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Abstract

Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy 

population of mitochondria and cellular homeostasis. Coordinated interplay between these two 

forces that govern mitochondrial turnover plays an important role as an adaptive response against 

various cellular stresses that can compromise cell survival. Failure to maintain the critical balance 

between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results 

in a population of dysfunctional mitochondria that contribute to various disease processes. In this 

review we outline the mechanics and relationships between mitophagy and mitochondrial 

biogenesis, and discuss the implications of a disrupted balance between these two forces, with an 

emphasis on cardiac physiology.
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Introduction

Mitochondria function as cellular power plants essential for meeting the energetic demands 

of eukaryotic cells. Their role extends to regulating fuel utilization, calcium stores, 

intracellular signaling and cell death. Because of the broad range of cellular functions they 

are involved in, mitochondria inherently occupy an important position as mediators of 

cellular homeostasis. Consequently, this crucial position associates the dysfunction of 

mitochondria to the development of various human diseases. Notably, studies to dissect the 

etiology of Parkinson Disease (PD) were among the first to highlight the physiological 

consequence of having poor mitochondrial quality control. Genetic models strongly 

implicate mitochondrial dysfunction as a common feature in development of this 
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neurodegenerative disease that leads to the loss of dopaminergic neurons (reviewed in [1–

5]). In support of this is the fact that aging increases the risk of developing PD, which 

correlates with higher incidence of mitochondrial DNA mutations in dopaminergic neurons 

[6]. Moreover, agents that induce mitochondrial toxicity have been shown to lead to PD-like 

symptoms in animal models [7].

The major chronic diseases we face today such as neurodegenerative diseases, cancer, aging, 

diabetes, and heart failure are accompanied by mitochondrial dysfunction, and in fact, many 

elements of these chronic diseases may be directly attributed to mitochondrial pathology [8]. 

Mitochondrial disorders may be inherited either through maternal transmission of an 

abnormal mitochondrial genome or through autosomal transmission of mutations in the 

nuclear-encoded mitochondrial genes. However, far more commonly, mitochondrial 

dysfunction is a consequence of derangements in the ordinarily robust systems that 

orchestrate and maintain the health and function of these vital organelles.

Mitochondrial quality control collectively describes the cellular systems used to maintain a 

population of optimally-functioning mitochondria. Mitochondria possess an internal protein 

quality control system to refold or eliminate misfolded proteins, comprising chaperones 

(Hps10, Hsp60 and others) and proteases (Lon and other AAA proteases). Import of nuclear-

encoded proteins must be coordinated with expression of mitochondrial subunits for proper 

assembly of oxidative phosphorylation (OXPHOS) complexes. Homeostatic control of this 

is mediated through the mitochondrial unfolded protein response (UPRmt), which is 

activated by an imbalance of nuclear vs. mitochondrial OXPHOS subunits [9]. 

Mitochondrial turnover is another integral aspect of quality control in which dysfunctional 

mitochondria are selectively eliminated through autophagy (mitophagy) and replaced 

through expansion of preexisting mitochondria (biogenesis). Impaired mitochondrial quality 

control results in accumulation of damaged mitochondria that may generate more reactive 

oxygen species (ROS), produce ATP less efficiently, have a lower threshold for cytochrome 

c release (apoptosis) or mitochondrial permeability transition pore (MPTP) opening 

(necrosis), or may release mitochondrial components (mtHSP60, oxidized mitochondrial 

DNA) into cytosol where its recognition by receptors for damage-associated molecular 

patterns (DAMP) activates inflammation. In this way, impaired mitochondrial quality 

control gives rise to a myriad of disease states. Mitochondrial quality control is critically 

dependent on autophagy; factors that impair autophagy, such as advanced age or the 

metabolic syndrome (MetS), will impact mitochondrial quality control and accelerate the 

development of chronic disease phenotypes. In this review, we focus on the mechanics of 

mitophagy and mitochondrial biogenesis, and discuss the interplay between these two 

forces. We then discuss the pathophysiological consequences with an emphasis on the heart.

1. Mechanics of Mitophagy and Mitochondrial Biogenesis

1.1 Mechanics of mitophagy

Autophagy is a lysosome-dependent cellular degradation system in eukaryotic cells that 

allows for the bulk recycling of unwanted cytoplasmic aggregate proteins or dysfunctional 

organelles [10]. Along with the ubiquitin proteasome system (UPS), autophagy is important 

for maintaining proteostasis in the heart [11]. Mitophagy is the selective targeting and 
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removal of mitochondria through autophagy. While some authors refer to the general 

process as mitochondrial autophagy and use the term mitophagy to mean Parkin-dependent 

elimination of mitochondria, in this review we will use ‘mitophagy’ to indicate autophagic 

removal of mitochondria, and where appropriate, will specify Parkin-dependent mitophagy. 

Mitophagy plays a critical role in protecting the heart during ischemia/reperfusion injury 

[12–14]. Depolarization of mitochondria is a prerequisite for Parkin-dependent mitophagy, 

but mitophagy mediated by Bnip3 and NIX may be triggered through other pathways 

including reactive oxygen species (ROS) [15], which promote dimerization of Bnip3 (and 

potentially NIX) on the mitochondrial outer membrane [16]. Nutrient stress (fasting) 

activates AMPK and general autophagy, which is associated with production of ROS from 

mitochondrial complex I [17]; however, fasting-induced mitophagy is impaired in 

cyclophilin D-deficient mice [18], which have hyperpolarized mitochondria. Thus there are 

hints that mitophagy initiated by nutrient stress may be initiated by mitochondrial 

depolarization and Parkin translocation, but a role for ROS and Bnip3 is not excluded.

