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Abstract

In a previous report, we proposed a method for combining multiple markers of atrophy caused by 

Alzheimer’s Disease (AD) into a single atrophy score that is more powerful than any one feature. 

We applied the method to expansion rates of the lateral ventricles, achieving the most powerful 

ventricular atrophy measure to date. Here, we expand our method’s application to Tensor Based 

Morphometry (TBM) measures. We also combine the volumetric TBM measures with previously 

computed ventricular surface measures into a combined atrophy score. We further show that our 

atrophy scores are longitudinally unbiased, with the intercept bias estimated at two orders of 
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magnitude below the mean atrophy of control subjects at one year. Both approaches yield the most 

powerful biomarker of atrophy not only for ventricular measures, but for all published unbiased 

imaging measures to date. A two-year trial using our measures requires only 31 [22 43] AD 

subjects, or 56 [44 64] subjects with Mild Cognitive Impairment (MCI) to detect 25% slowing in 

atrophy with 80% power and 95% confidence.

Keywords

Linear Discriminant Analysis; shape analysis; Tensor Based Morphometry; ADNI; lateral 
ventricles; Alzheimer’s Disease; mild cognitive impairment; biomarker; drug trial; machine 
learning

1. Introduction

Imaging biomarkers of Alzheimer’s disease must offer sufficient power to detect brain 

atrophy in subjects scanned repeatedly over time (Cummings, 2010, Ross et al., 2012, 

Wyman et al., 2012). The expected cost of a drug trial may be prohibitively high, unless we 

can reasonably expect disease-slowing effects to be detected quickly enough and with 

reasonably few subjects. Imaging measures from standard structural MRI show considerable 

promise. Their use stems from the premise that longitudinal changes may be more precisely 

and reproducibly measured with MRI than comparable changes in clinical, CSF, or 

proteomic assessments; clearly, whether that is true depends on the measures used. The use 

of MRI in a drug trial has some caveats: most MR studies from published drug trials have 

detected no effect or even a small - and possibly irrelevant but significant - increase in 

atrophy in the treatment group. Brain measures that are helpful for diagnosis, such as PET 

scanning, may not be stable for large multi-center (N = several hundred) longitudinal trials 

that aim to slow disease progression. Other markers, such as CSF measures of amyloid and 

tau proteins to assess brain amyloid, may suffer the opposite problem of showing too little 

change during the clinical AD period. As a result, there is interest in testing the 

reproducibility of biomarkers, as well as methods to optimally combine them (Yuan et al., 

2012).

Recent studies have tested the reproducibility and accuracy of a variety of MRI-derived 

measures of brain change. Several are highly correlated with clinical measures, and can 

predict future decline on their own, or in combination with other relevant measures. 

Although not the only important consideration, some analyses have assessed which MRI-

based measures show greatest effect sizes for measuring brain change over time, while 

avoiding issues of bias and asymmetry that can complicate longitudinal image analysis (Fox 

et al., 2011, Holland et al., 2011, Hua et al., 2013), and while avoiding removing scans from 

the analysis that may lead to unfairly optimistic sample size estimates (Wyman et al., 2012, 

Hua et al., 2013). Promising MRI-based measures include the brain boundary shift integral 

(Schott et al., 2010, Leung et al., 2012), the ventricular boundary shift integral (Schott et al., 

2010) and measures derived from anatomical segmentation software such as Quarc or 

FreeSurfer, some of which have been recently modified to handle longitudinal data more 

accurately (Fischl and Dale, 2000, Smith et al., 2002, Holland and Dale, 2011, Reuter et al., 

2012).
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Although several power estimates are possible, the analysis advocated by the ADNI 

Biostatistics Core (Beckett, 2000), is to estimate the minimal sample size required to detect, 

with 80% power, a 25% reduction in the mean annual change, using a two-sided test and 

standard significance level α = 0.05 for a hypothetical two-arm study (treatment versus 

placebo). The estimate for the minimum sample size is computed from the formula below. β̂ 

denotes the annual change (average across the group) and σ̂2
D refers to the variance of the 

annual rate of change.

(1)

Here zα is the value of the standard normal distribution for which P[Z < zα] = α. The sample 

size required to achieve 80% power is commonly denoted by n80. Typical n80s for 

competitive methods are under 150 AD subjects and under 300 MCI subjects; the larger 

numbers for MCI reflect the fact that brain changes tend to be slower in MCI than AD and 

MCI is an etiologically more heterogeneous clinical category. For this reason, it is harder to 

detect a modification of changes that are inherently smaller, so greater sample sizes are 

needed to guarantee sufficient power to detect the slowing of disease.

Many algorithms can detect localized or diffuse changes in the brain, creating detailed 3D 

maps of changes (Leow et al., 2007, Avants et al., 2008, Shi et al., 2009), but the detail in 

the maps they produce is often disregarded when making sample size estimates according to 

(1), as the formula expects a single, univariate measure of change. In other words, it requires 

a single number, or ‘numeric summary’ to represent all the relevant changes occurring 

within the brain. To mitigate this problem, Hua et al. (Hua et al., 2009) defined a “statistical 

ROI” based on a small sample of AD subjects by thresholding the t-statistic of each feature 

(voxel) and summing the relevant features over the ROI; this approach was initially 

advocated in the FDG-PET literature to home in on regions that show greatest effects (Chen 

et al., 2010). In spirit, the statistical ROI is a rudimentary supervised learning approach, as it 

finds regions that show detectable effects in a training sample, and uses them to empower 

the analysis of future samples; the samples used are non-overlapping and independent, to 

avoid circularity. However, a simple threshold-based masking is known to potentially 

eliminate useful features, as binarisation loses a lot of the information present in continuous 

weights (Duda et al., 2001). While many studies have used machine learning to predict the 

progression of neurodegenerative diseases and differentiate diagnostic groups such as AD, 

MCI, and controls (Vemuri et al., 2008, Kohannim et al., 2010, Kloppel et al., 2012), we 

found no attempts in the literature that used learning to directly optimize power to detect 

brain change.

