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Abstract

Purpose—Due to suboptimal outcomes in muscle-invasive bladder cancer even with
multimodality therapy, determination of potential genetic drivers offers the possibility of
improving therapeutic approaches and discovering novel prognostic indicators.

Experimental Design—Using pTN staging, we case-matched 81 patients with resected >pT2
bladder cancers for whom perioperative chemotherapy use and disease recurrence status were
known. Whole exome sequencing was conducted in 43 cases to identify recurrent somatic
mutations and targeted sequencing of 10 genes selected from the initial screening in an additional
38 cases was completed. Mutational profiles along with clinicopathologic information were
correlated with recurrence-free survival (RFS) in the patients.

Results—We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in
addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of
somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1
or BRCA2) had a higher overall number of somatic mutations (p=0.011). Importantly, after a
median follow-up of 40.4 months, carriers of somatic mutations (n=25) in any of these six DNA
repair genes had significantly enhanced RFS compared to non-carriers (median 32.4 vs. 14.8
months; hazard ratio of 0.46, 95% CI 0.22 to 0.98; p=0.0435), after adjustment for pathologic pTN
staging and independent of adjuvant chemotherapy usage.
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Conclusion—Better prognostic outcomes of individuals carrying somatic mutations in DNA
repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder
cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in
bladder cancer is warranted.
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Introduction

Bladder cancer is the sixth most common cancer type in the United States and
approximately 72,500 individuals were diagnosed in 2012 (1). Patients with superficial
(low-grade papillary) tumors generally have a good prognosis with a 5-year survival rate
exceeding 90%, but those with muscle-invasive or locally advanced disease at surgical
resection have a significant risk of recurrence with 5-year survival rates of 30-60% (2).
Evidence have suggested invasive bladder cancers could have evolved from distinct
molecular pathways as compared to papillary-type cancers (3). Systemic chemotherapy
options for bladder cancer beyond platinum-based therapy are very limited, and no new
drugs have been approved in the United States for metastatic bladder cancer in over 20 years
(4). Although a number of newer, molecularly targeting drugs have been developed and
approved for multiple cancer types in the last two decades, no such drug has been developed
for the treatment of bladder cancer. This is likely due, in part, to the relatively limited
molecular understanding of invasive bladder cancers and lack of knowledge about potential
genetic drivers of invasive forms of the disease. Hence, it is of priority to discover novel
genetic pathways involved in the carcinogenesis of muscle-invasive bladder cancer for the
assessment of risk stratification and for development of novel drugs.

To identify such targets in bladder cancer, new technologies in genomics have been applied.
High-throughput genotyping of genetic variations has enabled researchers to identify genetic
variants that increase the risk of bladder cancer (5). Furthermore, rapid progresses in next
generation DNA sequencers have revolutionized the cancer genomics field and a huge
amount of information for somatic alterations in various types of human cancer has been
accumulated in the last several years. In particular, recent efforts by The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium (ICGC) have led to the
comprehensive molecular characterization of various solid human cancers. Regarding
bladder cancer, a few papers have reported results of somatic mutational analysis and
identified genes significantly mutated in this cancer (6-10). However, due to the large scale
nature of these genomic projects and the scarcity of information on clinical outcomes
associated with the analyzed human samples, there have been few studies that have
attempted to comprehensively analyze mutational profiles as paired with clinical outcomes.

In this study, we focused on characterization of somatic mutations in muscle-invasive (stage
T2 and above) bladder cancers from 81 patients without any prior neoadjuvant
chemotherapy (to avoid the effect of genotoxic agents) to elucidate novel targets and
potential molecular signatures associated with clinical outcomes in bladder cancer.
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Patients and Methods

