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Abstract

Worldwide estimates predict 2 billion people will be aged over 65 years by 2050. A major current challenge is
maintaining mobility and quality of life into old age. Impaired mobility is often a precursor of functional decline,
disability and loss of independence. Sarcopenia which represents the age-related decline in muscle mass is a
well-established factor associated with mobility limitations in older adults. However, there is now evidence that not
only changes in muscle mass but other factors underpinning muscle quality including composition, metabolism,
aerobic capacity, insulin resistance, fat infiltration, fibrosis and neural activation may also play a role in the decline in
muscle function and impaired mobility associated with ageing. Importantly, changes in muscle quality may precede
loss of muscle mass and therefore provide new opportunities for the assessment of muscle quality particularly in
middle-aged adults who could benefit from interventions to improve muscle function. This review will discuss the

accumulating evidence that in addition to muscle mass, factors underpinning muscle quality influence muscle
function and mobility with age. Further development of tools to assess muscle quality in community settings is
needed. Preventative diet, exercise or treatment interventions particularly in middle-aged adults at the low end of
the spectrum of muscle function may help preserve mobility in later years and improve healthspan.
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Introduction

Maintaining mobility and health into old age is a major
current challenge [1,2]. The development of mobility
limitations leads to reduced capacity for activities of
daily living and impairs quality of life [3-5]. Impaired
mobility is often a precursor of functional decline, dis-
ability and the development of frailty, which in turn
leads to increased demand on primary caregivers and
healthcare providers. Maintenance of mobility in middle
age and old age is dependent on multiple components in
muscles, bones, tendons, ligaments and joints and the
impairment in any tissue can result in reduced mobility
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that in turn causes accelerated functional decline and
disability. In older adults, mobility limitations have been
defined as the self-reported inability to walk a mile,
climb stairs or perform heavy housework [6]. During
middle age, an acute injury such as a muscle tear can
immediately limit mobility, but mobility and muscle
function otherwise both vary over a wide spectrum. Life-
long physical exercise can preserve muscle structure and
function in well-trained old-aged men comparable to
that of active men four decades younger [7]. Even differ-
ences in mid-life leisure time physical activity can posi-
tively reduce the risk of impaired mobility in old age,
although occupational physical activity in mid-life may
have a negative impact on mobility in old age [8]. Deter-
mining ways to assess and identify middle-aged adults at
the lower end of the muscle function spectrum com-
pared to peers their own age would allow targeted inter-
ventions in mid-life to improve muscle function, which

© 2014 McGregor et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:robinmcgregor@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

McGregor et al. Longevity & Healthspan 2014, 3:9
http://www.longevityandhealthspan.com/content/3/1/9

in turn may help preserve mobility in old age and hence
increase healthspan.

Sarcopenia, originally described over two decades ago
as the age-related loss of skeletal muscle mass [9], is a
well-established factor associated with decreases in
muscle strength and impaired mobility [10]. Loss of
muscle mass appears to precede loss of bone during
physical inactivity caused by mechanical unloading [11].
Cross-sectional studies in older adults and across the
adult lifespan have shown that age is associated with a
decline in muscle mass and muscle strength generally
from the third or fourth decade onwards [12,13]. But es-
timates of the rate of muscle loss per year vary between
cross-sectional studies from 0.4%-2.6% per year [14]. Es-
timates of the rate of muscle strength loss during ageing
are reported to be higher at 1%-3% per year, while the
decline in muscle power is reported to be greater still
[15]. Cross-sectional studies have primarily relied on in-
direct estimates of muscle mass such as dual X-ray ab-
sorptiometry (DXA) or bioelectrical impedance (BIA),
which have been suggested by some to underestimate
age-related changes in muscle mass [16]. Even though
MRI or CT scans can provide an accurate measure of
muscle cross-sectional area and also muscle composition
[17,18], neither are practical for assessment in commu-
nity settings such as gyms, workplaces or health clinics.

