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SUMMARY

Nutrient intake is often measured with substantial error both in commonly used surrogate 

instruments such as a food frequency questionnaire (FFQ) as well as in gold standard type 

instruments such as a diet record (DR). If there is correlated error between the FFQ and DR, then 

standard measurement error correction methods based on regression calibration can produce 

biased estimates of the regression coefficient (λ) of true intake on surrogate intake. However, if a 

biomarker exists and the error in the biomarker is independent of the error in the FFQ and DR, 

then the method of triads can be used to obtain unbiased estimates of λ, provided that there is 

replicate biomarker data on at least a subsample of validation study subjects. Since biomarker 

measurements are expensive, for a fixed budget one can either use a design where a large number 

of subjects have 1 biomarker measure and only a small subsample is replicated, or have a smaller 

number of subjects and have most or all subjects validated. The purpose of this paper is to 

optimize the proportion of subjects with replicated biomarker measures, where optimization is 

with respect to minimizing the variance of ln(λ̂). The methodology is illustrated using vitamin C 

intake data from the EPIC study where plasma vitamin C is the biomarker. In this example, the 

optimal validation study design is to have 21% of subjects with replicated biomarker measures.
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1. INTRODUCTION

In nutritional epidemiology, the weighed diet record (DR) is considered the gold standard 

for assessing nutrient intake. However, it is expensive to obtain diet records and the food 

frequency questionnaire (FFQ) is usually used as an instrument to obtain dietary intake data 

from large numbers of people. It is well known that the FFQ and other dietary assessment 

methods have appreciable measurement error. To correct for measurement error, a validation 

study is often performed where both the FFQ (Z) and DR (X) are administered to the same 

subjects. The regression calibration factor estimated by the regression coefficient of DR on 

FFQ can then be used as an unbiased estimate of the regression coefficient (λ) of true dietary 
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intake (T) on Z, which can then be used for measurement error correction. However, this is 

only valid if measurement error in the DR and FFQ are uncorrelated, an assumption which 

may be violated. To address this issue this design is often enhanced with additional 

biomarker measurements (W). If the error in W is uncorrelated with the error in Z and X, 

then correlated error methods [1] can be used to estimate the regression calibration factor λ. 

The only requirement is that there be available replicate biomarker measurements on at least 

a subset of participants.

However, since biomarker measurements are expensive, it would be desirable to estimate 

the optimal proportion of subjects (θ) with replicate values of W, given a fixed total number 

of biomarker measures (B). The goal of this paper is to obtain a closed-form expression for 

var(λ̂) and to use it to estimate the optimal value of θ.

2. METHODS

2.1 Balanced Design

We let Zij = surrogate measure for the jth replicate from the ith subject, j=1, …, mz, i=1, …, 

N; Xik = gold standard measure for the kth replicate from the ith subject, k=1, …, mx, i=1, 

…, N; Wil = biomarker for the lth replicate from the ith subject, l=1, …, mw ≥2, i=1, …, N.

Thus, each subject provides mz replicates for the surrogate, mx replicates for the gold 

standard and mw replicates for the biomarker.

From Spiegelman, Zhao and Kim [1] we consider the model

(1)

where xi = true intake for the ith subject

ri= person-specific bias in the surrogate measure 

si= person-specific bias in the gold standard measure 

ezij, exik, ewil are distributed  and are mutually independent 

of each other. , and ri, si are mutually 

independent of ezij, exik, ewil. Our goal is to estimate the regression calibration factor (λx|Z) = 

regression coefficient of x on Z. It can be shown from (1) that the MLE of λx|Z is given by

(2)

We have found that, in simulation studies, that the distribution of λ̂x|Z is generally skewed, 

while the distribution of ln(λ̂x|Z) is approximately normal. Hence, two-sided 100% × (1-α) 

confidence limits for λx|Z are obtained from [exp(c1), exp(c2)], where 
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 and zp = pth percentile of a N(0,1) distribution. 

