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ABSTRACT Prediction of the native tertiary structure of
a globular protein from the primary sequence will require a
potential energy model that can discriminate all nonnative
structures from the native structure(s). A successful model
must distinguish not only alternate structures that are very
nonnative but also alternate structures that are compact and
near-native. We describe here a method, based on molecular
dynamics simulation, that allows generation of hundreds of
compact alternate structures that are arbitrarily close to the
native structure. In this way, a significant amount of confor-
mational space in the neighborhood ofthe native structure can
be sampled and these alternate structures can be used as a
stringent test of protein folding models. We have used two sets
of these alternate structures generated for six crystallographi-
cally characterized small globular proteins (1200 alternate
structures in all) to test eight empirical energy models for
their ability to discriminate alternate from native structures.
Seven of the models fail to correctly identify at least some of
the alternate structures as nonnative. An atomic solvation
model is presented that succeeds in discriminating all 1200
alternate structures from native.

If it is assumed that the native structure of a globular protein
is controlled by thermodynamics, then the ab initio prediction
of native tertiary structure from protein amino acid sequence
will require (i) the identification of the free energy hypersur-
face on which the native structure is at the global minimum and
(ii) designing efficient algorithms for exploring enough con-
formational space to find this global minimum. Herein we
describe a method for testing potential energy functions for
their ability to discriminate the native structure (the global
minimum) from alternate nonnative structures (local minima).
We have developed an empirical potential energy function
based on atomic solvation that is here compared to other
existing functions and found to be highly discriminating against
such alternate structures.

Traditional molecular mechanics force fields such as AMBER
(1, 2) and CHARMM (3) are unable to discriminate between
native and alternate (nonnative) structures (4, 5). For this
reason a number of empirical potential energy functions have
been developed and employed in lattice-model simulations of
protein folding (6-12), identification of distantly related pro-
teins (13-19), and recognition of errors in three-dimensional
protein structures (20). These empirical models can be clas-
sified into the following four groups: (i) contact models (10, 18,
21-24) in which amino acid residues are simplified to "super
atoms" and inter-super-atom contact energies drive folding to
the native structure; (ii) mean force models (14, 19, 25-28) in
which thousands of interaction energy parameters are derived
for each pair of residues at different spatial and sequential
separations; (iii) local models (13, 24, 29-36) in which pref-

erences of individual residues for particular dihedral angles,
solvent exposure, or secondary structure direct folding; and
(iv) models that combine these three strategies (16, 17, 37, 38).

Testing of such empirical potential energy models requires
a collection of alternate (nonnative) protein structures; a good
model should yield a higher potential energy for all alternate
structures compared to native. A stringent test would use
alternate structures that are themselves compact, globular, and
not very different from native; a model that can discriminate
these closely similar structures would still help direct native
folding when the tertiary structure gets close to native. A
common method for generating alternate structures is based
on the sequence-recognizes-structure (SRS) protocol devel-
oped by Hendlich et al. (25). The sequence of interest is
modeled as a sequence fragment of all larger protein structures
and is threaded through each larger protein sequence advanc-
ing one residue at a time, generating a large number of
alternate structures (14, 18, 19, 23, 24, 27, 28, 37). Disadvan-
tages to this method are that the structures generated are very
nonnative (they are usually not compact) and that side chains
are often disregarded. The tests that we perform herein make
use of a collection of hundreds of alternate structures gener-
ated by starting with a native structure and using molecular
dynamics (MD) to sample the nearby conformational space
and molecular mechanics energy minimization to place the
alternate structures into local minima. These stringent tests
allow successful empirical potential energy models to be
identified.

