contribution to the disease, it presents the challenge of determining which other 

variables it interacts with and how oversimplification of the model may lead to results that 

are not relevant in vivo. Similarly, the proper evaluation of the chosen assays is necessary to 
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yield significant insight into CAVD mechanism. Combining evaluation methods also 

increases the significance of results. For example, Alizarin Red staining may yield 

interesting and quantitative results, but when paired with von Kossa its specificity increases. 

Raman spectroscopy should be used more frequently as it allows evaluation of live cells. 

Indirect evaluation of calcification can yield important mechanistic and functional data via 

western blot, immunofluorescence, PCR, and ELISA or ALP activity, collagen gel 

contraction, wound assay, and zymography, respectively. Figure 2 presents a summary of 

the important variables to consider when designing and evaluating a relevant in vitro model 

of aortic valve calcification. From choosing an appropriate origin of cells to the combination 

of evaluation techniques, any in vitro assay should recapitulate the conditions of the normal 

and disease state in an efficient and informative manner. Thoughtful choices should lead to 

novel and more promising targets to prevent and reduce CAVD.
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Highlights

• Heart valve calcification is an idiopathic disease

• Suitable animal models for valve calcification are lacking

• In vitro models may provide mechanistic insights for calcification in vivo

• This review highlights in vitro valve calcification models

Bowler and Merryman Page 19

Cardiovasc Pathol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Cartoons depicting proposed mechanisms of valve calcification. The dystrophic pathway is 

mediated by a TGF-β1 mediated increase in αSMA and cadherin-11, which increases the 

cells’ contractility and strengthens their connections to each other. Under pathological strain, 

the increased and uneven tension tears cells apart, leading to calcification via apoptosis. The 

osteogenic pathway proceeds by osteogenic differentiation into obVICs, likely from qVICs. 

These obVICs actively form mineralized deposits.
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Figure 2. 
Both the design and the evaluation of in vitro models of calcification must be considered. 

During design, it is important to consider the type and origin of the cell or cells and the 

composition, cues, and mechanical environment of these cells. During evaluation, a coupling 

of mechanistic and functional evaluation leads to powerful conclusions. Examples of 

calcification-related assays that fall under each category are listed.
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Table 1

Acronyms and Abbreviations

αSMA Alpha smooth muscle actin

AFM Atomic force microscopy

ALP Alkaline phosphatase

AVEC Aortic valve endothelial cell

AVIC Aortic VIC

aVIC Activated VIC

BMP2 Bone morphogenic protein 2

BMP4 Bone morphogenic protein 4

β-catenin Intracellular transducer of Wnt pathway

CAVD Calcific aortic valve disease

CN Calcific nodule

CNP C-type natriuretic peptide

ECM Extracellular matrix

EDS Energy-dispersive X-ray spectroscopy

ELISA Enzyme-linked immunosorbent assay

EMT Endothelial to mesenchymal transformation

eNOS Endothelial NO synthase

ESEM Environmental SEM

FGF-2 Fibroblast growth factor 2

IHC Immunohistochemistry

IL1-β Interleukin 1-β

IL6 Interleukin 6

LRP5 Low density lipoprotein receptor-related protein 5

MMP Matrix metalloproteinase

Msx2 Msh homeobox 2

NF-κB Nuclear factor kappa-B

NO Nitric oxide

Notch1 Notch homolog 1

obVIC Osteoblastic VIC

Osteocalcin/BGLAP Bone gamma-carboxyglutamic acid-containing protein

oxLDL Oxidized low-density lipoprotein

PParγ Peroxisome proliferator-activated receptor gamma

pVIC Progenitor VIC

qVIC Quiescent VIC

RANKL Receptor activator of NF-κB ligand

RT-PCR Reverse transcription polymerase chain reaction

ROS Reactive oxygen species

Runx2/CBFα1 Runt-related transcription factor 2/core-binding factor subunit alpha-1
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SEM Scanning electron microscopy

Smad Intracellular transducer of TGF-β pathway

Sox9 Transcription factor Sox9 of the SoxE family

TEM Transmission electron microscopy

TGF-β1 Transforming growth factor β1

TIMP Tissue inhibitor of metalloproteinase

TLR2 Toll-like receptor 2

TLR4 Toll-like receptor 4

TNFα Tumor necrosis factor alpha

VIC Valve interstitial cell

Wnt3a Signaling protein of the Wnt family

5HT2B 5-hydroxytryptamine receptor 2B
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Table 2

Examination of advantages and disadvantages associated with AVICs derived from common model 

organisms.