Sample collection and processing

We analyzed patient clinical follow-up data from available cases in our institutional biobank
that allowed us to characterize cases according to their recurrence outcomes. Case-matching
using pTN staging was performed wherever possible to identify approximately equal groups
of patients with and without disease recurrence after definitive cystectomy to enable
comparison between mutational profiles and recurrence status. Patients who received
neoadjuvant chemotherapy before surgical resection of their tumors were intentionally
excluded, since cytotoxic and genotoxic effect of chemotherapeutic drugs could bias the
genetic make-up of tumor genomes for analysis. A subset of patients received adjuvant
chemotherapy if recommended after consultation with a medical oncologist. For the case-
matched non-recurrence subjects, notably only patients with a substantial length of clinical
follow-up were selected for inclusion (median 40.4 months) to ensure that such cases were
truly non-recurrent. A panel of 43 patients with muscle-invasive bladder carcinomas was
selected for whole exome sequencing with availability of tumor and corresponding normal
control samples (Table 1). An additional set of 38 patients was selected for targeted gene
sequencing for a total of 81 patients analyzed (Table 2). Whenever possible, the source of
the normal DNA control was DNA extracted from a peripheral venous blood draw. For
patients without such a sample available, adjacent normal bladder tissue was used for
extraction of normal DNA. A subset of the samples were reviewed by an attending
genitourinary oncology pathologist for verification of tumor and normal tissue
qualifications, in particular to ensure sufficient tumor nuclei percentage (for tumor samples)
and the absence of tumor in the adjacent normal bladder tissue when used as normal
controls. The tumor and normal tissue review information has been presented in
Supplementary Table 1 and 2 respectively. The overall characteristics of the patient
population were also summarized in Supplementary Table 3, illustrating a group of well-
matched patients within the 81 cases. Sample collection was conducted under institutional
review board approval (University of Chicago IRB #15550-B and 13-0526; lwate Medical
University approved IRB protocol HG H24-20). Pathologic stage at the time of surgical
resection and subsequent clinical follow-up information (adjuvant chemotherapy; recurrence
data) were recorded. Tissue samples were either frozen in regular OCT media, or formalin-
fixed and embedded in paraffin. Genomic DNA (gDNA) was extracted using column
purification (Qiagen DNA mini kits) after tissues were frozen in nitrogen and pulverized by
the Cryopress (Microtec Co. Ltd., Japan). For samples embedded in paraffin, tissues were
either punched or carved out in thin slivers and extracted with the truXTRAC™ FFPE DNA
kit (Covaris Inc).

Whole exome sequencing

DNA libraries for whole-exome sequencing were constructed using the lon Plus fragment
library kit (Life Technologies, Carlsbad, CA, USA). Enrichment of the exonic regions was
carried out by a probe hybridization approach using the lon Targetseq Exome work flow
(Life Technologies, Carlsbad, CA, USA) according to the supplier’s protocol. The final
exome libraries were quantitated on the Agilent Tapestation system (Agilent Technologies,
Santa Clara, CA, USA) before proceeding to the template preparation step. Optimal amount
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of final exome library (~7pM) was used in the template reaction on the OneTouch2
instrument (Life Technologies, Carlsbad, CA, USA) to achieve monoclonal amplification on
the lon Sphere Particles (ISPs) according to the standard protocol (11). The sample was
loaded onto lon Proton P1 v2 chip and sequenced on the lon Proton instrument (Life
Technologies, Carlsbad, CA, USA)

Targeted gene sequencing

A customized primer set for a selected panel of 10 genes was designed on the lon Ampliseq
Designer (Version 3.4.3) to maximize the exon coverage (99.7%) of target genes. Amplicon
and multiplex library construction were conducted using the lon Ampliseq Library 2.0 kit
(Life Technologies, Carlsbad, CA, USA) and lonXpress barcode kit 1 and 2. The individual
final libraries were quantitated on the Agilent Tapestation system (Agilent Technologies,
Santa Clara, CA, USA) before making a mixture of approximately equal amounts and
proceeding to the template preparation step. An optimal amount of final library (~7pM) was
used in the template reaction on the OneTouch2 instrument (Life Technologies, Carlsbad,
CA, USA) to achieve monoclonal amplification on the lon Sphere Particles (ISPs) according
to the standard protocol (11). The sample was loaded onto lon Proton P1 v2 chip and
sequenced on the lon Proton instrument (Life Technologies, Carlsbad, CA, USA) as before.

