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Abstract Work should be a source of health, pride, and
happiness, in the sense of enhancing motivation and
strengthening personal development. Healthy and motivated
employees perform better and remain loyal to the company
for a longer time. But, when the person constantly expe-
riences high workload over a longer period of time and is
not able to recover, then work may lead to prolonged neg-
ative effects and might cause serious illnesses like chronic
stress disease. In this work, we present a solution for assess-
ing the stress experience of people, using features derived
from smartphones and wearable chest belts. In particular,
we use information from audio, physical activity, and com-
munication data collected during workday and heart rate
variability data collected at night during sleep to build multi-
nomial logistic regression models. We evaluate our system
in a real work environment and in daily-routine scenar-
ios of 35 employees over a period of 4 months and apply
the leave-one-day-out cross-validation method for each user
individually to estimate the prediction accuracy. Using only
smartphone features, we get an accuracy of 55 %, and using
only heart rate variability features, we get an accuracy of
59 %. The combination of all features leads to a rate of 61 %
for a three-stress level (low, moderate, and high perceived
stress) classification problem.
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1 Introduction

Work-related stress is the response that people have when
presented with work demands and pressure which are not
matched to their knowledge and which challenge their
ability to cope [5].

In the modern, fast-paced society, work overload is more
and more common. In 2007, stress was identified to be the
second most common work-related health problem in the
EU [13]. We all are tempted to try to do more in less time,
without giving much thought to the consequences. However,
exposure to continuous high workload over a long period of
time without sufficient recovering can often lead to physi-
cal exhaustion and prolonged negative affect and even more
serious conditions such as chronic stress disease [7]. At the
same time, excessive workload represents a major reason
for employees quitting their jobs, which results in high eco-
nomic costs for the companies [36]. It is therefore of great
interest to monitor the affect changes of employees.

The most common method to quantify positive and neg-
ative affect is simply asking people about their mood in an
interview or by letting them fill in questionnaires. There are
standardized methods to measure such affect changes and,
specifically, those that help quantify stress. Examples of
such questionnaires are the Perceived Stress Questionnaire
[11] or the Depression Anxiety and Stress Scale [21].

In contrast to the common method, in this paper, we
investigate the potential of a modern smartphone and a
wearable heart rate monitor for assessing affect changes in
daily life. We derive features from the smartphone sensor
data during workday and heart rate variability (HRV) mea-
surements from a chest belt worn during sleep. As ground
truth, we gather self-assessments on perceived positive
and negative affect during working days. We use smart-
phone features and HRV measures as predictors for building
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classification models to discriminate among low, moderate,
and high perceived stress.

In the smartphone market, the two most prominent
mobile operating systems are iOS and Android. The vast
majority of the users participating in our trial have iPhones,
and since the idea is to let the users use their own smart-
phones in a normal way, we decided to build our system
for smartphones based on iOS. The Wahoo (http://www.
wahoofitness.com) chest belt, capable of measuring the
HRYV, was chosen because of its iOS support.

The rest of the paper is organized as follows: In the
next section, related work is presented. Next, the used ques-
tionnaire for self-assessment is shown, followed by the
explanation of the extracted features and the modeling of
the stress score. The experimental setup is described, and
the cross-validation results are discussed in the evaluation
section. The paper is concluded by summarizing the main
achieved results and by giving some improvements and
extensions planned to be done in the future.

2 Related Work

Stress recognition remains one of the main research topics
in the area of affective computing [2]. However, the focus
has shifted from controlled experiments to real-life scenar-
ios out of the lab. Along this direction, mobile devices such
as smartphones and mobile biosensors, mainly skin conduc-
tance sensors (see, e.g., [15]), have become the main tools
for analysis.

2.1 Stress Recognition using Smartphones

Searching in the app stores for “stress,” one can find more
than 1,000 related apps in the Apple market and much more
in the Google market. These apps can be categorized into:

— Diaries: Collect and aggregate subjective ratings

—  Guides: Tips and tricks on how to deal with stress; some
are combined with diaries

— Relaxations: Support of relaxation exercises, like
breathing techniques to calm down

—  Sensor measures: Sensor-based tracking of behavior
related to stress

In conclusion, nowadays, the majority of related apps fol-
low the common approach of asking and providing textual
description on how to deal with negative affect or stress.