To address this issue, we observed that minimizing (1) is exactly analogous to one-class 

Linear Discriminant Analysis. We applied the method to surface-based longitudinal 

expansion rates of the ventricular boundary (Gutman et al., 2013), achieving the lowest 

sample size estimates of any ventricle-based measure of AD to date, both in terms of 

absolute and control-adjusted atrophy. Here, we apply the LDA-based weighting to recently 
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reported maps of whole brain volume change based on Tensor Based Morphometry (Hua et 

al., 2013). Further, we combine ventricular surface and TBM volume measures into one 

combined atrophy score. Our results show a marked improvement over the stat-ROI 

approach, achieving substantively lower sample size estimates than any ADNI-based report 

to date.

2. Materials and Methods

2.1. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research, 

approximately 200 cognitively normal older individuals to be followed for 3 years, 400 

people with MCI to be followed for 3 years and 200 people with early AD to be followed for 

2 years. For up-to-date information, see www.adni-info.org.

Longitudinal brain MRI scans (1.5 Tesla) and associated study data (age, sex, diagnosis, 

genotype, and family history of Alzheimer’s disease) were downloaded from the ADNI 

public database (http://www.loni.ucla.edu/ADNI/Data/) on July 1st 2012. The first phase of 

ADNI, i.e., ADNI-1, was a five-year study launched in 2004 to develop longitudinal 

outcome measures of Alzheimer’s progression using serial MRI, PET, biochemical changes 

in CSF, blood and urine, and cognitive and neuropsychological assessments acquired at 

multiple sites similar to typical clinical trials.

All subjects underwent thorough clinical and cognitive assessment at the time of scan 

acquisition. All AD patients met NINCDS/ADRDA criteria for probable AD (McKhann et 

al., 1984). The ADNI protocol lists more detailed inclusion and exclusion criteria (Mueller 

et al., 2005a, Mueller et al., 2005b), available online http://www.alzheimers.org/

clinicaltrials/fullrec.asp?PrimaryKey=208). The study was conducted according to the Good 

Clinical Practice guidelines, the Declaration of Helsinki and U.S. 21 CFR Part 50-Protection 

of Human Subjects, and Part 56-Institutional Review Boards. Written informed consent was 
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obtained from all participants before performing experimental procedures, including 

cognitive testing.

2.2. MRI acquisition and image correction

All subjects were scanned with a standardized MRI protocol developed for ADNI (Jack et 

al., 2008). Briefly, high-resolution structural brain MRI scans were acquired at 59 ADNI 

sites using 1.5 Tesla MRI scanners (GE Healthcare, Philips Medical Systems, or Siemens). 

Additional data was collected at 3-T, but is not used here as it was only collected on a 

subsample that is too small for making comparative assessments of power. Using a sagittal 

3D MP-RAGE scanning protocol, the typical acquisition parameters were repetition time 

(TR) of 2400 ms, minimum full echo time (TE), inversion time (TI) of 1000 ms, flip angle 

of 8°, 24 cm field of view, 192×192×166 acquisition matrix in the x-, y-, and z-dimensions, 

yielding a voxel size of 1.25×1.25×1.2 mm3, later reconstructed to 1 mm isotropic voxels. 

For every ADNI exam, the sagittal MP-RAGE sequence was acquired a second time, 

immediately after the first using an identical protocol. The MP-RAGE was run twice to 

improve the chance that at least one scan would be usable for analysis and for signal 

averaging if desired.

The scan quality was evaluated by the ADNI MRI quality control (QC) center at the Mayo 

Clinic to exclude failed scans due to motion, technical problems, significant clinical 

abnormalities (e.g., hemispheric infarction), or changes in scanner vendor during the time-

series (e.g., from GE to Philips). Image corrections were applied using a standard processing 

pipeline consisting of four steps: (1) correction of geometric distortion due to gradient non-

linearity (Jovicich et al., 2006), i.e. “gradwarp” (2) “B1-correction” for adjustment of image 

intensity inhomogeneity due to B1 non-uniformity (Jack et al., 2008), (3) “N3” bias field 

correction for reducing residual intensity inhomogeneity (Sled et al., 1998), and (4) 

phantom-based geometrical scaling to remove scanner and session specific calibration errors 

(Gunter et al., 2006).