It remains to derive an analytic expression for var[ln(λ̂x|Z)]. For this purpose, we take the 

natural log of each side of equation 2 and obtain:

(3)

Thus,

(4)

We derive var(A). The other components can be derived in a similar manner. For notational 

purposes, it will be useful to introduce the notation:

μabc =E[(Zij − Z̄)a(Xik − X̄)b(Wil − W̄)c] which we estimate by

(5)

where a* = 1 if a ≥ 1,=0 else, b* =1 if b ≥ 1,=0 else and c* =1 if c ≥ 1,=0 else. Using the 

delta method, we have that

(6)

Furthermore,

(7)

where k1 ≠ k2 and j1 ≠ j2. We can write

(8)

Similarly, we can write
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In general, we introduce the notation

where j1 ≠ j2 ≠ ··· ≠ jr, k1 ≠ k2 ≠ ··· ≠ ks, and l1 ≠ l2 ≠ ··· ≠ lt.

Thus, we have:

(9)

Similarly,

and

(10)

Upon combining equations 6–10, we obtain

(11)

The other components in equation 4 are obtained similarly and are provided in Web 

Appendix A.

Upon combining equations A1–A10, we obtain var[ln(λ̂x|Z)] in equation 4.

To obtain confidence limits for λx|Z we assume asymptotic normality of ln(λx̂|Z) whereby a 

two-sided 100% × (1-α) CI for λx|Z is given by [exp(c1), exp (c2)], where

(12)

and z1−α/2= upper α/2 percentile of a N(0,1) distribution.
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2.2 Unbalanced Design

We now consider the unbalanced design situation. In this case, we assume all subjects have 

the same number of replicates for the surrogate dietary instrument (e.g., FFQ) and the gold 

standard dietary instrument (e.g., DR) denoted by mz and mx, respectively. However, since 

biomarker measurements are the most expensive, we assume that ng of the subjects have g 

biomarker measurements, where g = 1,2 and n1 + n2 = N. Also, let bi = the number of 

replicate biomarker measurements for the ith subject and let . Finally, 

let θ = proportion of biomarker measurements that are replicated =2n2/M where 0 ≤ θ ≤ 1. 

We assume that M is fixed due to budgetary constraints and we wish to determine the value 

of θ that minimizes var[ln(λx̂|Z)] in equation 4.

We will derive var(A) in the unbalanced case and present the results for the other 

components of equation 4 in Appendix B. In the unbalanced case, we estimate μabc by

(13)

where a* and b* are defined in equation 5.

We have

(14)

where μ101 is estimated using equation 13.

We have:

(15)

Furthermore,

(16)

If we denote  by M(2) and combine equations 14, 15 and 16, we obtain

Rosner et al. Page 5

Stat Med. Author manuscript; available in PMC 2016 January 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(17)

Note, if there are a total of N subjects of whom n1 have one replicate and n2 have two 

replicates, then M = 2n2 + n1, M(2) = 4n2 + n1, and M(2) − M =2n2. In this case, equation 17 

reduces to:

(18)

Derivation of the other components of equation 4 under an unbalanced design are obtained 

similarly and are provided in Web Appendix B.

Finally, a large sample 100% × (1-α) CI for λx|Z is given by [exp(c1), exp(c2)] where

2.3 Optimization

We wish to minimize var[ln(λ̂x|Z)] in equation 4 in the setting where bi= 1 or 2. We can re-

express equation B.1 in Web Appendix B as a function of θ as follows:

(19)

where

Similarly,

(20)

(21)

(22)

(23)
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(24)

(25)

(26)

(27)

(28)

The expressions for f1A, …, fCD are given in Appendix C.

Note that in general if there is positive correlation among replicate Z, X and W values, then 

it can be shown that f2A > 0, f2B > 0, fC > 0, fD > 0, f2,AB > 0, fAD > 0, fBD > 0, and fCD > 0. 

Hence, var (A), var (B), var (D), cov(A, B), cov(A, D), cov(B, D) and cov(C, D) are 

minimized if θ = 0, i.e., all subjects have only one biomarker measurement, since this will 

maximize the number of subjects. Conversely, var(C) is minimized if θ = 1; where all 

subjects have two biomarker measurements.

Assume all subjects have either one or two biomarker measurements. If we combine 

equations 4 and 19–28, we obtain:

(29)

where

If we differentiate V(θ) with respect to θ in equation 29 and collect terms, we obtain the 4th 

degree polynomial equation as follows:

(30)

where
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Although it is possible to obtain an exact solution to this equation, it is simpler to use a 

polynomial equation solver (e.g., the POLYROOT function of SAS) to determine the 

solution that satisfies 0 < θ < 1.