Parkin-dependent (macro)mitophagy has been commonly studied using chemical uncouplers 

of mitochondria such as carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) or 

carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Cellular stresses such as ischemia 

also trigger mitochondrial depolarization [13], resulting in stabilization of the serine/

threonine kinase phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) on the 

outer mitochondrial membrane (OMM) and recruitment of the E3 ubiquitin ligase Parkin, 

key factors for mitophagy [19–22]. PINK1 and Parkin function as critical partners to 

mediate the clearance of dysfunctional mitochondria [23, 24]. Another Parkin-dependent 

mechanism for degrading mitochondrial components is through mitochondria-derived 

vesicles (MDV), which transit to multivesicular bodies and eventually the lysosome, or to 

the peroxisome [25].

Mitochondrial dynamics (fusion and fission) also play a critical role in mitochondrial quality 

control, and the process is closely linked to mitophagy, where fission is favored and fusion 

is suppressed, enabling engulfment by autophagosomes. Fission of reticulate mitochondria 

into smaller fragments is essential for mitophagy to occur [26, 27]. Key to this process is the 

dynamin-related protein 1 (Drp1), a GTPase in the dynamin super family of proteins, which 

is recruited to the mitochondria and facilitates the process of mitochondrial fragmentation 

[28]. Fission 1 (Fis1) is another key player in mitochondrial dynamics that interacts with 

Drp1 to facilitate mitochondria fragmentation [29]. Mfn1 and 2, which promote OMM 

fusion, are ubiquitinated and targeted for elimination by the UPS. Optic atrophy protein 1 

(OPA1), important for fusion of the inner mitochondrial membrane, is degraded during 

mitophagy by the inner membrane zinc metalloprotease OMA1, which has overlapping 

activity with matrix AAA proteases [30–32].

PINK1 is constitutively made and continuously degraded by the mitochondria-specific 

proteases presenilin-associated rhomboid-like protein (PARL) and mitochondrial processing 

peptidase (MPP). Loss of membrane potential across the inner mitochondrial membrane 

inactivates PARL and MPP through an uncharacterized mechanism and permits the 

accumulation of PINK1 on the OMM. The kinase domain of PINK1 faces the cytosol and 

phosphorylates OMM proteins facilitating the recruitment of the E3-ubiquitin ligase Parkin 
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[33–35]. PINK1 has been reported to phosphorylate a number of targets including Parkin 

itself [36, 37], mitofusin 2 (Mfn2) [15], and mitochondrial rho 1 (MIRO) [38], a component 

of the microtubule-associated motor complex that anchors kinesin to mitochondria. Mfn2, 

which functions in mitochondrial fusion events and links endoplasmic reticulum to 

mitochondria, functions as a Parkin receptor after phosphorylation by PINK1, thereby 

recruiting Parkin to the mitochondria, where it ubiquitinates a number of OMM targets. 

Voltage-dependent anion channel 1 (VDAC1) has been shown to be a Parkin target essential 

for mitophagy [19], although this finding has been contested [39]. Ubiquitination and 

proteasomal degradation of MIRO, Mfn2, and Mfn1 serve to immobilize the mitochondrion 

and prevent it from rejoining the mitochondrial network through fusion [15, 38, 40–42]. 

Ubiquitination of OMM proteins facilitates recruitment of autophagy adapter proteins such 

as neighbor of BRCA1 (NBR1) or sequestosome-1 (p62/SQSTM1). These bifunctional 

adaptor proteins have an ubiquitin binding domain (UBA) and microtubule-associated 

protein 1 light chain 3 (LC3) interacting region (LIR) to bring the developing 

autophagosomal membrane in proximity to the tagged mitochondrion in a zipper-like 

process [43, 44]. SMAD-specific E3 ubiquitin ligase 1 (SMURF1) has also been linked to 

Parkin-dependent mitophagy [45]. Surprisingly, its ability to facilitate mitophagy has been 

found to be independent of its E3 ubiquitin ligase function. Another Parkin-interacting 

autophagy promoter, activating molecule in Beclin 1-regulated autophagy (Ambra1) 

dissociates from mitochondrial Bcl-2 to bind Beclin1 to initiate autophagy [46, 47]. Ambra1 

interacts with Parkin to promote mitophagy, but is not a substrate of Parkin [48].

Mitophagy that is independent of PINK1/Parkin/ubiquitin can be initiated through atypical 

members of the Bcl-2 homology domain 3 (BH3) family members such as BCL2/adenovirus 

E1B 19 kDa protein-interacting protein 3 (BNIP3) and BCL2/adenovirus E1B 19 kDa 

protein-interacting protein 3-like protein (BNIP3L aka NIX). These proteins insert into the 

OMM and facilitate engulfment by the autophagosome through a LIR domain that can 

interact with LC3 isoforms including gamma-aminobutyric acid receptor-associated protein 

(GABARAP) and GABARAP-like 1 (GABARAPL1) [49, 50]. One study demonstrated in 

cardiomyocytes that Bnip3 recruited Parkin and Drp1 to the mitochondria to promote fission 

and mitophagy [51]. In hypoxic conditions mitophagy has been reported to be mediated by 

the OMM protein FUN14 domain containing 1 (FUNDC1) which contains a LIR [52].