2.3. The ADNI-1 dataset

For our experiments, we analyzed data from 683 ADNI subjects with baseline and 1 year 

scans, and 542 subjects with baseline, 1 year and 2 year scans. The former group consisted 

of 144 AD subjects (age at screening: 75.5 +/− 7.4, 67 female (F)/77 male (M)), 337 

subjects with Mild Cognitive Impairment (MCI) (74.9 +/− 7.2, 122 F/215 M), and 202 age-

matched healthy controls (NC) (76.0 +/− 5.1, 95 F/107 M). The 2-year group (i.e., people 

with scans at baseline, and after a 1-year and 2-year interval) had 111 AD (75.7 +/− 7.3, 52 

F/59 M), 253 MCI (74.9 +/− 7.1, 87 F/166 M), and 178 NC (76.2 +/− 5.2, 85 F/93 M) 

subjects. All raw scans, images with different steps of corrections, and the standard ADNI-1 

collections are available to the general scientific community at http://www.loni.ucla.edu/

ADNI/Data/. We used exactly all ADNI subjects available to us (on Feb. 1, 2012) who had 

both baseline and 12 month scans, and all subjects with 24 month scans (available July 1, 

2012). The use of all subjects without data exclusion has been advocated by (Wyman et al., 

2012) and (Hua et al., 2013), because any scan exclusion can lead to power estimates that 

are unfairly optimistic, and many drug trials prohibit the exclusion of any scans at all.
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2.4 Surface Extraction and Analysis

Our surfaces were extracted from 9-parameter affine-registered, fully processed T1-

weighted anatomical scans. We used a modified version of Chou’s registration-based 

segmentation (Chou et al., 2008), using inverse-consistent fluid registration with a mutual 

information fidelity term (Leow et al., 2007). To avoid issues of bias and non-transitivity, 

we segmented each of our subjects’ two or three scans separately. In this approach, a set of 

hand-labeled “templates” are aligned to each scan, with multiple atlases being used to 

greatly reduce error. There were two templates from each of the three diagnostic groups, 

with one male and one female subject in each. Ventricular surfaces were extracted using an 

inverse-consistent fluid registration with a mutual information fidelity term to align a set of 

hand-labeled ventricular templates to each scan. The template surfaces were registered as a 

group following a medial-spherical registration method (Gutman et al., 2012). To improve 

upon the standard multi-atlas segmentation, which generally involves a direct, or a weighted 

average of the warped binary masks, we select an individual template that best fits the new 

boundary at each boundary point. A naïve formulation of this synthesis can be written as 

below:

(2)

Here, I, S are the new image and boundary surface, {Ii, Ti}i are template surfaces and 

images warped to the new image, and s(I, Ii)[p] is some local normalized similarity measure 

at point p. Normalized mutual information around a neighborhood of each point was used to 

measure similarity. This approach allows for more flexible segmentation, in particular for 

outlier cases. Even a weighted average, with a single weight applied to each individual 

template, often distorts geometric aspects of the boundary that are captured in only a few 

templates, perhaps only in one. However, to enforce smoothness of the resulting surface, 

care must be taken around the boundaries of the surface masks Wi. An effective approach is 

to smooth the masks with a spherical heat kernel, so that our final weights are 

. This approach is similar to (Yushkevich et al., 2010b), 

differing mainly in the fact that it is a surface-based rather than a voxel-based approach.

Local surface-based maps of atrophy were then generated using the algorithm described in 

(Gutman et al., 2012, Gutman et al., 2013). Briefly, the algorithm deforms a curve to 

minimize the medial energy associated with the shape, which may be written as:

(3)

The term w(c(t), c′(t), p, ) represents the medial weight for each pair of curve and surface 

points, which is described in detail in (Gutman et al., 2012). Two surface-based feature 

functions are generated based on the curve representing shape geometry: thickness and the 

global orientation function (GOF) (Gutman et al., 2012). We non-linearly register shapes 

first longitudinally and then to a mean template by parametrically minimizing sum of square 
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differences (SSD) between corresponding feature functions. Our mean template is generated 

by averaging the hand-traced templates in a group-wise fashion as described in (Gutman et 

al., 2012). The thickness change maps represent change in the distance to the medial axis 

from any given point on the ventricular boundary, or intuitively, change in thickness of the 

shape.

2.5 Tensor-Based Morphometry

TBM is an image analysis technique that measures brain structural differences from the 

gradients of deformation fields that align one image to another (Freeborough and Fox, 1998, 

Ashburner and Friston, 2003, Leow et al., 2007). Individual Jacobian maps were created to 

estimate 3D patterns of structural brain change over time by warping the 9P-registered and 

‘skull-stripped’ follow-up scan to match the corresponding screening scan. We used a non-

linear inverse consistent elastic intensity-based registration algorithm (Leow et al., 2007), 

which optimizes a joint cost function based on mutual information (MI) and the elastic 

energy of the deformation. The deformation field was computed using a spectral method to 

implement the Cauchy–Navier elasticity operator (Marsden and Hughes, 1983, Thompson et 

al., 2000) using a Fast Fourier Transform (FFT) resolution of 64 × 64 × 64. This 

corresponds to an effective voxel size of 3.4 mm in the x, y, and z dimensions (220 mm/64 = 

3.4 mm). Color-coded maps of the Jacobian determinants were created to illustrate regions 

of ventricular/CSF expansion (i.e., with det J(r) > 1), or brain tissue loss (i.e., with det J(r) < 

1) over time. These longitudinal maps of tissue change were also spatially normalized across 

subjects by nonlinearly aligning all individual Jacobian maps to a Minimal Deformation 

Template (MDT), for regional comparisons and group statistical analyses. See (Hua et al., 

2013) for more details.