Data processing and bioinformatics analysis

Sequencing reads were base-called and aligned to the human reference genome hg19 using
TMAP on the lon Torrent analysis server (Life Technologies, Carlsbad, CA, USA). Before
somatic variant calling was carried out, we conducted filtering of the full BAM files
generated by the sequencing reaction. Using the Picard (12) tools, we excluded sequence
reads (1) with mapping quality value (MQV) less than 30, (2) less than 50bp in length, (3)
>5% in overall base mismatches, and (4) those that were considered to be PCR duplicates
(only for whole exome sequencing data, but not for targeted sequencing data). After
applying these filtering criteria, somatic variants in each bladder carcinoma were detected
using EbCall (13) and VarScan2 (14) respectively for exome data sets and targeted
sequencing data sets. To minimize platform specific errors in our exome data set, EbCall is
able to reduce the number of false positive calls by analyzing the platform-specific
mutations found in 10 other reference normal DNAs. The variant list was further
streamlined by applying p-value thresholds (EbCall p value [p<0.01] AND Fisher p value
[p<0.05]) to minimize false positive calls. The EbCall parameters for single nucleotide
variants (SNV) were as follows: minimum depth=10x, minimum variant support depth=4x,
Minimum base quality=15, somatic P value threshold=0.05. The indel parameters were as
follows: minimum depth=20x, minimum variant support depth=4x, Minimum base
quality=15, somatic P value threshold=0.001, and mutation supported by reads from both
strands. As SNVs causing an amino-acid substitution or a non-sense mutation are more
likely to be functionally relevant for the pathogenesis of cancers, we focused our efforts on
these non-silent variants. Additionally these variants should be somatic in nature, in effect
only occurring in the tumor tissues but not in the normal germline DNA. To accomplish that,
we shortlisted non-silent somatic SNVs that are present at a frequency = 10% in the tumor
samples, and < 5% in the normal control DNA (standard threshold for filtering of somatic
variants) (14), and somatic indels present at a frequency = 20% in the tumor samples, and <
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3% in the normal control DNA. We determined the Sanger sequencing validation rate by
calculating the number of variants that could be validated as true as a percentage of all
variants that were selected for validation. The significance of the mutated genes was
calculated by applying the MuSic (15) and MutSigCV (16) algorithm, and establishing a
cut-off P value threshold of 0.01 that translates into a —logyo(P value) of 2. We analyzed the
effects of mutations in DNA repair genes on recurrence-free survival by the Kaplan-Meier
method and conducted a multivariate analysis with the Cox proportional hazards regression
model to compensate for the effects of pathological pTN staging on our observations using
the software R (version 3.0.2) (17). Two of the 43 cases were excluded from the clinical
correlation analysis as the patients died shortly after follow up without direct evidence of
disease recurrence (indicated as # in Table 1).

We analyzed a total of 81 surgically resected muscle-invasive bladder carcinomas from
patients who did not receive neoadjuvant chemotherapy (to avoid the potential bias of
selection of a subset of tumor cells caused by chemotherapy). Detailed clinical information
for the cases is provided in Tables 1 and 2. For whole exome sequencing of the first 43 cases
on the lon Proton, we obtained overall total sequencing output with an average read length
of approximately 150 bases and an average sequencing depth of 187.5x per base. We
applied our customized filtering pipeline followed by the detection of somatic variants in the
data sets using EbCall (13). Applying two independent mutation significance calculation
algorithms, Genome MusSic (15) and MutSigCV (16), we computed the significance levels
of frequently mutated genes, accounting for the gene size and background mutation rate
(Supplementary Table 4 and 5). The MutSigCV algorithm additionally considers the
replication timing and transcriptional activity of each gene.