The process of mitophagy is rather complex and requires coordination of UPS-mediated 

degradation of outer membrane proteins with autophagic engulfment of the remainder of the 

organelle. The autophagosome, with its cargo, fuses with a lysosome, forming the acidic 

autophagolysosome. In cells in which the pH-sensitive fluorescent protein Keima is targeted 

to the mitochondria, one can monitor the delivery of mitochondria to the autophagolysosome 

by monitoring the pH-dependent shift in fluorescence of mitoKeima [53]. The cargo is 

degraded by lysosomal hydrolases, liberating amino acids and fatty acids which are exported 

to the cytosol via lysosomal permeases. A model representing our current knowledge of the 

process of mitophagy is shown in Figure 1. While mitophagy is responsible for bulk 

degradation of the organelle, turnover of individual components may proceed at 

asynchronous rates through redistribution of components via fusion events, selective 

degradation of proteins via mitochondrial proteases, and proteasomal elimination of some 

outer membrane proteins. Even in the case of Parkin-dependent mitophagy, some outer 
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membrane proteins are “rescued” through transfer to the ER [54]. Proteomic studies using 

heavy isotope labeling [55] revealed that proteins of the IMM turn over with rates that are 

similar to mitochondrial turnover based on historic radiolabeling studies [56, 57], suggesting 

that IMM proteins (primarily OXPHOS constituents) may be primarily cleared via 

mitophagy. This also corresponds to studies which showed that matrix and OMM were 

readily redistributed across the mitochondrial network when fusion and fission were intact; 

however, IMM constituents redistributed much more slowly [27]. In contrast to the IMM 

proteins, OM proteins turned over faster in many cases [55], possibly because outer 

membrane proteins can be degraded by the UPS, by translocation to other sites (ER or 

peroxisomes), by the MDV pathway, or by mitophagy. Matrix and IMM proteins have fewer 

routes of degradation: while mitophagy predominates, matrix and IMM proteins can be 

found in MDVs, and are substrates for Lon and other AAA proteases in the matrix and 

intermembrane space. The rate of mitochondrial protein turnover in mice is much slower in 

heart (mean half-life 17d) than in liver (4d). A related study of mitochondrial protein 

synthesis in rat comparing heart and liver using isotopic labeling and mass spectrometry also 

showed a 6-fold slower rate of turnover in the heart. Turnover also varied according to 

subcellular location: protein turnover was ~15% faster in subsarcolemmal mitochondria than 

in interfibrillar mitochondria [58]. Mitochondrial protein import is inhomogeneous: the 

fluorescent MitoTimer protein revealed “hot spots” for synthesis and import of this 

mitochondrially-targeted protein [59].

The importance of mitophagy in the heart was highlighted in our previous work 

demonstrating the requirement for mitophagy in cardioprotection conferred by ischemic 

preconditioning [13] and acute statin administration [12]. These results suggest that 

mitophagy is part of the final common pathway for various cardioprotective interventions, 

and indeed, may be the ultimate effector. Beyond cardioprotection, Parkin-dependent 

mitophagy plays a role in ischemia tolerance [60], myocardial aging [61], and pathologic 

remodeling in response to pressure overload [62]. The cardiac effects of Parkin deficiency 

are phenocopied by PINK1 and Atg5 deletions [63, 64]. Similarly, deletion of Mfn2, 

considered an essential mitochondrial docking partner for Parkin, leads to mitochondrial 

dysfunction and heart failure [65]. These findings highlight the importance of autophagy and 

mitophagy in cardiac function.

1.2 Overview of mitochondrial biogenesis

Mitochondrial biogenesis, which acts in concert with mitophagy to maintain homeostasis in 

cells, depends on coordination of nuclear and mitochondrial-encoded gene expression. The 

nuclear-encoded genes are primarily controlled by the transcription cofactor peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) [66]. First identified as 

a binding partner of peroxisome proliferator-activated receptor γ (PPARγ) that increased its 

transcriptional activity during thermogenesis, PGC-1α is a member of the nuclear receptor 

superfamily of proteins that are responsible for assembling functional macrocomplexes of 

transcriptional machinery at specific DNA sequences [67, 68]. PGC-1α controls the 

expression of nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), which in turn control 

the expression of mitochondrial transcription factor A (Tfam) [69]. Tfam plays a key role in 

mitochondrial biogenesis by regulating the expression of mitochondrial genes (tRNAs, 
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rRNAs and 13 subunits of the respiratory chain) from the heavy and light strands of the 

mitochondrial genome; it is also essential for replication of mitochondrial DNA (mtDNA) 

[70].

Several studies have demonstrated the physiological importance of PGC-1α in 

mitochondrial biogenesis in response to cold and exercise. These external stimuli increase 

expression of PGC-1α leading to increased expression of mitochondrial enzymes such as 

ATP synthase (β-subunit), COX (cytochrome c oxidase) subunits (COX II and COX IV) and 

δ-aminolevulinate synthase (δ-ALAS) [71, 72]. Increased mitochondria content allows for 

more efficient thermogenesis in response to cold and enhanced capacity to generate ATP to 

sustain exercise bouts. An isoform of PGC-1α, PGC-1β has also been identified, and 

although overexpression of this protein increased mitochondrial biogenesis and basal 

oxygen consumption much like PGC-1α, it was not induced by cold or exercise, suggesting 

alternate pathways for induction of mitochondrial biogenesis [73].

Aside from influencing the transcription of key players in the respiratory chain, PGC-1α 

also interacts with and upregulates the expression of other transcription factors such as 

peroxisome proliferator-activated receptors (PPARs) [74], hormone receptors for estrogen 

and thyroxine, as well as estrogen-related receptors (ERRs) α and γ [75]. ERRs are a 

particularly interesting set of nuclear receptors known as orphan receptors due to a lack of 

an associated ligand [76]. These proteins are involved in PGC-1α-dependent regulation of 

mitochondrial biogenesis. For example, Schreiber et al have demonstrated that over-

expression of PGC-1α results in upregulation of 151 genes that encode mitochondrial 

proteins involved in many metabolic functions of mitochondria such as fatty acid β-

oxidation (FAO), tricarboxylic acid cycle and oxidative phosphorylation, as well as 

mitochondrial ribosomal machinery and mitochondrial membrane transport proteins. This 

effect is inhibited by siRNA targeted to ERRα, and conversely mimicked by overexpression 

of ERRα [77]. Endonuclease G is regulated by ERRα and PGC-1α, and its deletion results 

in cardiac hypertrophy and mitochondrial dysfunction [78]. Additional factors implicated in 

mitochondrial biogenesis include Lon protease and Hsp78 [79].