2.6 LDA for Empowering Biomarkers

In designing an imaging biomarker, one generally seeks to balance the intuitiveness of the 

measure and its power to track disease progression. In this study, we choose to use, 

alternatively, radial expansion of the lateral ventricles, local tissue loss as measured by 

Jacobian determinants of non-linear longitudinal warps, or the combination of the two. 

Having made this choice, we would now like to find an optimal linear weighting for each 

surface vertex and image voxel to maximize the effect size of our combined global measure 

of change. A linear model may not have the intuitive clarity of a binary weighting (i.e., 

specifying or masking a restricted region to measure), but its meaning is still sufficiently 

clear and can be easily visualized. Thus we would like to minimize our sample size estimate 

(1) as a function of the weights, w:

(4)

Here C = 32(z1−α/2 + zpower)2, xi is the thickness change for the ith subject, m is the mean 

vector, the covariance matrix , and SB = mmT. Minimizing (4) 

is equivalent to maximizing
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(5)

which is a special case of the LDA cost function, with a maximum given by

(6)

For our purposes, m represents the mean of the diseased group. We denote this by m = 

mAD,MCI, where mAD,MCI stands for the mean expansion vector in the combined MCI and 

AD group. We make no distinction between these two groups during LDA training. 

Maximizing (5) directly is generally not stable when SW has a high condition number. 

Further, when the feature space is large enough, as in the case of Jacobian fields with 

roughly 2 million features, storing the dense 2Mx2M covariance matrix directly simply 

becomes impossible. We resolve this issue by applying Principal Components Analysis 

(PCA) to our training sample, storing the first k principal components (PCs) in the rows of a 

matrix, P, and computing the corresponding k eigenvalues λj. This is a standard approach 

when applying LDA to actual two-class problems, as it makes the mixed covariance matrix 

nearly diagonal. In our case, the covariance in PCA space is exactly diagonal, which reduces 

(6) to a direct computation:

(7)

This approach is very fast: one can compute the first k eigenvectors and eigenvalues of SW 

without explicitly computing SW itself. While alternative, possibly more flexible basis 

function sets are possible, we choose PCA for its simplicity.

The order of subjects in each diagnostic group is randomly changed to eliminate the 

confound due to different scanning protocols at different ADNI acquisition sites.. This step 

is needed mainly to ensure a roughly equal distribution of sites in each fold, as ADNI 

subjects are ordered by site by default. Where the subjects are scanned is known to correlate 

with reliability in many morphometric measures, and we have found that our LDA measures 

are affected by the site distribution as well. This is only done once before LDA training, 

with the same order and same subdivision of diagnostic groups used for each method.

To validate our data-driven weighting approaches, we create two groups of equal size, with 

an equal number of MCI and AD subjects in each. Each of these folds is then used to 

optimize the number of principal components k. This is done by subdividing the training 

fold further into 2 sub-folds of equal size, computing principal components separately on 

each sub-fold, and training a different LDA model using all PC’s up to k, with k varying 

from 1 to the total number of subjects in the sub-fold. A sample size for each sub-fold’s 

model is computed by applying the linear weights to the other sub-fold. The optimal k is 

chosen so that the mean of the two sub-folds’ sample size estimates is minimized. Further, to 

avoid circularity, we do not use the six hand-traced subjects used in generating the 

ventricular surface template for model training or testing. For TBM, such circularity is 
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avoided entirely, as the Minimum Distance Template (MDT) (Hua et al., 2008) is based on 

40 control subjects, which are not used during the training or testing stages. This approach is 

an adaptation of the standard nested cross-validation technique in machine learning.

Because Jacobian determinants have a skewed distribution due to the nature of the 

measurement, we perform LDA training on the logarithm of the Jacobian maps, which in the 

first approximation is equivalent to actual atrophy rates over a given time interval. This step 

ensures that the Gaussian assumption in LDA is more closely satisfied.

3. Results

Below we compare the performance of our LDA-based vertex weighting of ventricular 

expansion (Medial Vent LDA), the LDA-based voxel weighting of TBM maps (TBM-

LDA), the combination of the two LDA measures into one score, and the LDA Stat-ROI 

method previously reported on in (Hua et al., 2013). Though in general, absolute ventricular 

expansion may not be specific to AD pathology, its finely resolved surface-based signature 

is used here as a surrogate measure of AD-related atrophy in addition to what can be learned 

from TBM. In testing each of these weighting methods, we used nested 2-fold cross-

validation. Only AD and MCI subjects were used in the training stage. Further, we restricted 

our training sample to include only 1-year changes. Twenty-four month data was only used 

for testing, applying 1-year models to the non-overlapping subgroups of the 24-month data. 

Tables 2a and 2b summarize sample size estimates for 1-year and 2-year clinical trials for 

each of the four biomarkers. The linear weight maps are visualized in Figures 1 and 2. To 

visualize the difference between a multivariate approach and a mass-univariate type of 

weighting as done in the stat-ROI approach, we also display maps of t-statistics in Figures 3 

and 4. The t-maps were computed to test the null hypothesis that no change takes place 

among the AD and MCI subjects at each spatial location over one year. In another test, we 

restricted the PCA feature space to the gray matter voxels, segmented by BrainSuite 

(Shattuck et al., 2001), and computed the resulting power estimates. The weight maps are 

visualized in Figure 5. To assess the reproducibility of our sample sizes, we also computed 

bootstrapped 95% confidence intervals for our sample size estimates (DiCicio and Efron, 

1996).