However, there is emerging research on tracking of
behavior related to negative affect and stress, based on
sensors. For example, the recently introduced smartphone
application “BeWell” [18] monitors three daily types
of behavior: physical activity, sleep pattern, and social
interaction. In addition, the app provides visualizations of
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the measured behavioral aspects. For example, the amount
of physical activity is visualized by the swimming behav-
ior of an animated fish: in case of low physical activity,
the fish swims very slowly, and in case of high physical
activity, the fish performs fast loops. The system was eval-
uated with a small set of five users over a short period of
1 week. The three behavioral aspects are treated separately,
and there is no approach given to derive one single well-
being score. “AMMON” [8] is a speech analysis library
for analyzing affect, stress, and mental health directly run-
ning on the mobile phone. This library is limited to speech
and is tested using an emotion corpus [37]. The recogni-
tion accuracy is 93.6 % for the two-class problem: stress
increase vs. stress decrease. Similar to that, “StressSense”
[22] recognizes stress from human voice using smartphones
in real-life conversational situations. The reported accura-
cies are 82.9 % for the indoor scenario and 77.9 % for the
outdoor scenario. “MoodSense” [20] tries to infer the users’
mood using SMS, e-mail, phone call, application usage, web
browsing, and location data. Here, the audio part is missing
and the subjects are a group of students. The user mood can
be inferred into four major types with an average accuracy
of 91 %. A similar work is presented in [4], where GPS,
WiFi, Bluetooth, phone calls, and SMS logs are used to
detect specifically stress-related changes in user’s behavior.
Here, again, audio is not considered and the number of seven
students is very limited. The system is able to detect an
average behavior modification of 53 % for each participant
during the exam time. From all solutions, MoodSense is the
only one developed for iOS systems. It uses the “LiveLab”
[35] library able to collect sensor data in the background
(similar to the Android sensing framework “Funf” [3]). The
crucial problem here is that this library requires the iPhone
to be “jailbraked” (the Apple policy is broken), a fact that
makes the solution to be not acceptable for most people.

In our work, we focus on all sensor modalities available
on a regular iPhone. The 35 subjects under investigation are
employees of three IT companies, and the evaluation is done
for 4 months within the subject’s real working life.

2.2 Stress Recognition using HRV

HRYV reflects the variation of the beat-to-beat (RR) intervals.
HRV is known to be an indicator of the autonomic nervous
system activity [38]. In many studies, HRV measures were
employed to investigate mental disorders or responses to
stress. For example, in [23], the phases of bipolar patients
are characterized by means of HRV features obtained with a
sensorized T-shirt. In this clinical state assessment, features
are reported that show significant differences across bipo-
lar states. In [17], HRV patterns were found that allow to
identify subjects which report a high stress experience. The
classification between the high and the low stress groups is
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66.1 % accurate. In most examples, a stimulus that invokes
stress is presented to the subjects. In [10], e.g., people work
under a controlled cognitive load and under time pressure.
In [39], the HRV features are evaluated during emotional
visual elicitation, and in [26], the HRV features of students
under stress due to university examination are investigated.
The accuracy of discriminating students under stress from
situations without stress is 90 %. Beside the HRV analysis
during the day, there is also research done in investigat-
ing HRV patterns recorded during sleep as a supplement
of the day analysis. However, these studies concentrate on
a specific illness, such as bipolar disorder, e.g., [28], or
obstructive sleep apnea, e.g., [41], and do not treat the
problem of stress in general.

In our work, we investigate HRV patterns from normal
healthy people during sleep. In order to do that, we use an
unobtrusive HRV measuring device that can be easily worn
at night.