MATERIALS AND METHODS
Test Protein Structures. Six proteins of moderate size were

chosen from the Protein Data Bank for generating test struc-
tures; they were chosen to be high resolution (.2.0A), to have
all nonhydrogen atomic coordinates identified, and to lack
prosthetic groups. The proteins used were as follows: crambin,
lcrn (39); ovomucoid protein, 2ovo (40); trypsin inhibitor, 4pti
(41); scorpion neurotoxin, lsn3 (42); amylase inhibitor, lhoe
(43); and ubiquitin, lubq (44). The crystal structure coordi-
nates were subjected to 1000 cycles ofAMBER 4.0 (1) molecular
mechanics energy minimization using the united-atom model
to generate the "native" structures [which differed from
crystal structures by rms deviations (rmsds) of 0.2-0.5 A; all
rmsds are calculated according to Kabsch (45, 46) and are
based on Ca coordinates]. All calculations were performed on
an IBM RISCStation 6000 cluster supported by University
Computing and Networking Services of the University of
Georgia.

Abbreviations: SRS, sequence recognizes structure; rmsd, rms devi-
ation; AM, AMBER model; MC, Maiorov and Crippen model; MJ,
Miyazawa and Jernigan model; BE, Bowie et al. model; HS, Hendlich
et al. model; GS, Godzik and Skolnick model; LS, Holm and Sander
model; WZS, Wang, Zhang, and Scott model; MD, molecular dynam-
ics model.
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Generation of Alternate Structures. All simulations de-
scribed here used the AMBER 4.0 united-atom force field for in
vacuo simulations with a constant dielectric (s = 4), a non-

bonded cutoff of 9.5 A, and a time step of 1 fs. The sHAKE
algorithm maintained all bond lengths at their equilibrium
value (±0.0004 A). For each test protein, the native (energy-
minimized) structure was heated from 0 K to the desired
temperature (300 or 500 K) in increments of 30K applied every
200 fs. The resulting structure was equilibrated through an
additional 5 ps by rerandomizing each atom's velocity accord-
ing to a Boltzmann distribution. During the ensuing data
collection, structures were saved every 4 ps for a total of 400
ps (100 structures) at each temperature, generating a total of
1200 alternate structures for the six proteins.
Models Tested. Eight potential energy models were tested

for their ability to discriminate alternate from native structures
as follows: AM, the AMBER 4.0 molecular mechanics force field
(1, 2) was used to calculate the potential energies of each
structure; MC, the contact potential energy function of
Maiorov and Crippen (23) was used with parameter values
from their table 5; MJ, the contact energy function of
Miyazawa and Jernigan (22) was used with parameter values
from their table V; BE, the three-dimensional profile method
of Bowie et al. (13) was performed using the program kindly
provided by the authors; HS, the potential function of mean
force (25, 26) was used in its most recent form and the results
in the form ofz scores (27) were kindly provided by M. J. Sippl;
GS, the topology fingerprint approach of Godzik and Skolnick
(16) was used in its most recent form and the results were
kindly provided by A. Godzik; LS, the atomic solvation
preference model of Holm and Sander (47) was used with
parameter values from their table 1.

Existing atomic solvation parameters (30, 31, 48) poorly
discriminate alternate from native structures, so we developed
a modified atomic solvation model, referred to asWZS (Wang,
Zhang, and Scott model). In this model, protein atoms are
classified into 14 groups (see below) and each group is
assigned a separate solvation parameter (ui). The solvent-
accessible surface area (Ai) is calculated according to a fast
algorithm (49) by using a 1.4-A water radius and the solvation
energy is calculated as YiorjAi. The native structure and alter-
nate structures at 500 K of two arbitrarily chosen proteins were
used to train the 14 atomic solvation parameters. Three sets of
solvation parameters were generated using different pairs of
proteins in the training set. WZS1 used 1sn3 and lubq, WZS2
used lhoe and lubq, and WZS3 used lsn3 and lhoe. In the
training process, randomly initialized parameters were ad-
justed, according to the back-propagation algorithm (50), to

maximize the solvation energy differences between native and
alternate structures. A detailed description of this solvation
model will be presented elsewhere (Y.W., H.Z., and R.A.S.,
unpublished data).
To compare models, each of which generates energies on

different absolute scales, we calculated, for each alternate
structure, a scaled energy difference from native, Ai,

Enative EaIternate
Ai = max(IEnativel EIlternatel) I [1]

where Enative and Ealternate are the empirical energies [or z

scores for the HS model or negative quality scores (QS) for the
BE model] of the native and alternate structures, respectively.
The means and estimated standard deviations of Ai over all
structures at 300 K or 500 Kwere also calculated to give a gross
comparison of the models.