3. SIMULATION STUDY

We simulated data from a hypothetical dataset with a similar correlation structure as in our 

example with (Z1, Z2, X1, X2, W1, W2)~N(μ, Σ) where μ = (100, 100, 100, 100, 50, 50) and

We then estimated ln(λx|Z) in equation 3, its variance in equation 4 and a 95% CI for λx|Z in 

equation 12 from 4,000 simulated samples. The results are given in Table 1. We see that 

there is good agreement between the mean theoretical variances and covariances considered 

in equation 4 and derived in Appendix B and the corresponding empirical variances and 

covariances obtained from the 4,000 simulated samples. Also, the overall estimate of λx|Z 

has little bias and the estimated 95% confidence intervals have approximately (94.1%) 

coverage.

4. EXAMPLE

We analyzed data from the EPIC-Norfolk study [2]. Individuals were seen at a baseline visit 

and at a 4-year follow-up visit as part of the study. At both baseline and follow-up, a food 

frequency questionnaire (FFQ) and a 1-week diet record (DR) were obtained. In addition, a 

blood sample was obtained at both the baseline and 4-year follow-up visit. In this example, 

we focus on dietary vitamin C and assess the regression coefficient of true dietary vitamin C 

intake (xi in equation 1) on FFQ vitamin C intake (Zij in equation 1) which is given by λ̂x|Z 

in equation 2 using plasma vitamin C as a biomarker. We refer to λ̂x|Z as the estimated 

regression calibration factor. For this example, we assume that true dietary intake has not 

changed over four years, but allow for the possibility of correlated error between FFQ and 

DR intake (ρrs in equation 1). We also assume that there is no systematic error in the 

biomarker and that the random error in FFQ intake, DR intake and plasma vitamin C are 

uncorrelated. The marginal and joint distribution of FFQ intake (Zij), DR intake (Xij) and 

plasma vitamin C (Wij) are given in Table II. There is moderate correlation between dietary 

vitamin C (Z, X) and plasma vitamin C (W) which are similar for the FFQ and DR when the 

intake assessments at year 4 are compared with the biomarker values at baseline (which 

provides the most appropriate assessment of their relative measurement of long-term intake). 

For the purpose of better approximating a normal distribution, the log transform was used 

for each of dietary vitamin C from FFQ (Zij) and DR (Xik) in subsequent analyses.
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In Table III we provide the point estimate and 95% CI for λx|Z as well as the individual 

components used in equation 12. We see that the estimated regression calibration factor 

(λx|Z) is 0.308 with 95% confidence limits from 0.201 to 0.471. The point estimate implies 

that there is substantial measurement error in the assessment of dietary vitamin C. For 

example if the estimated hazard ratio based on observed vitamin C is 1.2 then the 

deattenuated estimate would be 1.21/0.308 = 1.8, indicating substantial deattenuation. The 

degree of measurement error in the FFQ will vary depending on the nutrients/foods being 

considered. In general, beverage intake has less measurement error, while food intake can 

have considerable measurement error. Dietary vitamin C is derived mainly from fruits and 

vegetables which have moderate measurement error.

5. OPTIMIZATION

We also used the EPIC data to estimate the optimal proportion of replicated biomarker 

measurements based on equations 29 and 30. The results are presented in Table IV. The 

estimated parameters (C1, C2, C3), (d1, d2) in equations 29 and 30 are given in the left side 

of the table. The solution using the POLYROOT function of SAS was θ̂ = 0.349 = the 

optimal proportion of replicated biomarker measurements (i.e., 2n2/(n1 + 2n2)). It follows 

directly that the optimal estimate of n2/n1 = 0.349/[2(0.651)] = 0.268 or equivalently n2/(n1 

+ n2) = 0.268/1.268 = 0.211. Thus, the optimal design (i.e., min var[ln(λ̂x|Z)]) is for 

approximately 21% of the sample to have replicated biomarker measurements given a fixed 

total of M biomarker measurements. To assess the sensitivity of var[ln(λ̂x|Z)] to variation in 

θ we computed var[ln(λ̂x|Z)] for different values of θ. The results are given in the right hand 

side of Table IV and are plotted in Figure 1. We see that the variance function is fairly flat 

between θ̂ = 0.2 – 0.5 corresponding to a proportion of subjects with replicated biomarkers 

of 0.14 to 0.33. However, the variance increases moderately outside these limits.