We concentrated exclusively on non-silent somatic mutations that were likely to be
functionally relevant. Figure 1 shows the most significantly mutated genes defined by both
the MuSic and MutSigCV algorithms in our panel of 43 cases, with their mutation
frequencies derived from whole exome sequencing. We selected genes with a threshold cut
off of —logyg(p value) = 2 for inclusion in Figure 1. Among 139 somatic variants selected for
validation (from frequently-mutated genes), 128 (92.0%) were verified by the Sanger
sequencing method. The number and type (indels, silent and non-silent mutations) of
somatic mutations for each case are also summarized in the top panel of Figure 1. From our
exome sequencing analysis, the top 3 most frequent significantly mutated genes were TP53
(34.8%), KDM6A (16.3%), and UNC5C (14.0%). UNC5C was not previously reported to be
significantly mutated in human cancers, although somatic mutations were documented in a
small number of tumors in the TCGA datasets (18). We carried out more detailed analysis of
the type of mutations observed (Figure 2). All called mutations in UNC5C found by exome
sequencing were confirmed by follow-up Sanger sequencing. All of the non-silent mutations
in UNCS5C discovered in our study (verified by the Sanger method) caused amino-acid
substitutions and were scattered within multiple exons as shown in Figure 2. Two cases
(case no. 25 and 34) harbored two mutations each. In addition to the novel finding of
UNCS5C in our bladder cancer cases, we had also observed somatic mutations in other genes
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that had been recently reported in previous publications (6, 8, 10), as listed in
Supplementary table 6, providing more confirmatory evidence for their frequency.

To incorporate the analysis of clinical pathological data together with the associated
mutational profiles, we analyzed for recurrently mutated genes that may belong to a similar
biological or functional pathway. Interestingly, we detected that somatic mutations in six
DNA repair genes (whose mutations were found in at least two cases), ATM (5 mutations in
5 cases),ERCC2 (3 mutations in 3 cases), FANCD2 (3 mutations in 3 cases), PALB2 (5
mutations in 2 cases), BRCA1 (2 mutations in 2 cases), and BRCAZ2 (2 mutations in 2 cases),
had a likelihood to occur more frequently in non-recurrent bladder cancer cases. We also
found that tumors with mutations in at least one of these DNA repair genes had significantly
higher overall numbers of somatic mutations (307.4 mutations/case) as compared to those
without a mutation in any of them (155.4 mutations/case) (two tailed Student’s T-test,
p=0.011). Since aberrations in the repair pathway are known to influence clinical outcomes
(19), we were interested to further examine if mutations in these genes can be relevant for
the pathogenesis or clinical outcome of bladder cancer.

Hence, we further analyzed these six repair genes and the most frequently mutated genes
detected by exome sequencing (TP53, KDM6A, UNC5C, TSC1) in an additional 38 cases of
muscle-invasive bladder cancers with similar clinical characteristics by targeted-gene panel
sequencing. The targeted sequencing achieved higher overall coverage than whole exome
sequencing and we summarize the total number of somatic mutations observed in the 10
genes in the 81 cases in Table 3.

