Skip to main content
. Author manuscript; available in PMC: 2016 Jan 1.
Published in final edited form as: Neurobiol Aging. 2014 Oct 12;36 Suppl 1:S53–S59. doi: 10.1016/j.neurobiolaging.2014.03.042

Table 3.

Stepwise logistic regression EV selection results for all models.

Model name Number of selected EVs (percentage of variance covered)
1. LH thickness 7 EVs (40.5%)
2. RH thickness 7 EVs (35.8.5%)
3. LH convecxity 8 EVs (12.9%)
4. RH convecxity 9 EVs (9.5%)
5. LH metric distortion 5 EVs (11.2%)
6. RH metric distortion 3 EVs (10.2%)
7. LH thickness + convecxity 2 thickness EVs(33.4%) + 6 convecxity EVs(9.6%)
8. RH thickness + convecxity 6 thickness EVs(35.0%) + 7 convecxity EVs(7.1%)
9. LH thickness + metric distortion 6 thickness EVs(39.1%) + 4 metric distortion EVs(10.5%)
10. RH thickness + metric distortion 8 thickness EVs(36.5%) + 2 metric distortion Evs(2.7%)
11. LH convecxity + metric distortion 4 convexity EVs (7.3%) + 6 metric distortion EVs (14.5%)
12. RH convecxity + metric distortion 10 convexity EV (9.5%) + 6 metric distortion EVs (11.4%)
13. LH three measure combined 7 thickness EVs (40.0%) + 6 convexity EVs (8.6%) + 4 metric distortion EVs (6.7%)
14. RH three measure combined 7 thickness EVs (34.9%) + 9 convexity EVs (10.8%) + 5 metric distortion EVs (7.8%)