For ventricular surface measures, the optimal number of principal components was found to 

be 28 and 47, for folds 1 and 2, respectively. For Jacobian maps, the smallest sample size 

was achieved at k = 115 and 103 for whole-brain LDA, and at k = 98 and 95 for LDA 

restricted to gray matter.

We compared the sample size estimates of the stat-ROI approach to TBM-LDA in table 4. 

The LDA measures significantly outperformed the stat-ROI measure for MCI subjects, and 

trended better for AD subjects.

To assess whether there is any evidence of longitudinal bias of our weighted measures, we 

applied our 1 year models to healthy controls at 12 and 24 months. Using a method similar 

to (Hua et al., 2011), we used the y-intercept of the linear regression as a measure of bias 

(bearing in mind the caveats noted that there may be some biological acceleration or 

deceleration that could appear to be a bias). We again used bootstrapping to estimate the 
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intercept and linear fit confidence intervals (DiCicio and Efron, 1996), with the exception of 

TBM stat-ROI, which we reprint from (Hua et al., 2013). We note that using standardized 

linear fit model CI’s leads to intervals that are more than twice as wide for the LDA models, 

implying that our CI’s are quite conservative. Figure 6 shows the regression plots for all 

LDA models over the two follow-up time points. Confidence intervals for the linear fits are 

shown in dotted green lines. The bias test results are summarized in Table 3. We note that 

the intercept shows virtually zero bias for all the LDA models, as it is two orders of 

magnitude lower than change in controls at 1 year.

4. Discussion

Here we continued the effort started in (Gutman et al., 2013) to increase the efficiency of 

clinical trials in Alzheimer’s Disease and MCI, based on multiple neuroimaging features. 

We applied a one-class Linear Discriminant Analysis to a set of TBM features as well as a 

combination of TBM and ventricular surface features. Based on a non-parametric 

comparison, the resulting sample size estimates are significantly better than the stat-ROI 

approach, which has been the standard feature weighting method to date. The linear feature 

weighting also produces an intuitive, univariate measure of change – a single number 

summary that can be correlated to other relevant variables and outcome measures. The linear 

weights can be easily visualized, adding insight into the pattern and 3D profile of disease 

progression.

4.1 Machine Learning in Alzheimer’s Disease

Machine learning has been applied to classify AD and MCI subjects based on brain images 

in many studies. Fan et al. applied SVM to RAVENS maps (Fan et al., 2008), an approach 

similar to modified VBM (Good et al., 2002) incorporating partial tissue classification and a 

high-dimensional non-linear volume registration. Vemuri (Vemuri et al., 2008) used a 

similar method with tissue probability maps (TPMs). Kloppel et al. (Kloppel et al., 2008) 

further showed that this linear model is stable across different datasets. In general, 

classification algorithms can achieve AD-NC cross-validation accuracy in the mid-nineties 

(~95%) within the same dataset, although performance inevitably degrades when applied to 

new datasets, due to differences in demographics and scanning protocols.

Cuingnet et al. (Cuingnet et al., 2010) developed a Laplacian-regularized SVM approach for 

classifying AD and NC subjects, which bears similarity to our Tikhonov-regularized LDA 

(Gutman et al., 2013). The Laplacian regularizer is shown to improve classification rates for 

AD vs. NC subjects. SVM has also been used, in our prior work, to separate AD and NC 

subjects based on hippocampal shape invariants and spherical harmonics (Gutman et al., 

2009). Cho et al. (Cho et al., 2012) smoothed surface atlas-registered cortical thickness data 

with a low-pass filter of the Laplace-Beltrami operator. Following this procedure, PCA was 

performed on the smoothed data and LDA was applied on a subset of the PCA coefficients 

to train a linear classifier. The resulting classification accuracy is very competitive. Another 

surface-based classifier (Gerardin et al., 2009) uses the SPHARM-PDM approach to classify 

AD and NC subjects based on hippocampal shape. SPHARM-PDM (Styner et al., 2005) 

computes SPHARM coefficients based on an area-preserving spherical parameterization, 

and defines correspondence via the first-order ellipsoid. This leads to a basic surface 
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registration and a spectral shape decomposition. Gerardin et al. reported competitive 

classification rates compared to whole-brain approaches. Shen et al. (Shen et al., 2010) used 

a Bayesian feature selection approach and classification on cortical thickness data, showing 

competitive AD-NC and MCI-NC classification accuracy with SVM. Zhang et al. (Zhang et 

al., 2011) developed a multiple kernel SVM classifier to further improve diagnostic multi-

modality AD and MCI classification.

4.2 Classifiers and Biomarkers

It is important to stress that while many studies have used machine learning to derive a 

single measure of “AD-like” morphometry for discriminating AD and MCI subjects from 

the healthy group, no study we are aware of has used machine learning to maximize the 

power of absolute atrophy rates in AD. We have attempted this by using a straightforward 

application of LDA. The fundamental difference between classification accuracy and 

biomarker reliability lies in the difference of the underlying goals. Regardless of the 

regularization, the goal in classification is to separate two classes of subjects in a 

generalizable way. As a result, subjects which are most difficult to classify will play a 

disproportionately large role in defining an atrophy measure. For example, we see that this is 

true of the two most popular classification algorithms: AdaBoost and Support Vector 

Machines. SVM considers only the “support vectors,” and AdaBoost greedily up-weights 

the difficult cases.