We also stratified 79 patients with the clinicopathological information to examine the
relationship between the mutational profile of the DNA repair genes and recurrence free
survival (RFS) (#16 and 31 as indicated in Table 1 were excluded from mutational profile
and clinical outcomes correlation since, although patient had no evidence of documented
disease recurrence, patient died shortly after last follow-up of unknown causes and it could
not be excluded that death was related to disease recurrence). We found that carriers of
mutations in DNA repair genes (either of ATM, ERCC2, FANCD2, PALB2, BRCA1 or
BRCAZ2) were more frequently represented in the non-recurrent disease group (Figure 3A).
Furthermore, carriers of somatic mutations in DNA repair genes have improved RFS in a
Kaplan-Meier analysis curve (Figure 3B). Although recurrent and non-recurrent cases were
well matched in our samples set (see Supplementary Table 3), we carried out a multivariate
Cox proportional hazards regression to adjust for pT and pN stages to account for the known
prognostic factors of the pT stage and nodal status in our analysis. After multivariate
regression, we found that mutations in DNA repair genes remained significantly associated
with longer recurrence free survival (p= 0.0435, hazard ratio of 0.46, 95% CI 0.22 to 0.98).
In other words, for patients who were carriers of somatic mutations in DNA repair genes,
they had a 50% reduced relative risk of disease recurrence as compared to patients who were
non-carriers. Carriers of mutations in these DNA repair genes (n=25) had a median disease
free survival period of 32.4 months (9 patients recurred within this group, 16 have not in the
observation period), whereas non-carriers (n=54) had a median disease free survival of only
14.8 months (23 patients had non-recurrent disease, 31 patients had recurrent disease).
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As somatic mutations that are deleterious in nature to protein function are more likely to
play an important role for a disease phenotype, it is of interest to investigate if the observed
somatic mutations in DNA repair genes are likely to affect their biological function.
Therefore using four commonly utilized predictors of missense mutations on protein
function (20), namely SIFT(21) (Sorting Intolerant From Tolerant) program,
Polyphen-2(22), LRT(23) (likelihood ratio test), and Mutation taster (24), we demonstrate
the predictions for all the observed somatic mutations in DNA repair genes in
Supplementary Table 7. For example, we observed that the majority of missense somatic
mutations in the ATM gene were predicted to be deleterious by all 4 predictor algorithms.

Discussion

Our analysis identified at relatively high frequency a novel significantly mutated gene
UNCS5C (9.9%) that was previously unreported in earlier studies (6, 7, 10). UNC5C is a
member of the netrin-1 receptor family that functions as a dependence receptor (25), and
two well-known cancer related proteins, RET and Patched, have also been classified as
dependence receptors (26, 27). When the ligand netrin-1 is present, these dependence
receptors generate survival signals to cells. On the other hand, when the ligand is absent, the
receptors send pro-apoptotic signals to trigger cell death (25). Significant somatic mutations
of UNCSC have not been previously reported in bladder cancer, although a search of the
TCGA bladder cancer dataset shows that a small number of samples were found to harbor
UNCS5C mutations (10). Previous reports have suggested tumor suppressive effects of the
UNCS5C gene product due to its down regulation in colorectal malignancies through
promoter methylation (28, 29). Also, certain germline variants of UNC5C were reported in
individuals predisposed to familial colorectal carcinoma (30), and the inactivation of
Unc5h3 in mice, the human UNC5C ortholog, was shown to enhance progression of
intestinal tumors (31). The down-regulated expression of netrin-1 receptors like DCC and
UNCS5C through specific genetic alterations in tumors is likely to reduce pro-apoptotic
signals and enhance survival of tumor cells (32). More recently, the function of the UNC5
family of receptors has been implicated in the regulation of cell death processes in bladder
cancers (33, 34). More specifically, bladder cancer specimens were found to have low
UNCS5A and UNC5D expression, and further depletion of the endogenous levels of UNC5A
and UNCS5D gene expression reduced the amount of cell death induced by chemotherapeutic
agents (33, 34). Considering the aforementioned evidence, we hypothesize that the UNC5C
gene could also harbor tumor suppressive effects, and its somatic mutations in bladder
cancer may inactivate protein function and increase cancer cell survival, or cause a
constitutive activation of the receptor pathway (sending a survival signal to the cells and
reducing cellular apoptosis) that can result in over-proliferation of cancer cells and
accelerate progression of muscle-invasive bladder carcinoma. Moreover, as UNC5C encodes
for a cellular signaling receptor, this pathway could suggest its potential as a valuable
molecular target. To determine whether UNC5C somatic mutations may be associated with
specific histological characteristics of muscle invasive bladder cancers, we examined the
histological types as presented in Table 1 and we found that four of eight cases with UNC5C
somatic mutations were classified to have some squamous-cell component; one was
squamous carcinoma of the bladder, and three were urothelial carcinomas with squamous
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differentiation. One case was an adenocarcinoma. The remaining three cases were
transitional urothelial carcinomas. Although the number of cases is too small to make
definitive conclusions, the frequent observation of UNC5C somatic mutations in our patient
population might be associated with the squamous-cell phenotype. This may explain why
UNCS5C mutations were frequently observed in our patient population, and not in other
studies if the previous study populations lacked bladder cancer samples with significant
squamous differentiation. However we are aware of the limitations to the significance of our
findings regarding UNC5C, as we did not observe a significant correlation with clinical
outcome. Also with a relatively limited numbers of tumors, there is a need for additional
direct functional evidence using carcinogenesis models.