The expression of PGC-1α is controlled primarily through signaling cascades. Calcineurin 

A-dependent (CnA) and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) 

regulation of PGC-1α has been well characterized. CnA interacts with and activates 

myocyte enhancer factors 2C and 2D (MEF2C and MEF2D), which regulate the 

transcription of PGC-1α directly [80, 81]. Furthermore, activation of PGC-1α results in 

upregulation of MEF2C and 2D, creating a feed forward loop that allows PGC-1α to 

increase its own expression [82]. CaMKIV activates PGC-1α by phosphorylating the 

transcription factor cAMP response element (CRE)-binding protein (CREB). 

Phosphorylated CREB binds to promoter elements of the PGC-1α gene to drive its 

expression [80]. Other players controlling PGC-1α expression include p38 mitogen-

activated protein kinase (p38 MAPK) and AMP-activated protein kinase (AMPK). p38 

MAPK activity is increased following exercise, and this leads to the activation of MEF2 and 

activating transcription factor 2 (ATF2), both of which drive the expression of PGC-1α [83, 

84]. The activation of AMPK in response to glucose depletion results in direct 

Andres et al. Page 6

J Mol Cell Cardiol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



phosphorylation of PGC-1α on threonine-177 and serine-538, which is crucial for activation 

of PGC-1PGC-1α-dependent transcription from the PGC-1α promoter [85].

Post-translational modifications such as phosphorylation and acetylation regulate PGC-1α 

activity. Kinases that have been implicated in controlling of PGC-1α activity include: 

AMPK and Akt during caloric restriction and p38 MAPK after endurance exercise [85–87]. 

Likewise, p38 MAPK increases the activity of PGC-1α by directly phosphorylating 

threonine-262, serine-265, and threonine-268, which stabilizes the protein and disrupts the 

interaction between PGC-1α and its inhibitor p160MBP [86, 88]. Conversely, insulin 

inhibits the activity of PGC-1α through Akt, directly through phosphorylation of the 

serine-570 residue on PGC-1α, and indirectly through phosphorylation of the Clk2 kinase 

which in turn phosphorylates the C-terminal serine and threonine-rich regions of PGC-1α, 

thereby decreasing its co-transcriptional activity [89, 90]. In an even more indirect manner, 

glycogen synthase kinase 3b (GSK3β) has also been shown to inhibit PGC-1α activity in 

response to acute oxidative stress by increasing its proteasomal degradation and inhibiting 

the activity of Sirt1, an NAD-dependent deacetylase thought to activate PGC-1α [91]. This 

deacetylation event is crucial for the activation of PGC-1α, as the protein is very heavily 

acetylated by the acetyltransferase GCN5, inhibiting its activity and sequestering it in 

nuclear foci distant from promoter regions of its target genes [92]. Sirt1 activity is dependent 

upon the coenzyme nicotinamide adenine dinucleotide (NAD+), and it is therefore highly 

sensitive to the changes in the energetic state of the cell. Increased NAD+/NADH ratio–

which may occur in response to fasting, exercise or redox stress—activates Sirt1, leading to 

PGC-1α deacetylation [93, 94]. The result of this deacetylation is an increase in 

transcription of PGC-1α targets, leading to mitochondrial biogenesis [95– 97]. Interestingly, 

AMPK may once again play a role in activating PGC-1α, not only by directly 

phosphorylating the protein, but also indirectly by increasing NAD+ levels in the cell by 

fatty acid oxidation, thereby increasing the activity of Sirt1 [97]. Other posttranslational 

modifications such as ubiquitination or methylation also play a role in modulating the 

activity of PGC-1α in response to energy demands and oxidative stress, states that require 

mitochondrial biogenesis [98].

Other proteins that play a major part in mitochondrial biogenesis are vascular endothelial 

growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1). VEGF is a key regulator of 

angiogenesis which involves substantial cell proliferation and production and remodeling of 

extracellular matrix, processes which utilize large amounts of ATP. A study by Wright et al 

demonstrated that VEGF stimulates mitochondrial biogenesis by coordinated upregulation 

of OMM protein Tom70 and activation of PGC-1α [99]. Interestingly, PGC-1α can also 

activate VEGF, by coactivating ERR-α on conserved binding sites found in the promoter 

and in a cluster within the first intron of the VEGF gene, driving angiogenesis in response to 

oxygen deprivation independently of HIF-1 [100]. HIF-1 is a master regulator of the 

adaptive response to hypoxia, and as such is intimately linked to inducing mitochondrial 

biogenesis. Several studies have linked PGC-1α and PGC-1β with HIF-1 activity. O’Hagan 

et al reported that mitochondrial biogenesis driven by the expression of PGC-1α results in 

increased oxygen consumption and decreased intracellular oxygen tension, permitting 

stabilization of HIF-1 and activation of a gene expression program to increase oxygen 
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delivery to the tissue [101]. Zhang et al demonstrated that HIF-1 represses mitochondrial 

biogenesis by controlling the transcription of PGC-1β through downregulation of c-MYC 

transcription factor [102]. Figure 2 highlights the central role of PGC-1α in regulating 

mitochondrial biogenesis.

