Abstract
Cell-free extracts of Arbacia eggs (Arbacia punctulata) apparently do not contain an enzymatic system for the reduction of ribonucleotides to deoxyribonucleotides. However, during an interval of 5 hr after fertilization at 23°, an enzymatic system is produced that is capable of catalyzing the reduction of CDP to dCDP in the presence of Mg2+, ethylenediaminetetraacetate, ATP, and a reducing agent, dithiothreitol. The activity is first seen about 1 hr after fertilization, and reaches a peak at about 5 hr. The appearance of the ribonucleotide reductase is prevented by the addition of emetine or puromycin, inhibitors of protein synthesis, to the cells before fertilization. Inclusion of actinomycin D in the cell suspension at a concentration sufficient to inhibit synthesis of messenger RNA does not appreciably affect the production of the enzyme activity. Preexisting, maternal RNA is thus used for synthesis of reductase. Ribonucleotide reductase may, therefore, represent the first example of an enzyme system absent in unfertilized eggs that is produced in response to fertilization.
Keywords: ribonucleotide reductase, embryogenesis, Arbacia punctulata, masked messenger RNA
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berglund O., Karlström O., Reichard P. A new ribonucleotide reductase system after infection with phage T4. Proc Natl Acad Sci U S A. 1969 Mar;62(3):829–835. doi: 10.1073/pnas.62.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brachet J. Effects of hydroxyurea on development and regeneration. Nature. 1967 Jun 10;214(5093):1132–1133. doi: 10.1038/2141132a0. [DOI] [PubMed] [Google Scholar]
- Brachet J. Some effects of deoxyribonucleosides on sea urchin egg development. Curr Mod Biol. 1968 Jan-Feb;1(5):314–319. doi: 10.1016/0303-2647(68)90033-6. [DOI] [PubMed] [Google Scholar]
- Elford H. L., Freese M., Passamani E., Morris H. P. Ribonucleotide reductase and cell proliferation. I. Variations of ribonucleotide reductase activity with tumor growth rate in a series of rat hepatomas. J Biol Chem. 1970 Oct 25;245(20):5228–5233. [PubMed] [Google Scholar]
- Fansler B., Loeb L. A. Sea urchin nuclear DNA polymerase. II. Changing localization during early development. Exp Cell Res. 1969 Oct;57(2):305–310. doi: 10.1016/0014-4827(69)90154-2. [DOI] [PubMed] [Google Scholar]
- Fujioka S., Silber R. Purification and properties of ribonucleotide reductase from leukemic mouse spleen. J Biol Chem. 1970 Apr 10;245(7):1688–1693. [PubMed] [Google Scholar]
- GROSS P. R., COUSINEAU G. H. Effects of actinomycin D on macromolecule synthesis and early development in sea urchin eggs. Biochem Biophys Res Commun. 1963 Feb 18;10:321–326. doi: 10.1016/0006-291x(63)90532-1. [DOI] [PubMed] [Google Scholar]
- GROSS P. R., MALKIN L. I., MOYER W. A. TEMPLATES FOR THE FIRST PROTEINS OF EMBRYONIC DEVELOPMENT. Proc Natl Acad Sci U S A. 1964 Mar;51:407–414. doi: 10.1073/pnas.51.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzalez Porqué P., Baldesten A., Reichard P. Purification of a thioredoxin system from yeast. J Biol Chem. 1970 May 10;245(9):2363–2370. [PubMed] [Google Scholar]
- Greenhouse G. A., Hynes R. O., Gross P. R. Sea urchin embryos are permeable to actinomycin. Science. 1971 Feb 19;171(3972):686–689. doi: 10.1126/science.171.3972.686. [DOI] [PubMed] [Google Scholar]
- Hogan B., Gross P. R. The effect of protein synthesis inhibition on the entry of messenger RNA into the cytoplasm of sea urchin embryos. J Cell Biol. 1971 Jun;49(3):692–701. doi: 10.1083/jcb.49.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAURENT T. C., MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. J Biol Chem. 1964 Oct;239:3436–3444. [PubMed] [Google Scholar]
- Larsson A. Ribonucleotide reductase rom regenerating rat liver. Eur J Biochem. 1969 Nov;11(1):113–121. doi: 10.1111/j.1432-1033.1969.tb00747.x. [DOI] [PubMed] [Google Scholar]
- Lembach K. J., Buchanan J. M. The relationship of protein synthesis to early transcriptive events in bacteriophage T4-infected Escherichia coli B. J Biol Chem. 1970 Apr 10;245(7):1575–1587. [PubMed] [Google Scholar]
- MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. VI. THE CYTIDINE DIPHOSPHATE REDUCTASE SYSTEM FROM NOVIKOFF HEPATOMA. J Biol Chem. 1964 Oct;239:3453–3456. [PubMed] [Google Scholar]
- NEMER M. Characteristics of the utilization of nucleosides by embryos of Paracentrotus lividus. J Biol Chem. 1962 Jan;237:143–149. [PubMed] [Google Scholar]
- Nagano H., Mano Y. Thymidine kinase, thymidylate kinase and 32P and [14C] thymidine incorporation into DNA during early embryogenesis of the sea urchin. Biochim Biophys Acta. 1968 May 21;157(3):546–557. doi: 10.1016/0005-2787(68)90152-4. [DOI] [PubMed] [Google Scholar]
- Nordenskjöld B. A., Skoog L., Brown N. C., Reichard P. Deoxyribonucleotide pools and deoxyribonucleic acid synthesis in cultured mouse embryo cells. J Biol Chem. 1970 Oct 25;245(20):5360–5368. [PubMed] [Google Scholar]
- REICHARD P., BALDESTEN A., RUTBERG L. Formation of deoxycytidine phosphates from cytidine phosphates in extracts from Escherichia coli. J Biol Chem. 1961 Apr;236:1150–1157. [PubMed] [Google Scholar]
- Raff R. A., Colot H. V., Selvig S. E., Gross P. R. Oogenetic origin of messenger RNA for embryonic synthesis of microtubule proteins. Nature. 1972 Jan 28;235(5335):211–214. doi: 10.1038/235211a0. [DOI] [PubMed] [Google Scholar]
- SCARANO E. The enzymatic deamination of 6-aminopyrimidine deoxyribonucleotides. I. The enzymatic deamination of deoxycytidine 5'-phosphate and of 5-methyldeoxycytidine 5-methyldeoxycytidine 5'-phosphate. J Biol Chem. 1960 Mar;235:706–713. [PubMed] [Google Scholar]
- Selvig S. E., Gross P. R., Hunter A. L. Cytoplasmic synthesis of RNA in the sea urchin embryo. Dev Biol. 1970 Jun;22(2):343–365. doi: 10.1016/0012-1606(70)90158-2. [DOI] [PubMed] [Google Scholar]