Several longitudinal studies suggest that muscle mass
alone cannot fully explain the loss of muscle strength
and physical function in older adults [19-22]. Estimates
of the rate of change in muscle strength with age derived
from a cross-sectional cohort have also been suggested
to underestimate actual yearly changes in muscle
strength [19]. In the Health, Ageing, and Body Compo-
sition (Health ABC) study, the decline in muscle
strength during ageing was reported to be two- to five
fold greater than the loss of muscle mass in older adults
aged 70-79 years over a 3-year follow-up period [20].
Furthermore, there was wide inter-individual variability
in changes in muscle cross-sectional area and muscle
strength in older adults, such that muscle mass and
muscle strength were well-preserved in some individuals
but not others [20]. In a small cohort of healthy men
aged 65 years, thigh muscle cross-sectional area (CSA)
decreased 1.2% per year, while thigh muscle strength de-
creased 1.3% per year during a 12-year follow-up period
[23]. In a healthy Scandinavian cohort of older men and
women aged 75 vyears, grip strength decreased 15%,
while fat-free mass assessed by BIA decreased only 2.1%
over 5 years [24]. This year, a large Japanese cohort
study (7 =3952) including males and females aged 40—
70 years reported trivial decreases in skeletal muscle
mass measured by DXA over a 12-year follow-up period
except in middle-aged men [25]. However, the authors
acknowledge that the trivial changes in skeletal muscle
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mass observed may be partly due to participants being
informed of their strength test results and training to
improve their strength before subsequent follow-up tests
[25]. Nevertheless, this highlights that lifestyle changes
such as the adoption of resistance exercise in mid-life
can help preserve muscle mass over the following dec-
ade. Taken together, evidence of a discordance between
changes in muscle mass and muscle strength suggests
that other factors related to muscle quality must make a
contribution to age-related declines in muscle function
and mobility [25-27]. While loss of muscle mass is a
contributor to increased weakness in old age, the rela-
tionship between strength [28] and various aspects of
force production with muscle size is far less robust in
older, overweight or obese adults compared to younger
adults [29,30]. In the Health ABC study, 25% of males
and 31% of females gained lean mass during the 3-year
follow-up period, but this did not prevent increased
weakness in older adults aged 70-79 years [19,20]. This
may be attributable to increases in BMI and adiposity.
Greater gains in BMI over time are associated with
higher odds of lower muscle quality based on the ratio
of grip strength to arm lean mass [31]. Maintenance of
muscle mass also did not prevent the loss of muscle
strength observed in the Health ABC study, which high-
lights the importance of muscle quality as a contributor
to muscle strength in older adults.

Muscle quality is closely intertwined with muscle
strength, as muscle quality is typically defined as muscle
strength or power per unit of muscle mass [32], al-
though as yet, there is no universal consensus definition
or assessment method for muscle quality. Given that
both muscle strength and power are related to functional
activities in older adults [33,34], it could be argued that
directly assessing muscle strength or power rather than
muscle mass or quality would be more effective to
identify middle-aged adults at higher risk of impaired
mobility in later life. Home-based strength tests may be
useful to assess changes over time in the same individ-
ual, but the difficulties with standardising a home-based
test hampers evaluation against age-related strength norms.
Grip strength is relatively straightforward for health
workers or clinicians to assess providing equipment is
available and age-related norms exist to stratify adults
at risk of impaired mobility [35,36]. Nevertheless, it
would be advantageous to develop a muscle quality as-
sessment tool for middle-aged adults in community set-
tings that can provide information on muscle quality
relative to age. A muscle quality assessment tool may
then be used to identify individuals who would benefit
from lifestyle interventions to improve muscle quality.
Multiple factors have the potential to influence muscle
quality including muscle composition (e.g. architecture,
fibre type), metabolism, fat infiltration, fibrosis and
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neural activation. In the following, we discuss factors
underpinning muscle quality and potential ways to as-
sess muscle quality.