In our exome sequencing study, we also found novel significant somatic mutations at the
frequency of 9.3% in CDKN1B, RHOA, CKAP2 and A1CF that were previously unreported
in bladder cancer, though CDKN1B and RHOA are involved in cell cycle control and cell
motility, which may contribute to invasive and metastatic processes. CDKN1B was reported
to be somatically mutated in small intestinal neuroendocrine tumors and associated with
hereditary prostate cancer risk (35, 36). CKAP2 encodes a microtubule-associated protein
that regulates cellular mitotic exit during division and its up regulation has been detected in
gastric cancer (37). A1CF encodes for APOBEC1 complementation factor (ACF), a RNA-
binding protein involved in the RNA editing processes that impacts cellular survival (38). It
will be of interest to investigate the significance of these genes in bladder cancer by
additional functional studies.

As compared to recently published reports (6-8, 10) that delineated several significantly
mutated genes in bladder cancer, our present study found several genes, with the
significantly high frequency of somatic mutations, such as TP53 (40.7%), KDM6A (21.0%),
TSC1 (12.3%), NFE2L2 (9.3%) and ELF3 (9.3%) in agreement with the previous studies (6,
7, 10). Additionally, in the TCGA study (10), the authors found frequent mutations in the
genes TP53 (49%), KDMB6A (24%), RB1 (13%), NFE2L2 (8%), ELF3 (8%), whose mutation
frequency were very similar to our findings (Figure 1 and Supplementary Table 6).
Conversely, a number of other significantly mutated genes reported previously were found
to be non-significant in our analysis (Supplementary Table 6); for example, STAG2
mutations were frequently observed in previous reports (6, 8, 10), but we found no somatic
mutation among 43 tumors in our exome study although it has been acknowledged in the
previous publication that STAG2 mutations were less frequent in invasive bladder cancers
(8). Mutations in the ARID1A gene, which was reported as significantly mutated in multiple
cancer types (18), were found in 4 cases, but this gene was also judged to be non-significant
in our analysis. It is of note that even if the list of recurrently mutated genes significantly
overlapped among the different studies, the gene lists were not completely identical with one
another. It is not unexpected that there are differences in the significant mutational profiles
established by different groups, and the differences between our findings and the previously
reported data could also be partly explained by the analytical algorithms utilized. In our
analysis we used EbCall for somatic mutation calling, and both Genome MuSic and
MutSigCV to estimate significance. Genes that were designated as significantly mutated by
these two different algorithms can be more confidently accorded higher importance and may
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be more likely to exert functional significance. In addition, clinical and pathological
differences between the sequenced populations could have contributed to this disparity as
well, especially since we selected a population with only muscle-invasive disease (as
opposed to non-invasive disease) without any prior chemotherapy. The exclusion of bladder
tumors treated with neoadjuvant chemotherapy in our studies has allowed us to establish an
accurate mutational profile without certain biases exerted by genotoxic drugs on the
molecular make-up of the tumors. Most importantly, it has also been shown that the
application of specific sequencing platforms like the lon Torrent may capture variants that
are missed on other platforms (39), although some commonly reported genes could be
missed. Overall the use of alternative platforms will enable us to build a more
comprehensive molecular landscape of human cancer, instead of using information from
only one sequencing technology. Finally the strength of our study lies in the comprehensive
dataset of clinical outcomes that were carefully curated and correlated with mutational
profiles.