1.3 Interplay between mitophagy and mitochondrial biogenesis

Mitophagy and mitochondrial biogenesis are opposing forces that govern the rate of 

mitochondrial turnover. This dynamic tension allows for a readily adjustable population of 

mitochondria to match cellular demands. Here we discuss several players that participate in 

this regulatory cross-talk.

Sirt1, an NAD-dependent lysine deacetylase, stimulates autophagy directly by deacetylating 

various autophagy proteins including Atg7, Atg5, and Atg8 (LC3) [103]. Sirt1 also 

deacetylates and activates PGC-1α [104], thus positively regulating both mitophagy and 

biogenesis. Activation of PGC-1α is a key event in initiating mitochondrial biogenesis, but 

no less important are the repressors of the process. Parkin-interacting substrate (PARIS or 

ZNF746) has recently been identified as a direct transcriptional repressor of PGC-1α [105]. 

The accumulation of PARIS in the nucleus leads to direct inactivation of PGC-1α 

transcription and inhibition of expression of PGC-1α-dependent genes. Aside from its role 

in facilitating mitophagy, Parkin was shown to directly target PARIS for degradation 

through the UPS. Events leading to the upregulation of mitophagy also increase Parkin 

activity which then degrades PARIS, relieving repression of mitochondrial biogenesis. This 

relationship establishes an intricate system that links mitophagy with mitochondrial 

biogenesis. A model illustrating this mechanism linking mitophagy with mitochondrial 

biogenesis is shown in Figure 3. As the relationship between Parkin and PARIS has thus far 

been identified only in neuronal models, an important and exciting question remains as to 

whether this system exists in the heart. Moreover, what are its implications in the setting of 

ischemia/reperfusion injury?

Other repressors of mitochondrial biogenesis operate in less direct manner. Nuclear co-

repressor 1 (Ncor1) acts as a repressor of PPARγ, PPARδ and ERR activity by interacting 

with histone deacetylases such as HDAC3 and SIRT1 to maintain tonic repression of MEF2, 

PPARδ, and ERR, thereby suppressing their participation in transcription programs 

involving mitochondrial oxidative metabolism [106]. mTOR is a serine/threonine kinase 

involved in numerous cell functions and can directly activate PGC-1α to control 

mitochondrial biogenesis. During fasting, mTOR is inhibited and autophagy/mitophagy is 

active. However, as lysosomal degradation releases amino acids, mTOR is reactivated, 

suppressing autophagy and supporting lysosomal and mitochondrial biogenesis [107]. 

Eukaryotic translation initiation factor 4E (eIF4E)-binding proteins (4E-BP) prevent 

translation of targets including nuclear encoded mitochondrial protein mRNAs including 

TFAM (transcription factor A, mitochondrial) and subunits of complex V and complex I. 

This inhibition is lifted by the action of mTORC1 which inhibits 4E-BP proteins from 

binding their targets [108, 109].

Autophagy and mitochondrial biogenesis are linked in both directions: PGC-1α induces the 

expression of transcription factor EB (TFEB) [110], the master regulator of lysosome 

Andres et al. Page 8

J Mol Cell Cardiol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



biogenesis and the autophagy pathway [111]. TFEB and PGC-1α regulate one another’s 

expression, and the nutrient sensing regulator GCN5L1 suppresses both TFEB and PGC-1α 

[112]. Thus like the mythical ouroboros (serpent devouring its own tail), autophagy and 

mitochondrial biogenesis, mitophagy and lysosomal biogenesis, are elements of a system 

whose stability derives from its dynamic regulation.

2. Mitochondrial Turnover in the Context of the Organ and the Organism

2.1 Circadian Rhythms and Metabolic Status

The circadian rhythm is an important regulator of cellular and whole-body homeostasis. 

Disruption of this oscillatory system can cause and aggravate several health issues. The 

connection between autophagy and circadian rhythm was first demonstrated in the 1970’s 

using electron microscopic analysis of different rat tissues to show that the number of 

autophagic vacuoles changed over the course of the day [113, 114]. More recently an 

important work established a clear connection between circadian rhythm and the induction 

of autophagy [115]. Ma and collaborators showed that autophagy was upregulated during 

the dark cycle, preceded by increased mRNA expression of autophagy initiators including 

Ulk1, and Bnip3, but not factors involved in later phases of autophagy such as LC3B, Atg4, 

and Atg7. These events were regulated by the transcription factor CCAAT-enhancer-binding 

protein β (C/EBPβ). C/EBPβ is a liver clock protein that is tissue autonomous and regulates 

whole body bioenergetics. The induction of autophagy usually promotes mitophagy as well 

by upregulating mitochondria-targeting machinery such as the autophagy adapter p62/

SQSTM1 and the E3 ubiquitin-ligase Parkin [116, 117]. Mitochondrial biogenesis is also 

directly regulated by the circadian clock, ensuring coordination of mitophagy with 

biogenesis [118–120]. Conditions that disrupt the circadian clock will also impact autophagy 

and mitochondrial biogenesis, with consequences for cell and organ function; conversely, 

disruption of autophagy may affect the clock [121].