RESULTS

Table 1 summarizes characteristics of the six test proteins and
the alternate structures generated from them. The average
radii of gyration of the alternate structures [Rg(alt)] range
from 93 to 107% of that of the native structure [Rg(nat)] and
average 95%. These structures are as compact as the native
structure in each case. The alternate structures generated at
300 K have mean rmsds from native ranging from 2.8 to 4.2 A
(average, 3.2 A); most of these structures exhibit the native
a-helices. As expected the alternate structures at 500 K are
more different from native (mean rmsd range, 4.8-7.8 A;
average, 6.7 A); most native a-helices are absent. The mean
rmsds between all pairs of alternate structures were somewhat
less in each case: 1.4-2.5 A (average, 1.8 A) at 300 K and 3.0-6.2
A (average, 4.5 A) at 500 K Still the subset of alternate structures
for each protein cover a significant amount of conformational
space relatively close to the native conformation.

Table 2 summarizes the results of testing the eight empirical
models for their ability to discriminate native from alternate
structures. Along with the empirical potential energy (or z
score for the HS model and negative quality score for the BE
model) for the native structure, mean and estimated SD values
of Ai (for the ith alternate structure; Eq. 1) are calculated for
the 100 alternate structures generated at each MD tempera-
ture. Successful discrimination is defined as a negative Ai and
the number of unsuccessful discriminations (N+) at each
temperature is also listed in Table 2. Of the models tested,
WZS is the only one that is 100% successful at discriminating
these alternate structures. LS and HS successfully discriminate

Table 1. Structural characteristics of native and alternate conformations for six test proteins

Crystallographic No. of Temperature, Rg(nat), Rg(alt), Mean rmsd, A
PDB code resolution, A residues K A A Native Alternate

lcrn 1.50 46 300 9.61 9.5 (2) 4.2 (5) 1.9 (6)
500 10.3 (7) 7.8 (8) 6.2 (23)

2ovo 1.50 56 300 10.1 9.4 (2) 3.5 (3) 2.5 (11)
500 9.7 (4) 7.7 (9) 4.7 (13)

4pti 1.50 58 300 10.6 10.0 (1) 2.9 (2) 1.5 (5)
500 9.8 (2) 7.6 (12) 4.2 (12)

lsn3 1.80 65 300 10.5 9.8 (1) 3.2 (5) 1.8 (6)
500 9.9 (2) 5.7 (10) 4.2 (11)

lhoe 2.00 74 300 11.1 10.3 (1) 2.8 (2) 1.4 (3)
500 10.7 (2) 6.5 (8) 4.5 (11)

lubq 1.80 76 300 11.4 10.6 (1) 2.9 (2) 1.4 (4)
500 10.6 (2) 4.8 (7) 3.0 (7)

PDB, Protein Data Bank; Rg(nat), radius of gyration of the native structure; Rg(alt), mean radius of gyration of the alternate
structures; mean rmsd native, mean of rmsd between each alternate structure and the native structure; mean rmsd alternate,
mean of rmsd between each pair of alternate structures. The estimated SDs are given in parentheses as deviation in last digit(s)
of mean.
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all 200 alternate structures for five of six proteins and GS and
BE do so for three of six. The few misrecognized structures for
these models cannot be considered part of the native ensemble
of structures since some of them have relatively large rmsds
from native. For example, the 16 lhoe structures misrecog-
nized by LS have rmsds ranging from 2.94 to 3.83 A. The four
structures misrecognized by GS have rmsds ranging from 2.91
to 4.64 A. MJ succeeds in discriminating all alternate struc-
tures only for lcrn, whereas AM and MC fail to discriminate

for all six proteins (although MC shows -95% discrimination
for 4pti and lhoe).
The means and ranges of the Ai values are summarized in