As a result, we found that carriers of somatic mutations in the six DNA repair genes (either
of ATM, ERCC2, FANCD2, PALB2, BRCA1 or BRCA2) harbored an overall higher larger
number of somatic mutations; we also observed that this group of patients had an improved
recurrence-free survival. This could be counterintuitive, as we would have expected
aberrations in the DNA repair pathway might worsen the outcome of cancer patients by the
progressive accumulation of genetic mutations that failed to be repaired. However, it is
important to consider that amino acid substitutions caused by missense mutations can
generate novel cancer-specific antigens that could become targets of our immune system,
particularly of cytotoxic T lymphocytes (40). Hence, it could be hypothesized that mutations
in DNA repair genes and subsequent cancer-specific antigen generation may have enhanced
immune activity and resulted in better clinical outcomes including the observed longer
recurrence-free survival. Although our data showed an interesting correlation between
somatic mutations in DNA repair genes and recurrence free survival, there is a need to
further validate the findings in an even larger cohort (and ideally prospectively) in future
studies prior to clinical use. The potential clinical utility of this information is that, if
prospectively validated, it could provide important additional prognostic information about
patients undergoing radical cystectomy (beyond pathologic stage) to better inform clinical
decisions about recurrence risk and use of adjuvant therapy.

In conclusion, we have identified novel frequent somatic mutations of UNC5C in muscle-
invasive bladder cancers. We also revealed a significant association between mutations in
DNA repair genes and improved clinical outcomes of bladder cancer patients that, if
validated, could be applied as part of potential prognostic algorithms during clinical
decision-making when treating patients with this difficult disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Muscle-invasive bladder cancers frequently recur and often have a poor prognosis despite
combined surgical and chemotherapy approaches. Therefore the discovery of novel
genetic drivers for this disease is critical. We performed next-generation sequencing of a
total of 81 muscle-invasive bladder cancers and identified previously unreported somatic
mutations of UNC5C (9.9%) that warrants further investigation as a molecular target.
Next we examined the relationship of somatic mutational profile with recurrence-free
survival and found that the presence of somatic mutations in one or more of six DNA
repair genes (ATM, ERCC2, FANCD2, PALB2, BRCA1 and BRCA2) was significantly
associated with enhanced recurrence-free survival after adjustment for pathologic TN
staging. We propose that the better prognostic outcomes of individuals carrying somatic
mutations in these DNA repair genes suggest their utility as favorable prognostic events
in muscle-invasive bladder cancer, a novel and potentially significant clinical finding.
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Figure 1.

AT

The significantly mutated genes derived from both Genome MuSic and MutSigCV
algorithms were represented in this figure. In the top panel, a graphical representation of the
number and type of somatic mutations observed in the significantly mutated genes of each
sample was presented. The frequencies (% of analyzed samples) of mutations in each gene
are depicted in the bar graph on the left and —logyg(p-value) is shown on the right panel.
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Figure 2.

Schematic representation of the UNC5C gene indicating exon-intron regions and the
nucleotide and amino acid location of the somatic mutations observed.
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Figure 3.
A. Frequencies of mutations in each DNA repair gene detected in our panel of bladder

carcinoma patients in relationship to status of recurrence and adjuvant chemotherapy. B.
Kaplan-Meier analysis of the effect of mutations in DNA repair genes on recurrence-free
survival. A blue line denotes carriers of mutations in DNA repair genes (n=25). A black line
denotes non-carriers of mutations in DNA repair genes (n=54). The open circle markers on
survival curves are censored cases.
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Yap etal.
Table 3
Summary of observed somatic mutation frequencies in 81 muscle-invasive bladder
cancers
Gene No. of mutated cases  Frequency % (n=81)
TPS3 33 407
KDM6A 17 21.0
TSC1 10 12.3
ATM 10 12.3
UNC5C 8 9.9
BRCA2 7 8.6
ERCC2 5 6.2
FANCD2 4 4.9
PALB2 4 49
BRCA1 3 3.7
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