However, in the context of a drug trial, the main concern is not prediction of disease, but the 

identification of a measurable effect on brain degeneration in the whole population due to a 

new drug. This difference exists regardless of the fine details of statistical analysis and 

machine learning algorithms, such as whether the test applied to detect drug effects should 

make Gaussian assumptions, or whether for example one uses a hard-margin or a soft-

margin SVM approach. Ultimately, the best classifier may ignore or downplay the very 

substrate of the diseased population that is most helped by a drug in favor of correctly 

discriminating the nearly normal-appearing subjects who do not experience the beneficial 

effect. Good classification accuracy and high biomarker power are, in principle, different 

goals precisely because a good biomarker must treat all subjects equally. This is why the 

best classifier will not, in general, be the best biomarker. The requirement for equal 

treatment of all subjects also implies greater computational burdens when optimizing an 

imaging biomarker compared to a classifier.

A related question examines whether a Gaussian assumption made in the power estimate is 

appropriate. While several arguments can be made on the subject, it must be noted that the 

assumption is not made by this work, or any other work concerned with biomarker power in 

ADNI, but by hypothetical trial design itself. Since the trial is based on a test with Gaussian 

assumptions (Beckett, 2000), the only appropriate power estimate must make the same 

assumptions as well. In fact, the power estimate used here assesses in part how much a 

measure’s deviation from Gaussianity will affect its sensitivity in the hypothetical test.

Outside of Alzheimer’s literature we found one approach for explicitly minimizing sample 

size estimates (Qazi et al., 2010), and another that uses SVM for classification of 

Huntington’s disease patients versus controls, with reduced sample sizes as a by-product 
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(Hobbs et al., 2010). The first paper is methodologically closest in spirit to this work: a 

fidelity term is explicitly defined to be the control-adjusted sample size estimate. A number 

of non-linear constraints are then added: the total variation norm (TV1-norm), sparsity and 

non-negativity. While the first two have analogues that can be linearly optimized as we do 

here (TV2 and L2 norm), the third constraint forces the authors to use non-linear conjugate 

gradient (CG), which leads to far slower convergence. More importantly, due to the 

differences in the nature of their data – knee cartilage CT images – and ours, the sparsity and 

non-negativity constraints are perhaps not appropriate for brain imaging. We expect the 

effect over soft tissue to be diffuse without many discontinuities, and non-negativity is 

generally not appropriate in brain MR either. This is due to the fact that we expect some 

brain regions to grow and others to shrink over time. Further, CG optimization would be 

impossibly slow to apply to brain MR images with millions of features, though it may still 

make sense to do for the far sparser knee CT images. The second paper (Hobbs et al., 2010) 

uses leave-one-out linear SVM weighting of fluid registration-based TBM maps to derive an 

atrophy measure. No spatial regularization, or sample size-specific modification to the 

learning approach is used. In both of these cases the measure used is based on the difference 

between the mean of controls and the diseased group, which is not the main goal of the 

present work. Our main contribution, absent in the works above, is to optimize a univariate 

measure of brain degeneration over time.

4.3 Power Estimates of Other Measures in AD

Our change measures outperformed all other published unbiased measures as an AD 

biomarker with respect to the sample size requirements, assuming of course that the 

reference data are comparable. Below we compare each method’s best measure as reported 

in (Holland et al., 2011), and two other methods against our TBM-LDA and TBM + Vent 

LDA measures.

FreeSurfer ventricular measures give 2-year estimates of 90 (68,128) for AD and 153 (126, 

194) for MCI. An FSL tool, known as SIENA (Smith et al., 2002, Cover et al., 2011), 

achieved a 1-year point estimate for sample size of 132 for AD and 278 for MCI. Quarc 

entorhinal achieved 2-year whole brain estimates of 44 (33, 63) for AD and 134 (110, 171) 

for MCI. Schott’s KN-BSI, a whole brain gray matter atrophy measure (Schott et al., 2010), 

required 1-year samples of 81 (64, 109) for AD and 149 (122, 188) for MCI. For a 2-year 

trial, (Holland et al., 2011) estimates KN-BSI power at 75 (58,104) for AD and 142 

(115,182) for MCI. Hua et al. (Hua et al., 2013) used improved Tensor Based Morphometry 

(TBM) with the stat-ROI voxel weighting to achieve 2-year sample sizes of 41 (33,55) for 

AD and 109 (92,131) for MCI. Wolz et al., (Wolz et al., 2010) measured hippocampal 

volume change based a longitudinal adaptation of the LEAP algorithm, achieving 24-month 

power estimates of 46 for AD and 121 for MCI and 12-month estimates of 67 and 206. 

Some confusion has resulted due to the use of the term “two-arm” to describe a study of 

treatment versus placebo groups in (Wolz et al., 2010). The power estimates are, in fact, 

computed identically and are directly comparable to the others’, as can be seen by 

comparing equation (1) above, and equation (4) in (Wolz et al., 2010). The estimates “per 

arm” in other studies above have the same meaning as the estimates “for both arms” [sic] in 

(Wolz et al., 2010), without need to adjust them by a factor of 2. This can also be confirmed 
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by applying equation (1) to their reported means and standard deviations. We note that both 

the 24-month LEAP and the SIENA estimates are based on a much smaller sample of 

subjects – (83,165) and (85,195) - than the other methods above, and any comparisons must 

be made with the appropriate reservations. These comparisons are summarized in Figure 7.