Muscle size, fibre type and contractile characteristics

Muscle size is determined by muscle fibre type and
number. Muscle CSA is positively associated with
muscle strength in young lean individuals [37]. Smaller,
weaker muscles are typically observed in elderly com-
pared to younger individuals. However, muscle cross-
sectional area and lower limb skeletal muscle volume is
also associated with greater adiposity in males and females
(BMI 19-36) [38], which may be due to the presence of
intermuscular lipid or non-contractile components.
Muscle fibre types can be broadly categorised based on
metabolic characteristics, such that type IIb fibres pre-
dominantly generate energy via non-oxidative pathways
for rapid high force production, type I fibres predomin-
antly generate energy via oxidative pathways for pro-
longed low force production whereas type Ila fibres are
capable of generating energy via oxidative and non-
oxidative pathways [39]. Type I fibres have a relatively
small CSA compared to type IIb fibres, but their oxida-
tive capacity is significantly greater [40]. Some observa-
tions of muscle fibres in advanced age indicate that
there may be a shift in muscle fibre composition, with a
progressive loss of type IIb fibres [41], but others show
no association between fibre composition and age [42].
Type IIb muscle fibres are recruited during high-intensity
activity, whereas type I muscle fibres are recruited during
low-intensity activities of daily living such as walking. The
loss of either type of muscle fibre with age may be at-
tributable to changing activity levels, leading to disuse
and denervation. There are no studies of the longitu-
dinal changes in muscle fibres in middle-aged humans.
However, a longitudinal study in middle-aged rheus
monkeys reported that a decrease in muscle fibre CSA
was a significant contributor to the loss of muscle mass
in the vastus lateralis with age [43]. A follow-up study
identified that a shift in metabolism occurred in ad-
vance of the onset of sarcopenia in middle-aged rhesus
monkeys and fibre-type distribution shifts towards myosin
heavy chain (MHC) type 1II fibres and mitochondrial oxi-
dative phosphorylation was significantly reduced [44]. In a
healthy ageing rodent model, muscle fibre CSA was ob-
served to decline from 24 months, whereas muscle mass
and fibre number were decreased after 30 months [45].
The relatively late decline in muscle CSA and mass may
be attributable to the consistent diet and activity levels of
lab-raised rodents. The limited evidence available in
elderly individuals suggests there is discordance be-
tween changes in muscle fibre type, muscle CSA and
strength [23]. At the single fibre level, contractile prop-
erties of type I and type II muscle fibres appear to be

Page 3 of 8

preserved independent of mobility limitation [46] al-
though there are conflicting reports. D’Antona et al.
[47] suggested that maximal shortening velocity is lower
in single fibres from elderly adults due to a shift in
MHC isoform distribution to a more hybrid pattern
[47]. Larsson et al. [48] observed a lower maximal
shortening velocity in MHC I and IIa fibre types in eld-
erly and very active elderly compared to that in young
adults [48]. In contrast, Trappe et al. observed no age-
related differences in single fibre contractile velocity of
MHC I and Ila fibres [49]. Studies of single fibre con-
tractile characteristics typically involve very few subjects
and in earlier studies physical activity may have been a
confounding factor, which can influence contractile
characteristics independent of age [49]. If single muscle
fibre contractile properties are indeed preserved with
age, this would suggest that differences in skeletal muscle
function are related to quantitative changes in muscle
fibre size or number rather than qualitative changes in
contractile properties.

Muscle architecture

In addition to observations of possible age-related fibre
type changes, muscle architecture including fascicle length
and pennation may change with age. Muscle architecture
is the arrangement of fibres within the muscle either in a
parallel or pennation pattern, which determines fascicle
length (L¢), pennation angle (6) and CSA. Ultrasonography
assessment of gastrocnemius medialis fascicle length and
pennation angle were reported to be smaller in elderly
adults aged 70-81 years compared to younger adults aged
27-42 years [50]. Accelerated ageing models, such as sev-
eral weeks bed rest, have not been reported to cause any
alteration in the pennation angle of vastus lateralis muscle
[51]. However, modest improvements in muscle architec-
ture are possible with 4-5 weeks of resistance training,
and notably changes in muscle architecture appear to pre-
cede changes in muscle size in young healthy adults [52].
Therefore, non-invasive techniques such as ultrasound
have potential to identify middle-aged or older adults who
would benefit from interventions to improve muscle
architecture. To be of practical utility, an ultrasound de-
vice ideally needs to ensure a fixed limb position and
probe position to limit measurement error.