3 Approach and Methods

In general, we follow the approach of estimating changes of
subjective self-perception of stress using smartphone sensor
measures and information derived for the HRV signal dur-
ing night. From 8 a.m. to 8 p.m., the day is divided into
four sections, and randomly within each section, a notifica-
tion is shown which asks the user to fill in a self-assessment
questionnaire. In parallel to that, smartphone data are being
collected during the day in the background. Before going
to sleep, the user answers an additional stress question and
puts on the Wahoo chest belt which collects HRV data dur-
ing night until the next morning. After getting up, a new
cycle of data collection begins. Figure 1 shows schemati-
cally one such full data collection cycle. The idea now is to
use these smartphone and wearable device data to estimate
the self-assessment stress score.
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In the following, we describe the subjective assessments,
the features extracted from the objective data, and the
models used to predict the stress level.

3.1 Questionnaire and Audio Response

The user of the app is asked to fill in a Positive and Nega-
tive Affect Schedule (PANAS) questionnaire [40] four times
per day between 8 a.m. and 8 p.m. This self-assessment
questionnaire originally consists of 20 items. In the deploy-
ment phase of the app, we received complaints about the
difficulty of answering to all of the items. To avoid any
misunderstandings and to make the answering easier for
the user, we reduced the questionnaire to the following 10
items: relaxed, tired, happy, stressed, concentrated, sleepy,
interested, active, angry, and depressed (five PA items and
five NA items). The questions are answered by moving a
scrolling bar to the left for a low value and to the right for a
high response value.

Beside answering to the PANAS questionnaire items, the
user is asked to provide a voice message in which he speaks
about what he is currently doing using his native language.
The voice recording is performed by pressing a start and
an end button. In this way, the privacy aspect is not a criti-
cal point since the user is conscious that his voice is being
recorded. The questionnaire is shown in Fig. 2.

The last action the user actively performs with the phone
is answering to the stress self-assessment question before
going to sleep: “How stressful have you felt today?” The
person is supposed to think in a retro-perspective way about
the passed day and to rate it by moving a scrolling bar
from very relaxed to very stressed resulting in a contin-
uous stress score between 0 and 1. This type of asking
questions about the feelings in hindsight corresponds to the
daily reconstruction method [16], as opposed to the expe-
rience sampling method [19], i.e., current perception of
stress.

Q4 Q before sleep
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Fig. 1 One full data collection cycle and the questionnaires shown during the day
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Eanhnacy

Right now | feel...
Not at all Relaxed Very
I
Not at all Tired Very
o
Not at all Happy Very

Please speak what you are currently
doing using your native language

Record Stop Play

Back Save

Fig. 2 The implemented PANAS questionnaire reduced to 10 items:
relaxed, tired, happy, stressed, concentrated, sleepy, interested, active,
angry, and depressed (five PA items and five NA items). The ques-
tions are answered by moving a scrolling bar resulting in a continuous
response value. The last question asks the participants to respond ver-
bally about what he is currently doing in his native language. The voice
is recorded by pressing the Record and the Stop buttons

In this study, we concentrate only on the single stress
score of the night.
3.2 Signal Processing Chain
An overview of the signal processing chain of the app is

depicted in Fig. 3. In order to reduce the battery consump-
tion, the accelerometer and the GPS sensor are sensed only
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every 5 min for 30 s. The microphone signal is accessed as
part of the self-assessment questions. The contacts (address
book) and the calender events are read once before the data
are uploaded to the web server. The current battery level is
stored in 5 % intervals, and a call event is registered as soon
as the phone call happens. The computed RR intervals on
the Wahoo device are sent in real time to the smartphone
which then continuously stores the values locally during the
whole night.

3.3 Features

We follow the approach of collecting as much smartphone
data as possible, extracting features based on state-of-the-art
research and trying, to find the best feature set with respect
to cross-validation accuracy at the end. Tables 1 and 2 show
the complete extracted feature list.

3.3.1 Smartphone Features

The smartphone features are divided into audio, physical
activity, and social interaction features.

Audio To anonymize the recorded speech, the audio file is
sliced into small chunks and these slices are randomly per-
muted within each second, resulting in a very low speech
intelligibility. The speech of the person becomes not under-
standable, while at the same time, the performance of the
acoustic analysis of the speech is not degraded. The open
source library “openSMILE” [14] is used for the calcula-
tion of the audio features. The selection of features is driven
by the feature set proposed in the INTERSPEECH 2009
Emotion Challenge [34].