6. DISCUSSION

Correlated error between gold standard dietary measures such as a diet record and surrogate 

measures such as a food frequency questionnaire can bias standard techniques for correcting 

for measurement error such as regression calibration. The method of triads using a 

biomarker in addition to the above dietary instruments is an effective method for eliminating 

this bias. However, it requires replicate measurements on the biomarker for at least a subset 

of study participants [1]. In the current paper, we derive a closed form expression for the 

variance estimate of the Spiegelman, Zhao and Kim estimator of the regression calibration 

factor (λx|Z) and associated 95% confidence limits for both balanced (same number of 

biomarker replicates per subject) and unbalanced (different number of biomarker replicates 

per subject) designs.

Ideally, all subjects in a validation study would have replicated biomarker measurements; 

however, these measures are usually expensive. Thus, in this paper, we derive an expression 

for the optimal proportion of validation study subjects with replicated biomarker measures 

given a fixed total number of biomarker measures (M), where optimality is defined as 

minimizing var[ln(λ̂x|Z)]. In the EPIC example, this was about 21%, but would be expected 

to vary for other biomarkers or in other studies.
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The algorithms used to derive var[ln(λ̂x|Z)] and associated confidence limits and the optimal 

design formulas in equations 29 and 30 are available in the form of SAS macros from the 

authors upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Table I

Simulation Study Results, 4000 replications

Component Theoretical value* Empirical estimate Coverage probability

var(A) 0.0351 0.0389

var(B) 0.0204 0.0233

var(C) 0.0234 0.0234

var(D) 0.0041 0.0041

cov(A,B) 0.0169 0.0181

cov(A,C) 0.0109 0.0116

cov(A,D) 0.0048 0.0049

cov(B,C) 0.0108 0.0116

cov(B,D) 0.0022 0.0023

cov(C,D) 0.0009 0.0010

cov(Zij, Wik) 48.0 48.0

cov(Xij, Wik) 64.0 63.9

cov(Wil1, Wil2) 40.0 39.8

var(Zij) 400.0 399.6

var[ln(λx̂|Z)] 0.0609 0.0672

λ̂x|Z 0.192 0.194** 0.941

*
Based on Web Appendix B

**
median

Computer program :/proj/stross/stros0c/measurmentErrBio/Undesignx4000a.sas 09/27/13
:/proj/stross/stros0c/measurmentErrBio/all_new2.txt 09/27/13
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Table III

Estimation of Regression Calibration factor in EPIC data example, n=323

A* 2.998

B* 5.003

C* 263.319

D* 0.1852

var(A) 0.034

var(B) 0.019

var(C) 0.019

var(D) 0.007

cov(A,B) 0.018

cov(A,C) 0.013

cov(A,D) 0.009

cov(B,C) 0.011

cov(B,D) 0.004

cov(C,D) 0.003

λ̂x|Z 0.308

log(λ̂x|Z) −1.179

var[log(λ̂x|Z)] 0.0473

95% CI for λx|Z (0.201,0.471)

*
A = cov(Zij, Wik); B = cov(Xij, Wik); C = cov(Wil1, Wil2); D = var(Zij)

Computer run: :/proj/stross/stros0c/measurmentErrBio/example1/example_usevitc.sas 6/4/12
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Table IV

Results of Optimization Procedure based on EPIC dataset

Parameter Value θ var[ln(λ̂x|Z)] n2/(n1 + n2)

C1 0.04120 0.10 0.0496 0.053

C2 0.00472 0.25 0.0273 0.143

C3 −0.00664 0.349 0.0259 0.208

d1 3.72420 0.500 0.0278 0.333

d2 0.45839 0.75 0.0340 0.600

θ̂ 0.349 0.90 0.0382 0.818

Computer program:
:/proj/stross/stros0c/measurmentErrBio/example1/example2_usevitc.sas 9/30/13
:/proj/stross/stros0c/measurmentErrBio/example1/test_getLambda.sas 9/30/13
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