Muscle aerobic capacity

The metabolic characteristics of muscle are important
determinants of muscle quality and, in turn, muscle
function in both middle-aged and older adults. There is
evidence that aerobic capacity, which is the maximal
ability to use oxygen to meet the energy demands of
physical activity, may decline at an accelerated rate after
the age of 50 years [53]. Aerobic capacity is a strong pre-
dictor of mobility assessed by gait speed in older adults
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[54]. Aerobic capacity reflects not only cardiovascular
adaption to transport oxygen but also adaptations within
muscle to use oxygen to meet the energy demands of
physical activity. Cross-sectional evidence from healthy
men and women aged 18-90 years indicates that mito-
chondrial DNA, mRNA abundance and energy (ATP)
production all decrease with age [55]. Skeletal muscle
mitochondrial capacity and efficiency, as well as whole
body peak aerobic capacity have been shown to be asso-
ciated with gait speed [56]. Furthermore, individuals
who are aerobically active in young, mid- and later life
have higher muscle strength than their sedentary peers
of the same age [57]. Regular physical activity is a power-
ful stimulus to help retain or improve aerobic capacity in
middle-aged adults, which in turn can help maintain
muscle function and mobility into old age [57].

The assessment of maximal aerobic capacity (VO,max)
in middle-aged adults would provide an important
functional indicator of muscle quality beyond muscle
mass. While direct methods of VO;max assessment
require gas analysis equipment, indirect low-cost
methods can provide an estimate of VO,max based on
extrapolation from heart rate, work performed in a set
amount of time or time to complete a set amount of
work.

Skeletal muscle is responsible for a large proportion
of whole-body glucose uptake, therefore age-related
changes in muscle mass and composition can lead to in-
creased insulin resistance and hence reduced capacity
for insulin-mediated glucose disposal. In a cross-
sectional cohort of healthy non-diabetics aged 65 years,
relative muscle mass was inversely associated with glu-
cose tolerance and insulin resistance [58]. Evidence of
the link between muscle strength and insulin resistance
is more equivocal. Muscle strength adjusted for body
mass index (BMI) was reported to be negatively asso-
ciated with insulin resistance in a large population-
based study (n = 968) of older women but not men after
adjustment for confounders [59]. On the other hand,
analysis of the US National Health and Nutrition Exa-
mination Survey (NHANES) revealed no association
between muscle leg strength and insulin resistance in
men or women aged over 50 years [60]. Gait speed tests
have been reported in some studies to be inversely asso-
ciated with insulin resistance. These findings suggest
that insulin resistance may provide an indicator of poor
muscle quality underpinning low levels of physical fit-
ness and poor scores on gait speed tests. Both regular
aerobic and resistance type exercise over 6 months have
been shown to improve glucose disposal and skeletal
muscle metabolism in older overweight or obese men
aged approximately 63 years [61]. Insulin resistance is
also known to be closely associated with intermuscular
fat [62].
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Intermuscular adipose tissue

Over the past decade, intermuscular adipose tissue
(IMAT) has emerged as an important factor underpin-
ning muscle quality and also may be a predictor of
muscle function in older adults [27]. IMAT is an ectopic
adipose tissue depot located under the fascia and within
the muscle. IMAT encompasses a variety of interchange-
able terms including intramuscular fat and low-density
lean tissue which describes fat stored between muscle fi-
bres and intermuscular fat which describes fat located
underneath the fascia [63]. IMAT can be assessed indir-
ectly using muscle attenuation calculated from a com-
puted tomography (CT) or magnetic resonance imaging
(MRI) scan which closely correlates with direct measure-
ments of muscle lipid content [18]. Individuals with
similar thigh circumference may have distinctly different
muscle function because of the proportion of IMAT to
contractile elements. In older adults with a variety of co-
morbidities, IMAT assessed by MRI was reported as the
strongest predictor of mobility in older individuals, al-
though strength and quadriceps lean tissue explained
some of the variance in mobility in this study [64]. Lipid
storage and infiltration into muscle may also be a good
marker of metabolic profile. For example, in young- to
middle-aged adults (24—48 years) with a range of body
composition from lean to obese, IMAT assessed by CT
was reported to be significantly associated with insulin
resistance assessed by glucose clamp [62]. Another study
reported IMAT to be positively correlated with higher
fasting plasma glucose and lower glucose tolerance in
older adults [65].