The circadian rhythm is closely linked to eating behaviors (and diet types), another 

important regulator of mitophagy in animals. Mitophagy can be regulated by several 

different energy sensing stimuli: the availability of AAs in a cell regulates mTOR activity; 

the glucose level in blood regulates release of insulin and glucagon which have opposing 

effects on autophagy; and conditions such as metabolic syndrome and caloric restriction 

regulate autophagy and mitophagy. Insulin suppresses macroautophagy by activating the 

phosphatidyl-inositol triphosphate (PIP3) cascade leading to phosphorylation and activation 

of Akt and subsequently mTOR, which inhibits autophagy [122]. Usually high insulin is 

followed by an increase in AAs in the cytosol, which also activates mTOR, reinforcing the 

same pathway. Insulin also promotes mitochondrial fusion, whereas hypoglycemia and 

insulin resistance promote fission [123–125]; both processes are essential to mitochondrial 

quality control. The nutritional overload of a high fat diet suppresses autophagy and by 

extension, mitophagy [126–128]. More recently, impaired mitochondrial turnover in mice 

fed a high-fat diet was demonstrated using Timer protein targeted to mitochondria 

(MitoTimer). In this study, the authors electroporated a MitoTimer construct under a 

constitutive promoter into the skeletal muscle of mice which were then maintained on chow 

or a high-fat diet. They observed a shift in the MitoTimer ratio to red, indicating slower 
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mitochondrial turnover [129]. Although they attributed the red shift to increased oxidative 

stress, previous work showed that MitoTimer maturation (color shift) was not sensitive to 

oxidants [130]. MitoTimer is a mitochondria-targeted fluorescent molecular clock that we 

developed as a tool to monitor mitochondrial turnover [59].

2.2 Cardiac Development, Cardioprotection and Cardiac Pathology

The development of stem cells into differentiated adult cells is a tightly regulated process. 

Autophagy is involved in the maturation of several different types of cells. Cardiomyocyte 

development is regulated by the fibroblast growth factor (FGF) signaling axis [131] and in 

skeletal muscle FoxO is the responsible factor [132]. In both cases, autophagy and 

mitophagy are tightly linked to differentiation and tissue plasticity [131, 133]. FGF 

suppresses autophagy and thereby prevents differentiation of cardiac progenitors [134], 

while FoxO signaling induces autophagy as part of the regeneration and growth of the 

muscle tissue. As discussed above, mitophagy and biogenesis are tightly linked. These 

examples highlight the importance of autophagy to tissue remodeling and repair beyond 

degradation.

Genetic deletions of mitofusin-2 and PINK1 illustrate the importance of mitophagy to heart 

development and homeostasis. Genetic deletion of mitofusin-2 is embryonic lethal [135] and 

is essential in the heart not only for mitochondrial dynamics [136], but also ER-

mitochondrial calcium signaling [137], mitophagy [15], and autophagosome-lysosome 

fusion [138]. Absence of PINK1 has profound consequences for postnatal heart 

development [63] and exacerbates ischemia/reperfusion injury [139].

Among the most potent interventions to protect the heart from ischemia and reperfusion 

injury are ischemic pre- and post-conditioning [140, 141]. Pre and post conditioning require 

autophagy to deliver the protection [142–144], although this is controversial in the brain 

[145, 146]. Mitophagy is part of the autophagy response that is specifically required for 

protection [13]. Other interventions that protect the heart against ischemic injury, including 

chloramphenicol [147], caloric restriction [148] simvastatin [12], and SAHA [149] all act 

through the autophagy/mitophagy pathway, thus establishing autophagy/mitophagy as a hub 

for cardiac protection. There are few direct inducers of autophagy; rapamycin is an mTOR 

inhibitor widely used as a drug to induce autophagy. Rapamycin administration also 

decreased ischemia/reperfusion injury [149, 150] while upregulating autophagy. In chronic 

models of heart failure, rapamycin also helps to ameliorate the phenotype [151]. Taken 

together, these facts support the beneficial effects of inducing autophagy.

In conditions where autophagy/mitophagy is impaired the opposite is true: there is increased 

cardiac dysfunction and exacerbation of ischemia/reperfusion injury in the setting of Parkin 

and PINK1 deletion [60, 139], deletion of macrophage migration inhibitor factor, an inducer 

of homeostatic autophagy [152], and obesity [153]. Obesity [154] and diabetes [155] disrupt 

normal energy metabolism, changing basal activation of mTOR and other nutrient signaling 

cascades that regulate autophagy. High fat diets are known to increase ischemia/reperfusion 

damage in hearts [156, 157] and there is now a significant amount of work linking the high 

fat diet to impaired autophagy [154] and accumulation of dysfunctional mitochondria [158, 

159], highlighting the importance of mitophagy to cardiac ischemia tolerance. The 
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regulation of cardiac mitophagy and physiological importance of this process is illustrated in 

Figure 4.

Autophagy may not always be a good thing in the heart. Infection of juvenile mice with 

Coxsackievirus B virus can exacerbate stress-induced myocardial injury in adulthood [160]. 

Autophagy is needed for the spread and reproduction of the virus [161], and virus-induced 

autophagy triggers premature differentiation of cardiac-resident progenitor cells, 

contributing to heart failure later in life [160]. Excessive autophagy has been implicated in 

doxorubicin-mediated cardiac injury [162, 163], although other studies have reported a 

beneficial role for autophagy [164–167]. Interestingly, deletion of Nrf2, a transcriptional 

regulator of autophagy and mitochondrial biogenesis, exacerbated doxorubicin toxicity, but 

this was reversed by overexpression of Atg5 [168]. They did not examine whether restoring 

autophagy resulted in mitochondrial biogenesis independent of Nrf2. It seems likely that 

unless mitophagy is balanced by biogenesis, problems will ensue.