Fig. 1, in which results for the alternate structures from a single
protein are compared. Examination of Fig. 1 shows that
models LS andWZS are the most discriminating, whereasAM,
MC, and MJ are least discriminating. This figure presents a
clear indication that the WZS model successfully discriminates
all the alternate structures of all six proteins. This ability is

Table 2. Results of testing empirical energy models for discrimination of alternative structures

Value

Model Parameter lcrn 2ovo 4pti lsn3 lhoe lubq
AM Enative -429.95 -614.05 -629.55 -789.53 -829.39 -1005.54

GS

MC

BE

MJ

LS

HS

wzS1

WZS2

WZS3

(Ai) (300)
N+ (300)
(At) (500)
N+ (500)
Enative
(Ai) (300)
N+ (300)
(A1) (500)
N+ (500)
Enative
(Ai) (300)
N+ (300)
(As) (500)
N+ (500)
_QSnative
(A1) (300)
N+ (300)
(At) (500)
N+ (500)
Enative
(Ai) (300)
N+ (300)
(Ai) (500)
N+ (500)
Enative
(Ai) (300)
N+ (300)
(Ai) (500)
N+ (500)
znative

(Ai) (300)
N+ (300)
(Ai) (500)
N+ (500)
Enative
(A1) (300)
N+ (300)
(At) (500)
N+ (500)
Enative
(A1) (300)
N+ (300)
(A1) (500)
N+ (500)
Enative
(Ai) (300)
N+ (300)
(Ai) (500)
N+ (500)

0.06 (2)
98

-0.13 (4)
0

-7.64
-0.45 (19)

1
-0.80 (13)

0
-119.73
0.12 (15)

78
-0.13 (26)

33
-12.02

-0.35 (13)
0

-0.78 (12)
0

-257.03
-0.17 (5)

0
-0.49 (8)

0
5.17

-0.85 (1)
0

-0.89 (1)
0

-5.57
-0.25 (8)

0
-0.72 (12)

0
3.20

-0.56 (7)
0

-0.71 (5)
0

-3.05
-1.51 (37)

0
-1.43 (14)

0
-3.76

-1.50 (37)
0

-1.44 (15)
0

0.20 (2)
100

0.15 (3)
100

-20.37
-0.56 (13)

0
-0.83 (7)

0
-143.35

-0.07 (18)
36

0.00 (19)
55

-17.75
-0.17 (13)

8
-0.81 (11)

0
-297.25
0.04 (4)

86
-0.27 (5)

0
-12.92

-1.36 (39)
0

-1.19 (6)
0

-5.27
-0.04 (8)

31
-0.90 (16)

0
-8.21

-1.40 (14)
0

-1.75 (12)
0

-13.31
-0.89 (11)

0
-1.37 (21)

0
-16.38

-0.89 (11)
0

-1.36 (21)
0

0.18 (2)
100

0.13 (2)
100

-15.54
-0.46 (11)

0
-0.63 (9)

0
-232.28

-0.13 (10)
10

-0.36 (14)
0

-18.82
-0.19 (12)

8
-0.40 (15)

1
-299.94
0.03 (4)

75
-0.10 (7)

8
-34.21

-0.81 (16)
0

-1.76 (20)
0

-7.08
-0.25 (5)

0
-0.60 (10)

0
-12.22

-0.91 (12)
0

-1.29 (26)
0

-17.56
-0.58 (9)

0
-0.84 (22)

0
-21.48

-0.58 (9)
0

-0.83 (22)
0

0.13 (1)
100

0.11 (3)
100

-19.86
-0.28 (9)

0
-0.69 (9)