Organism How are its AVICs useful? Why are they imperfect? Who has used these AVICs?

Human Most appropriate Difficult to obtain [31, 38, 41, 95, 102, 105, 106, 108, 
113, 121, 135, 138]

Porcine Similar anatomy to human; easy to obtain; 
swine spontaneously develop calcification 
precursors

More homogenous than human [16, 17, 22, 42–44, 48, 51–53, 69–71, 
73, 82, 86, 87, 89, 93, 98, 110, 114, 
115]

Ovine CNs develop more quickly than human More difficult to obtain than porcine [18, 55, 117, 139, 140]

Canine CNs develop more quickly than human; 
pathology naturally occurs

Difficult to obtain; require ageing [38]

Leporine Many osteogenic markers upregulated; easy 
to obtain

Require high cholesterol diets over 
time
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Table 3

Summary of direct techniques for evaluating calcification in vitro including advantages, limitations, and 

expected results in the normal and pathological states of human or porcine aortic valves (or rat, for atomic 

absorption spectroscopy).

Techniques for Evaluation of Calcification

Technique Advantages Limitations Normal/Pathological Results Notes on Images

Alizarin Red

Easy to stain; 
relatively easy to 
quantify with 
large range; 
inexpensive

Other 
elements, 
like 
magnesium, 
iron, and 
manganese 
also stain 
red

Tissue sections 
from porcine 
aortic valves; 
F=fibrosa; 
V=ventricularis; 
Balachandran 
2010.

Arsenazo III

No interference 
from cations 
commonly found 
in plasma; easy to 
quantify; more 
stable and 
accurate than o-
cresolphthalein 
complexone

Cannot 
differentiate 
between 
intracellular 
and 
extracellular 
calcium

Porcine aortic 
valves; 10% 
strain is 
physiologic; 
15% is 
pathologic; 
Balachandran 
2010.

Atomic Absorption

Gold standard to 
determine sample 
composition

Requires 
vaporization 
of sample; 
expensive

Calcium in 
porcine cusp or 
bovine 
pericardium after 
glutaraldehyde 
or 
triglycidylamine 
crosslinking in 
transplant rat 
model; Connolly 
2005.

Energy-Dispersive X-ray Spectroscopy

Easily 
quantifiable; can 
perform during 
SEM or ESEM; 
ESEM yields 
more authentic 
data (no coating 
interference)

Expensive Human aortic 
valves; region 
with and without 
calcific lesions; 
Bertazzo 2013.

O-Cresolphthalein Complexone

Easily quantifiable Not as 
stable and 
accurate as 
Arsenazo III

Porcine AVICs 
on various 
coated tissue 
culture 
polystyrene; 
withTGF-β1 is 
pathologic 
(black); Benton 
2008.

Raman Spectroscopy

Can be performed 
on live cells; 
algorithms can use 
data to accurately 
diagnose valve 
calcification

Expensive Human aortic 
valves; a is 
physiologic; b is 
pathologic; 
Otero 2004.
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Techniques for Evaluation of Calcification

Technique Advantages Limitations Normal/Pathological Results Notes on Images

Scanning Electron Microscopy

Topographical and 
compositional 
information; 
resolution ~nm; 
can be performed 
on hydrated 
samples (ESEM)

Difficult to 
quantify 
without 
EDS; 
expensive

Human aortic 
valves; scale bar 
is 3μm; green to 
orange 
represents 
increasing 
intensity; 
Bertazzo 2013.

Transmission Electron Microscopy

Chemical 
composition 
information; 
resolution ~pm

Expensive; 
difficult to 
perform on 
hydrated 
tissue

Human aortic 
valves; scale bar 
is 2μm; 
S=spherical 
particles; 
OM=organic 
matter; 
Pt=platinum; 
Bertazzo 2013.

von Kossa

Easy to stain; 
inexpensive

Melanocytes 
in valves of 
a black or 
brown 
mouse will 
appear as 
false 
positive 
stain; not 
specific for 
calcium 
phosphate

Tissue sections 
from porcine 
aortic valves; 
black is 
calcification; 
Balachandran 
2010.
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