A likely reason for such a favorable comparison to existing atrophy scores is due to the 

multivariate nature of our raw atrophy measures. Unlike the other methods used in ADNI - 

most of which are ROI volume measures or their combinations - our measure is based on a 

spatially distributed map. This presents a challenge and an opportunity: to optimally 

combine thousands or even millions of features into a useful biomarker. The simplest 

approach – linear weighting – outperforms other methods in terms of power estimates. 

However, we do not wish for this simplicity to be misleading; the linear model uses the fine-

grained spatial analysis from TBM and surface features, which is not available in other 

popular ADNI measures. Though one could use the same approach to optimize power by, 

for example, combining all FreeSurfer regional volumes optimally, that approach would still 

not offer the voxel-wise accuracy of TBM and local surface-based measures.

4.4 Algorithmic Bias

We showed that our measures are longitudinally unbiased according to the intercept CI test 

(Yushkevich et al., 2010a). The test addresses an issue raised by (Thompson and Holland, 

2011) about overly optimistic power estimates caused by additive algorithmic bias. The fact 

that the baseline and follow-up scans were processed identically, and independently, avoids 

several sources of subtle bias in longitudinal image processing that can arise from not 

handling the images in a uniform way (Thompson and Holland, 2011). Some issues have 

been raised regarding the validity of the intercept CI test as a test for bias in estimating rates 

of change. The CI test assumes that the true morphometric change from baseline increases in 

magnitude linearly over time in healthy controls. Relying on this assumption, the test 

examines whether the intercept of the linear model, fitted through measures of change at 

successive time intervals in controls, is zero. If this is not the case, the measure of change is 

said to have additive bias. We address the common criticisms of this test in our previous 

report (Gutman et al., 2013), and conclude that the test remains appropriate so long as it is 

only applied to control subjects.

4.5 Total and Relative Atrophy

There has been some recent debate regarding the need to subtract the mean of the healthy 

controls when estimating sample sizes for a drug trial. Some ADNI collaborators seem to 

have rejected this idea (Gutman et al., 2013, Hua et al., 2013), in part because real drug trials 

do not tend to enroll controls, and even if they did, many controls already harbor incipient 

Alzheimer pathology or some degree of vascular pathology that may also be resisted by 

treatment. However, the idea is not completely without merit, since all meaningful trials 

must compare a treatment against another (placebo or established) treatment group. Further, 

any additive algorithmic bias could be excluded by subtracting the mean rate of controls. We 

addressed this issue in our previous report on ventricular LDA biomarkers (Gutman et al., 

2013) by computing an additional linear ventricular expansion model, specific to AD and 

MCI progression. We did this by directly applying a 2-class, as opposed to 1-class, LDA 
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with the covariance defined strictly by the diseased group, as required by the current practice 

of NC-adjusted sample size estimates. The resulting power estimates for NC-adjusted 

atrophy outperformed all previous ventricular measures.

4.6 Future Work

Future work will include utilization of additional biomarkers, including other imaging 

biomarkers, such as measures based on diffusion imaging or even non-imaging biomarkers 

(such as CSF or proteomic measures), into the framework. We would like to extend the use 

of supervised learning to further reduce our sample size estimates. For example, in the PCA 

experiment, we simply used all principal components - up to a cutoff value. Though the 

power estimates were impressive, the spatial patterns of the weights contained high-

frequency components without clear anatomical meaning. A greedy boosting-type search 

over the principal components as in (Lu et al., 2003) may lead to better performance, with 

the goal of making the pattern more generalizable and more congruent across the folds. As 

our linear weighting is likely to contain a combination of disease effect and systematic 

registration artifact, a boosting approach over the principle components could potentially 

isolate and discount any PCs containing the artifactual portion of the variance. Alternatively, 

a more comprehensive set of basis functions could be utilized to describe the TBM atrophy 

patterns, yet enable whole sample learning on conventional computers. Additional 

improvements in sample size estimates could potentially be achieved by controlling for 

confounding factors such as age and sex, as is in (Schott et al., 2010), and by enrichment 

techniques accounting for ApoE genotype or family history of AD.

A potential limitation of a data-driven method such as what we have presented here pertains 

to its reliance on the specifics of the data. In particular, image quality and inclusion criteria 

of a hypothetical trial are assumed to be the same as in ADNI. Simpler univariate methods 

like LEAP and BSI do not suffer from this limitation to the same extent, as they do not make 

such strict assumptions about image quality and assume nothing about the subjects included 

in the trial. Nonetheless, as our measure outperforms other competitive measures by quite a 

few subjects, it is quite possible that a new trial with significantly different parameters may 

still be better served by the proposed method. In this case, some data may need to be set 

aside in order to train a new model specific to the trial. Whether this additional training set 

justifies the reduced number of test subjects required will be the subject of future work. In 

this paper, we have simply assumed that the hypothetical trial will follow the design of 

ADNI, which justifies our direct head-to-head N80 comparisons. In this case, the new trial 

would simply use our existing weight maps to compute the aggregate atrophy measure, 

without requiring any additional training subjects.