Mitochondrial biogenesis in the heart is tightly responsive to oxygen tension. This is 

manifest at the transition from the fetal hypoxic state to the postnatal aerobic environment, 

when HIF signaling is lost, thereby favoring mitochondrial fusion and mitochondrial 

biogenesis [169]. During cardiac hypertrophy in response to aortic banding, mitochondrial 

dysfunction and decreased biogenesis were noted [170]. Downregulation of PGC-1α is 

observed in animal models of heart failure, but attempts to restore mitochondrial biogenesis 

by overexpression of PGC-1α did not improve cardiac function despite a modest increase in 

mitochondrial content [171]. In fact, inducible overexpression of PGC-1α in the heart 

resulted in abnormal mitochondrial morphology and cardiomyopathy which was reversible 

upon normalization of PGC-1α levels [172]. These studies did not examine mitochondrial 

autophagy. However, in a porcine study of renovascular hypertension, hypertrophy was 

accompanied by upregulation of mTOR, increased abundance of markers of autophagy and 

mitophagy, and decreased mitochondrial protein content, all of which were reversed by the 

angiotensin II receptor blocker valsartan [173]. The authors concluded that hypertension 

increased autophagic clearance of mitochondria and valsartan suppressed autophagy and 

restored mitochondrial biogenesis. However, because they did not measure autophagic flux 

or p62 (a surrogate marker of flux), the data lend themselves to the opposite interpretation: 

that hypertension impaired autophagic flux, thereby limiting mitochondrial biogenesis 

possibly through the Parkin/Paris/PGC-1α network. Evidence in support of the latter 

interpretation is the finding that mTOR was strongly upregulated in the hypertensive hearts, 

which would suppress autophagy. The observed increase in Beclin 1 and LC3-II could 

reflect increased autophagy or impaired flux. Beclin 1 is known to interfere with autophagic 

flux [174, 175]. The perinuclear accumulation of Parkin-decorated mitochondria is also 

indicative of impaired lysosomal clearance of autophagosomes. This also illustrates the 

importance of determining autophagic flux and mitochondrial turnover before reaching a 

conclusion.

3. Prospects and Challenges for the Future

Mitochondrial quality control depends upon mitophagy, biogenesis, fusion, and fission, as 

well as selective protein quality control via AAA proteases and chaperones. To date, most 
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studies have explored mitochondrial dynamics (fusion/fission) and mitophagy (Parkin-

dependent and Parkin-independent mitochondrial autophagy). Mitophagy is increasingly 

recognized to play a significant role in the heart, yet in order to maintain homeostasis, 

biogenesis must keep pace. Therefore, approaches to monitoring mitochondrial turnover (the 

integrated outcome of these four processes) are needed. Recent advances include the 

analysis of the half-lives of mitochondrial proteins using mass spectrometry analysis and 

deuterium labeling [55], mito-Keima, which can report on mitochondria delivered to the 

lysosome [53], and MitoTimer, a fluorescent protein that can be used to monitor 

mitochondrial turnover [59, 129, 130]. What lies ahead is the application of these tools to 

study physiologic and pathologic processes in the heart.

A major challenge to overcome is imaging autophagy (or mitophagy) in humans. Relatively 

few studies have examined autophagy in the human heart, largely because of the challenges 

of accessing tissue, and none have examined mitophagy, although animal studies indicate 

that mitochondria are a frequent target of autophagy. There is a significant need to develop 

better tools for in vivo imaging of autophagy and mitophagy.

Still lacking is a thorough understanding of mitochondrial biogenesis: are all mitochondria 

equally capable of expanding and undergoing fission to give rise to daughter mitochondria 

enriched for newly-imported proteins and highly functional OXPHOS assemblies, or is there 

a subset of mitochondria that are specialized for mitochondrial regeneration? Studies of 

MitoTimer suggest that protein import preferentially takes place in mitochondria closest to 

the nucleus [59, 130]. This could be a trivial consequence of mRNA proximity, and import 

of MitoTimer may not necessarily reflect sites of biogenesis. It is exciting, however, to 

speculate that the subpopulation of mitochondria most actively engaged in importing newly-

synthesized protein is indeed unique. Future studies may shed light on this.

Mitochondrial protein import is essential for biogenesis, but is also implicated in the 

regulation of mitophagy because PINK1 must transit through the intermembrane space in 

order to be degraded by PARL. Few studies have considered whether defective protein 

import is the red flag that signifies a mitochondrion due for autophagic elimination. It has 

not been demonstrated whether pre-amyloid oligomers might disrupt mitochondrial protein 

import, yet this might explain the deterioration of mitochondrial function (78) and impaired 

biogenesis (79) that often accompanies Alzheimer’s disease and potentially other protein 

folding disorders. We can expect that in the coming years investigators will integrate 

information exchange between mitochondria and cytosol/nucleus, for which the TOM/TIM 

complex and VDAC serve as important carriers.

A key to mitochondrial homeostasis is the ability to remove and replace components 

throughout the network: not only proteins, but also lipids and mtDNA copies. In the heart, 

where mitochondrial fusion and fission events seem to occur with a frequency 

approximately equal to the rate of turnover of the entire organelle, intra-mitochondrial 

degradation and protein import generalized across the network may play a larger role than 

regionally restricted biogenesis followed by redistribution via fusion events. The intriguing 

observation that proteins in subsarcolemmal mitochondria turn over faster than in 

interfibrillar mitochondria suggests that different turnover mechanisms may operate within 

Andres et al. Page 12

J Mol Cell Cardiol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the same cell. The thought-provoking discovery that individual mitochondrial proteins have 

widely differing half-lives raises questions about the mechanisms governing this process; 

regulation of these different mechanisms for degrading mitochondrial proteins may be quite 

complex, and their contribution to disease phenotypes will be equally so. The importance of 

mitochondrial protein import is emerging: recently it was reported that redirecting a mutant 

form of alanine:glyoxalate aminotransferase from mitochondria to peroxisomes corrects 

primary hyperoxaluria 1 (PH1), a lethal metabolic disease [176]. Enzymes that may traffic 

either to mitochondria or peroxisomes can have radically different consequences depending 

on their location; the potential significance of this process for heart disease is unknown at 

present.