IMAT appears to be reversible with physical activity.
One report showed that 6 months of aerobic exercise
training and weight loss decreased IMAT of the leg, while
fasting plasma glucose and glucose tolerance were con-
comitantly improved in men aged 60 years [65]. Con-
versely, in healthy young adults, 4 weeks of an enforced
decrease in physical activity induced by unilateral lower
limb suspension led to a 15%—20% increase in IMAT in
the thigh and calf, respectively [66]. Strength loss was re-
ported to be associated with the increase in IMAT, after
adjustment for loss of muscle mass and initial values at
baseline [66]. Progressive IMAT accumulation in middle-
aged or older adults may lead onto fibrosis and further im-
pair muscle function and mobility.

It would be advantageous to develop ways to assess
muscle quality based on IMAT using methods besides
CT or MRI that can be used in a community setting.
Echo intensity calculated from an ultrasound scan ap-
pears to inversely correlated with radiological density
calculated from a CT scan, therefore may be used as a
surrogate measure of IMAT and non-contractile ele-
ments [67]. In active elderly women, echo intensity was
reported to be negatively correlated with functional
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performance measures including sit-to-stand time and
usual gait speed [68]. Furthermore, in healthy women
aged 51-87 vyears, echo intensity was reported to be
significantly correlated with quadriceps strength after
adjustment for age and muscle thickness [69]. While
portable ultrasonography machines are available, they
still require a skilled sonographer to perform the scan
and interpret the results. In addition, echo intensity is
not directly comparable between studies due to dif-
ferences in ultrasonography machines. An alternative
technology is electrical impedance myography (EIM)
that can measure multi-frequency electric impedance;
healthy muscle shows different reactance and phase de-
pendence at different frequencies. EIM was reported to
be a potential biomarker of neurodegenerative disorder
amyotrophic lateral sclerosis (ALS) [70]. Interestingly,
in mobility-limited elders aged 78 years, EIM was re-
ported to be correlated with CT-determined muscle
attenuation and strength [71]. In addition, in a large co-
hort of individuals aged 19-50 years and 60—85 years, a
small handheld EMI device was used to assess several
lower and upper extremity muscles [72]. Lower react-
ance and resistance values were measured in lower ex-
tremity muscles, but not upper extremity muscles, of
the older compared to the younger adults [72]. These
differences were more pronounced in men than women
[72]. It will be important in future to test the reliability
and validity of EIM for measuring and monitoring
changes in muscle quality over time in response to life-
style interventions including exercise or diet.

Muscle fibrosis

Muscle fibrosis can occur due to the impairment in the
muscle repair process after an injury. The process of fi-
brosis involves the deposition of collagen and extracellu-
lar matrix (ECM) proteins instead of proteins necessary
to repair and restore tissue function [73]. Fibrosis is also
observed in different tissues due to excess fat accumula-
tion [74,75]. The development of pathological fibrosis in
tissue is the end result of a series of events including in-
jury, infiltration of inflammatory cells, tissue degene-
ration and proliferation of fibroblasts which result in
remodelling of tissue architecture [73]. There is no dir-
ect evidence of muscle fibrosis with age in humans due
to the difficultly in assessing fibrosis in population stu-
dies. Evidence from microarray studies indicates that
fibrosis-related transcripts are differentially expressed in
older (6580 years) compared to younger adults (19-29
years) [76]. Evidence from aged mice indicates that
muscle stem cells tend to convert from a myogenic to a
fibrogenic lineage [77]. Furthermore, in elderly humans,
muscle stem cell populations are reported to be lower
than their younger counterparts [78]. Currently, the
presence of fibrosis in the skeletal muscle of older adults
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is speculative. However, this does not preclude that mo-
lecular changes governing cell structure, remodelling,
collagen formation and fibrosis occur which have not
been well studied. Tissue fibrosis is detectable using
MRI, CT, or ultrasound imaging, but is used primarily
for the detection of pathological conditions such as
hepatic fibrosis. The contribution of fibrosis as a
factor underpinning muscle quality requires further
investigation.