It is important to interpret biomarker power in its proper context. Basing a measure of brain 

change on a certain region or parameter of the brain may overlook valuable disease-

modifying effects that affect other regions or measures. Perhaps even more importantly, the 

slowing of a change measure by 25% may have different value to the patient, depending on 

whether the measure is volumetric loss, amyloid clearance, or decline in cognition. We must 

therefore treat the n80 as a guide to biomarker utility weighing it against other relevant 

Gutman et al. Page 14

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



criteria, in much the same way as we advocated the weighting of multiple features within an 

image here, rather than relying on any one marker of disease progression.
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• We develop a method for optimizing biomarker power from MRI-derived 

measures of atrophy in Alzheimer’s Disease

• We apply the weighting to surface ventricular expansion maps and TBM maps 

in ADNI

• Our weighted measures require fewer subjects for a trial than other measures.
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Figure 1. 
Log-Jacobian (TBM) LDA weighting, scaled by standard deviation of the weights. Red 

regions expect expansion, and blue – atrophy.
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Figure 2. 
Ventricular LDA weighting, scaled by standard deviation of the weights.
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Figure 3. 
Log-Jacobian (TBM) t-maps, based on the null hypothesis that there is no change over 1 

year in AD and MCI subjects in each voxel. The difference between these maps and Figure 

1 shows the difference between a multivariate and a mass-univariate approach in weighting 

Jacobian maps.
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Figure 4. 
Ventricular thickness t-maps, based on the null hypothesis that there is no change over 1 

year in AD and MCI subjects at each mesh vertex. The difference between these maps and 

Figure 2 shows the difference between a multivariate and a mass-univariate approach in 

weighting Jacobian maps.
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Figure 5. 
Log-Jacobian (TBM) LDA weighting restricted to gray matter regions, scaled by standard 

deviation of the weights. Red regions expect expansion, and blue – atrophy.
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Figure 6. Regression plots for LDA-based atrophy measures in controls
95% confidence belts for the regression models are shown with dotted green lines. All LDA 

models are longitudinally unbiased, since the zero intercept is contained in the 95% 

confidence interval on the intercept, for each of the methods.
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Figure 7. 
Sample size estimates for different biomarkers for 1- and 2-year trials with two scans per 

subject. 95% confidence intervals are displayed as black bars, where available.
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Table 1

Available scans for ADNI-1 on February 1, 2012, for 12 months and July 1, 2012, for 24 months. Total 

number of scans used: N = 2065.

Screening 12Mo 24Mo

AD 200 144 111

MCI 408 337 253

Normal 232 202 178

Total 840 683 542
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Table 2a
Sample size estimates for clinical trials, using anatomical biomarkers of change over 12 
months as an outcome measure

Depending on how we weight the features on the ventricular surfaces, the sample size estimates can be 

reduced, and the power of the study increased. “Whole” stands for whole-brain TBM of Figure 1, and “GM” 

means the TBM model restricted to gray matter, from Figure 5. Mean sample size estimates are computed as 

the average of the two folds’ estimates. 95% confidence intervals are presented in parentheses.

MCI AD Mean MCI Mean AD

Vent-LDA 111/96 (85,150)/(75,127) 65/86 (46,92)/(64,128) 104 (94,139) 75 (64,102)

TBM-LDA Whole 85/99 (67,110)/(77,131) 48/50 (34,70)/(35,85) 92 (77,111) 49 (38,66)

TBM-LDA GM 110/93 (85,145)/(73,122) 48/49 (33,74)/(35,76) 101 (84,122) 49 (37,64)

Vent + TBM 83/72 (66,112)/(56,92) 41/46 (28,65)/(32,68) 78 (63,90) 43 (33,58)

TBM stat-ROI -- -- 135 (114,167) 64 (51,86)

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gutman et al. Page 29

Table 2b
Sample size estimates for clinical trials, using anatomical biomarkers of change over 24 
months as an outcome measure

95% confidence intervals are presented in parentheses.

MCI AD Mean MCI Mean AD

Vent-LDA 80/62 (65,108)/(44,86) 67/47 (47,122)/(31,67) 71 (65,98) 57 (45,89)

TBM-LDA Whole 61/64 (47,81)/(50,81) 28/33 (19,44)/(21,56) 63 (52,75) 31 (22,43)

TBM-LDA GM 73/66 (58,92)/(51,88) 38/31 (25,60)/(19,51) 69 (57,81) 34 (25,47)

Vent + TBM 53/58 (40,72)/(46,73) 28/34 (19,43)/(22,62) 56 (44,64) 32 (22,44)

TBM stat-ROI -- -- 109 (92,131) 41 (33,55)
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Table 3
Longitudinal bias analysis of AD imaging biomarkers

Change in healthy controls is linearly regressed over two time points. The intercept is very close to zero, with 

the confidence interval clearly containing zero for each method. The LDA-based measures do not show any 

algorithmic bias according to the CI test.

Vent-LDA TBM-LDA Vent + TBM TBM stat-ROI TBM-LDA GM only

0.0064 (−0.0218, 0.06) −1.48 × 10−5 (−5.1 × 10−4, 4.9 
× 10−4)

0.077 (−0.48, 0.67) 0.06 (−0.07, 0.18) −1.02 × 10−4 (−5.6 × 10−4, 3.9 × 10−4)
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Table 4
Bootstrapped p-values, stat-ROI vs. TBM-LDA measures

Non-parametric test assessing the probability that the stat-ROI measure leads to lower or equal required 

sample size compared to the given LDA measure.

12 months 24 months

GM-LDA vs. stat-ROI Whole LDA vs. stat-ROI GM-LDA vs. stat-ROI Whole LDA vs. stat-ROI

AD 0.0683 0.0795 0.162 0.0631

MCI 0.014 0.0019 0.0001 <0.0001
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