0
-157.61

-0.16 (18)
21

-0.38 (26)
9

-27.24
-0.07 (8)

20
-0.38 (13)

0
-273.67
0.18 (3)
100

0.02 (8)
51

-19.17
-0.99 (32)

0
-1.42 (14)

0
-5.95

-0.22 (8)
0

-0.66 (16)
0

-8.39
-1.12 (16)

0
-1.71 (14)

0
-24.35

-0.56 (8)
0

-1.05 (15)
0

-30.14
-0.56 (8)

0
-1.04 (15)

0

0.16 (2)
100

0.12 (3)
100

-10.68
-0.54 (16)

0
-0.56 (17)

1
-227.81

-0.20 (13)
8

-0.40 (15)
1

-28.66
-0.49 (8)

0
-0.51 (12)

0
-403.91
0.07 (3)

99
-0.10 (5)

1
15.03

-0.21 (18)
16

-0.59 (12)
0

-5.29
-0.38 (7)

0
-0.63 (13)

0
-5.34

-1.81 (17)
0

-1.67 (24)
0

-16.18
-0.81 (12)

0
-0.93 (22)

0
-19.77

-0.81 (12)
0

-0.92 (22)
0

0.17 (1)
100

0.12 (2)
100

-27.59
-0.27 (11)

2
-0.45 (14)

0
-225.81

-0.16 (15)
15

-0.29 (16)
2

-33.66
-0.21 (6)

0
-0.30 (10)

0
-449.55
0.03 (4)

76
-0.05 (5)

17
-39.87

-0.53 (16)
0

-1.01 (27)
0

-9.43
-0.17 (6)

0
-0.32 (11)

0
-27.12

-0.67 (4)
0

-0.77 (8)
0

-30.85
-0.56 (4)

0
-0.61 (6)

0
-37.59

-0.56 (4)
0

-0.61 (6)
0

Models and proteins are defined in text. Enative (znative, -QSnative) is the empirical energy in kcal/mol (z score, negative quality score) of the native
structure; (Ai) is the mean scaled difference in energy or score (Eq. 1) for structures at 300 or 500 K with the estimated SD in last digit(s) in
parentheses; N+ is the number of unsuccessfully discriminated alternate structures (for which Ai > 0) for structures at 300 or 500 K. In BE, positive
quality scores (QS) from Bowie et al. (13) were compared as negative numbers since higher QS implies lower energy. In HS, z scores were used
in place of energies (27).
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FIG. 1. Mean relative energy differences (Ai, Eq. 1) and their ranges for the eight empirical energy models tested (indicated across the top)
on alternate structures at 300 K (-) and 500 K (0) of each of six proteins (indicated along the bottom). Every group of 100 alternate structures
is represented by a symbol at the mean Ai and by bars delimiting the range of Ai. The WZS model is the only one for which all Ai <0 for all proteins
tested.

independent ofwhich subset of alternate structures are chosen
as the training set (cf., WZS1, WZS2, and WZS3 in Table 2).

DISCUSSION
A potential energy model can be deemed successful in ther-
modynamically discriminating nonnative from native globular
protein structures only if it is able to recognize alternate
structures distributed throughout conformational space. Al-
ternate protein structures that are conformationally distant
from the native structure are expected to be most easily
recognized as nonnative, especially if they are noncompact.
Thus, an algorithm for generating alternate structures for
globular proteins that are both compact and relatively close to
native in conformational space is required. The MD method
described herein succeeds in generating such alternate struc-
tures (Table 1). These alternate structures can also be "tuned"
to be within a given rmsd from native by selecting the MD
temperature and sampling frequency.