Motor units and neuromuscular activation

Components of the neuromuscular system and neuro-
muscular activation are other potential factors underpin-
ning muscle quality in middle and old age. Skeletal
muscle fibres are organised in bundles of motor units;
each motor unit is innervated by a motor nerve which
connects to an alpha motoneuron in the spinal cord.
Motor units undergo remodelling, denervation and re-
innervation throughout the lifespan. Motor unit number
estimated based on surface and intramuscular electro-
myographic signals during isometric contractions shows
that motor units are reduced in the tibialis anterior
muscle of men aged 65 years and further in men aged
over 80 years compared to that in young men aged
25 years [79]. However, the reduced motor unit number
was only related to strength in the men aged over
80 years [79]. Early loss of motor units due to death of a
motor neuron or axonal degeneration may not lead to
loss of strength due to successful remodelling and
rennervation by an adjacent motor neuron. Impairments
in neuromuscular activation influence the rate of force
development and muscle power necessary for dynamic
movements. Improvements in neuromuscular activation
precede increases in muscle mass in response to resist-
ance training; therefore, neuromuscular activation has
been proposed as another measure of muscle quality
[80]. Surface electromyography (EMG) can be used to
assess neuromuscular activity; a recent study in older
adults reported that neuromuscular activity and acceler-
ation was impaired during dynamic leg extensions in
mobility-limited compared to mobile older adults [81].
There was a lag between EMG detection and movement,
as well as the rate and magnitude of the EMG signal in
the mobility-limited older adults. The rate of neuromus-
cular activation was significantly associated with physical
function scores [81]. Among the middle-aged and older
adults tested without mobility limitations, there were no
significant differences in EMG measures of neuromuscu-
lar activation [81]. Therefore, whether neuromuscular
impairment precedes the development of mobility limi-
tations is still equivocal. The surface EMG signal is sen-
sitive to adipose tissue; therefore, changes in adipose
tissue due to weight loss or exercise could hamper inter-
pretation of the EMG signal, although in a research
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setting, this could be overcome by using intramuscular
EMQG instead of surface EMG.

Way forwards

It will be important in future to better understand the
main factors which underpin changes in muscle quality
with age, which may well precede changes in muscle mass
or be of greater functional significance in ageing muscles,
with declining size. In addition, a universal consensus def-
inition of muscle quality is necessary. Muscle quality is
typically used to describe muscle strength or power per
unit of muscle mass, therefore does not encompass
muscle aerobic capacity which is closely associated with
mobility and important for activities of daily living. The
majority of studies on muscle quality to date focus on
older adults aged 65 years. Currently, there is a large gap
in our knowledge on the primary determinants of muscle
quality in middle-aged adults, which significantly inhibits
the opportunity to intervene appropriately with either
dietary- and/or activity-focused programmes. The devel-
opment of muscle quality assessment tools that encom-
pass muscle quality and which are sensitive to small
changes within muscle that precede a decline in muscle
function would enable individuals to take preventative
steps to maintain healthy muscle. Non-invasive imaging of
muscle by MRI, CT and ultrasound can capture multiple
factors related to muscle quality such as size, composition,
intramuscular lipid and fibrosis in a research setting. How-
ever, new ways to assess muscle quality are needed that
are practical in a community setting. Given that age-
related changes in skeletal muscle occur slowly, large pro-
spective trials of interventions to improve muscle quality
will be important to provide evidence for recommenda-
tions to promote healthy ageing.

Conclusions

Muscle quality is increasingly being recognised as an im-
portant determinant of muscle function. Muscle size,
fibre type, architecture, aerobic capacity, intermuscular
adipose tissue, fibrosis and neuromuscular activation all
potentially contribute to muscle quality. Development of
muscle quality assessment tools, which can be used in a
community setting particular in middle-aged adults is a
priority. It will be important that new tools are evaluated
for reliability and validity. Finally, lifestyle interventions
targeting middle-aged adults at the low end of the
spectrum of muscle function hold the potential to help
preserve mobility in old age and improve healthspan.
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