Yet another emerging area is the role of miRNAs in regulating autophagy and mitochondrial 

biogenesis. miRNA-149 inhibits poly(ADP-ribose) polymerase-2 (PARP-2), thereby 

allowing an increase in cellular NAD+ and activation of sirtuin-1, leading to mitochondrial 

biogenesis [177]. miR-27a and miR-27b impair mitochondrial biogenesis [178]. miRNAs 

also regulate the Nrf2 pathway [179] and autophagy [180–184]. Elucidating the contribution 

of miRNAs to the dynamic regulation of mitophagy and biogenesis will require a systems 

biology approach.

Many open questions remain to be resolved, but technical advances continue to make new 

discoveries possible. The advent of novel gene therapy approaches, cell permeable proteins, 

and small molecule therapeutics targeting mitochondrial quality control mechanisms hold 

promise for treating a variety of diseases from the perspective of the underlying 

mitochondrial dysfunction. It is not too farfetched to envision mitochondrial medicine 

becoming a medical specialty as much as surgery, cardiology, or genetics.
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Mitochondrial Mysteries

Roberta A. Gottlieb

We know so much yet understand so little

About mitochondrial ox-phos and fusion and fission

Mitochondrial autophagy and biogenesis

MitoTimer and lenses have given us celluvision

Though heart cells live years it’s quite different within

Mitochondrial life is counted in weeks

Outer and inner membrane proteins vary yet more

In their lifespans revealed by mass spectrum peaks.

Protein import must match what’s inside

Lest proteins unfold and fall prey to Lon

The peptides escape to the cytosol

To trigger transcription of chaperones.

Try we must to describe and define

The complex nature of the proteome

As mitochondria expand and divide

Fragment and fall into autophagosomes

Yet for all we know and all we learn

The mysteries grow and questions expand

Like Mandelbrot sets of fractal images

We see the work of divinity’s hand
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HIGHLIGHTS

• The role of mitophagy and biogenesis in the heart are discussed

• Mitochondrial quality control depends on balanced mitophagy and biogenesis

• Factors regulating these processes are summarized

• Mitochondrial turnover is discussed in the context of heart disease

• Major open questions are enumerated
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Figure 1. Parkin-dependent Mitochondrial Autophagy (Mitophagy)

1. Cellular stress, such as ischemia/reperfusion, triggers fragmentation of the 

mitochondria mediated by Drp1, segregating low-membrane potential mitochondria 

from the rest of the network. Ischemia/reperfusion injury also leads to the collapse 

of mitochondrial membrane potential which deactivates PARL and MPP, allowing 

for PINK1 stabilization on the OMM.

2. Parkin is recruited to the OMM where it binds Mfn2 and ubiquitinates multiple 

OMM proteins, marking them for proteasomal degradation and targeted recognition 

of the ubiquitin-decorated mitochondrion.

3. Autophagy adapter proteins such as p62 are then recruited to the mitochondria 

which in turn bind the ubiquitinated mitochondrion to the phagophore through 

interaction with LC3 or homologs.

4. Once the autophagosome has fully engulfed the mitochondrion, it fuses with a 

lysosome to form the autophagolysosome where final degradation of bulk contents 

is completed.
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5. Shaded area indicates atypical players that participate in recognition and targeting 

of mitochondria for autophagic clearance. These include Nix and Bnip3 which bind 

LC3 or homologs including GABARAPL1.
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Figure 2. PGC-1α Regulation of Mitochondrial Biogenesis
PGC-1α is considered a master regulator of mitochondrial biogenesis. Transcriptional 

control of PGC-1α expression is closely linked to environmental cues of fuel availability, 

fuel type, and cellular energy requirements. PGC-1α transcription is governed by multiple 

transcription factors (trans) including PPAR/RXR, MEF2, C/EBP, FoxO, CREB/CRTC, 

ERRγ, and MyoD/E2A. These factors in turn are activated by specific signal pathways 

including free fatty acids, AMPK, calcineurin, p38 MAPK, CaMK IV, and PKA, and 

suppressed by other signals including GCN5, AKT and SHP. In addition to transcriptional 

control, PGC-1α activity is regulated by acetylation and phosphorylation by the factors 

illustrated here. Ultimately, PGC-1α increases mitochondrial biogenesis and the capacity to 

perform OXPHOS, in particular, fatty acid oxidation.
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Figure 3. The Parkin-PARIS Axis Coordinates Mitophagy with Mitochondrial Biogenesis
Basal state cellular homeostasis is characterized by balanced mitophagy and mitochondrial 

biogenesis (mitochondrial turnover). This maintains a network of healthy mitochondria. 

Mitophagy is linked to a transcriptional program for mitochondrial biogenesis. One pathway 

in this tightly coordinated process involves Parkin and PARIS. Triggers of mitophagy 

increase Parkin expression and activity, leading to proteasomal degradation of PARIS. 

Diminished PARIS levels relieve the transcriptional repression of PGC-1α, priming 

mitochondrial biogenesis.
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Figure 4. Cardiac Mitophagy Regulation and Significance
Mitophagy is essential during cardiomyocyte differentiation and for homeostatic 

mitochondrial turnover to maintain a healthy population of mitochondria. During cardiac 

stress such as ischemia/reperfusion, mitophagy functions to eliminate damaged 

mitochondria and reduce injury. Mitophagy is also critical for ischemic preconditioning. 

Circadian rhythm regulates basal levels of cardiac mitophagy. Nutrient overload, type 2 

diabetes, obesity, and advanced age may compromise cardiac autophagy and mitophagy, 

disrupting this adaptive physiological response to stress.
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