Tests of empirical potential energy models using these
alternate structures are found to be significantly more strin-
gent than those based on alternate structures generated by the
SRS algorithm (24, 25), which usually generates noncompact
alternate structures conformationally distant from the native
(rmsds of .7 A) and lacking realistic side chains, effectively
emphasizing backbone dihedral angle preferences. The MC
empirical energy model successfully discriminated the native
structures of lcrn, 2ovo, 4pti, 1sn3, and lhoe from 13,895,
12,896, 12,701, 12,031, and 11,198 alternate SRS-derived struc-
tures, respectively (23), yet failed to discriminate 111, 91, 10,
30, and 9 out of 200 alternate MD-derived structures from
each of these proteins (Table 2). The most recent HS model
successfully discriminated the native structure of 2ovo from
thousands of SRS-derived structures (25) but failed for 31
MD-derived structures (Table 2). Given the enormity of
conformational space for even small proteins such as these, any
failure to recognize a nonnative structure of any protein from
small test sets of alternate structures such as those represented
in Table 2 calls into question the utility of the model. The only
empirical model in Table 2 to pass this stringent test is WZS.
The AM force field is incapable of recognizing nonnative

structures; except for lcrn, AM finds that the alternate
structures are on average 10-20% more stable than native! The
current AM (and other) molecular mechanics force fields are
most useful in refining structures already near the conforma-
tional minimum. Our results show that AM is incapable of
driving a compact alternate structure toward the native struc-
ture.
The HS and MJ models derive interresidue energy param-

eters from a statistical analysis of the known structures of
similar sets of proteins, yet HS is much more successful at

discriminating alternate from native structures (Table 2 and
Fig. 1). The major difference between these models that we
believe accounts for this is the continuous nature of the mean
force potential energy function in the HS model. MJ uses an
all-or-none approach in which interresidue interactions are
considered only when the interresidue distance is below some
threshold value. The BE and GS models employ the most
sophisticated empirical energy functions of the models tested.
The BE model includes 18 empirical parameters for the local
secondary structure and exposure preferences of each amino
acid. The GS model incorporates nearly all existing empirical
energy terms, including the Ramachandran potential, hydro-
gen-bond and rotamer energies, local side chain orientational
coupling, one-body centrosymmetric burial potentials, a con-
tact energy, and even multibody side-chain packing interaction
energies. However, as seen in Fig. 1, the WZS model, with only
14 empirical parameters, out performs both the BE and GS
models. The excellent performance exhibited by the WZS and
LS models suggests that the solvation effect dominates the
stabilization of native structure in globular proteins (30, 47).
The method used to derive the parameter values for an

empirical energy function is as important as the energy func-
tion itself. In most models (e.g., MJ, HS, LS, BE, and GS), the
parameter values are derived from a statistical analysis of
protein crystal structure data. The quantity and quality of
available structural data, therefore, put a limitation on deri-
vation of these parameter values. The WZS model requires
only a few high-quality structures and enough alternate MD-
derived structures can be generated to train the 14 parameters.
The MC contact model also uses a learning algorithm to set the
energy function parameter values; its poor performance in our
tests (Table 2 and Fig. 1) may arise from a poorly chosen
training set. The combination of the atomic solvation model
and the learning algorithm based on MD-derived compact
alternate structures contribute to the ability of the WZS model
to successfully discriminate nonnative structures.

In summary, our MD method for generating compact
alternate protein structures allows us to perform more strin-
gent tests of the ability of empirical potential energy models to
discriminate them from the native structure. In fact, this
method exploits the inability of the AM molecular mechanics
force field to distinguish such nearby local conformational
minima on the basis of conformational energy alone (Table 2
and Fig. 1). We have used these compact alternate structures
to develop and test any atomic solvation model and found this
model to be highly discriminating against nonnative structures.

The help of Dr. J. E. Wampler in reading this manuscript is
gratefully acknowledged, Ms. Jane Lu and Dr. Amy Qiu are thanked
for assistance in data entry. We acknowledge Drs. M. J. Sippl and M.
Jaritz for providing the results for the HS model, Dr. A. Godzik for
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providing the results for the GS model, and Dr. D. Eisenberg for
providing the three-dimensional-profile program used to generate the
results for the BE model. The University of Georgia Computing and
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