Physical Activity Dependent on the environment, type of
activity, and health of the person, the physical activity
may influence the perceived stress level, both in a positive
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Fig. 3 Signal processing chain: from raw sensor data to the final stress score
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Table 1 Smartphone feature list

Category Sensor No. of features
Audio Microphone >384
Physical activity Accelerometer 2
GPS 2
Social interaction Phone calls 5
Address book 3
Calendar 4
Battery 1

and in a negative way (see, e.g., [29, 32, 33]). We esti-
mate the physical activity using independently the device
acceleration and GPS traces. The accelerometer features are
the mean value and the variance of the magnitude of the
device acceleration. The total distance traveled during the
day and the number of locations visited are calculated using
GPS. Locations are derived using the density-based cluster-
ing algorithm DBSCAN [12]. To anonymize the GPS traces,
the absolute positions are shifted such that the centroid
of the locations becomes the zero point of the coordinate
system.

Social Interaction An important factor of stress is person-
ality traits. It has been shown that neurotic people have
difficulty in managing stress [25]. A list of social interac-
tion data derived from smartphones that are used to analyze
the personality traits is given in [9]. From call events, we
use number of calls, sum of all call duration, mean value
and variance of call duration, and the ratio between incom-
ing and outgoing calls. Number of events, total time spent
in events, mean value of event duration, and the mean size
of notes are extracted from calendar data. The absolute
numbers of the address book are not relevant, but the rel-
ative changes of the number of contacts, phone numbers,
and e-mail addresses could be more interesting. And, as an
indication of battery usage, the ratio between the time the
battery is not charging and the time the battery is charging
is calculated.

Table 2 HRYV feature list

Category Features No. of features
Time Sleep duration 1
Mean RR, SDNN 2
RMSSD, pNN50 2
HRYV index, TINN 2
Nonlinear ApEn 1
SD1, SD2, SD1/SD2 3
Frequency LF, HF, LF/HF 3
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3.3.2 HRV Features

Before deriving any features from the HRV signal, the RR
intervals that differ more than 20 % from their predeces-
sors are discarded. These samples are considered as outliers
which may result from movements of the upper body dur-
ing sleep or any heart beat anomaly such as ectopic beats.
The selection of the HRV features and its classification into
three groups is motivated by the review article given in [1].

Time Domain Features The time domain features include
sleep duration, mean value of RR intervals (mean RR), stan-
dard deviation of RR intervals (SDNN), root-mean-square
successive difference of RR intervals (RMSSD), number of
successive difference of RR intervals which differ by more
than 50 ms expressed as a percentage of total RR intervals
(pNN50), and two geometric measures, namely the total
number of RR intervals divided by the height of the his-
togram of all RR intervals measured on a scale with bins of
1/128 s (HRV index) and the triangular interpolation of RR
interval histogram (TINN).

Nonlinear Features Approximate entropy (ApEn) measures
the complexity or irregularity of the signal. Large values of
ApEn indicate high irregularity, and smaller values of ApEn
indicate a more regular signal [39]. SD1 represents the fast
RR variability in the HRV data, while SD2 describes the
long-term variability (SD1 and SD2 are also known as the
coefficients of the Poincoir plot). And, SD1/SD2 is the ratio
of short interval variation to the long interval variation [1].

Frequency Domain Features The power spectral density of
the RR intervals is estimated using the Lomb—Scargle peri-
odogram [31] since this algorithm can deal with time series
which are not necessarily evenly spaced. The spectrum is
divided into three frequency bands: very low frequency
(VLV), 0.01-0.04 Hz; low frequency (LF), 0.04-0.15 Hz;
and high frequency (HF), 0.15-0.4 Hz. The features used
are the normalized values of LF, HF, and the ratio of LF and
HF (LF/HF). The ratio LF/HF is not only useful as a feature
for detecting stress but is also very important to differentiate
between the sleep stages [27].

3.4 Stress Score Modeling

Sp is the stress score using only the extracted smartphone
features during the day, and Sy is the score using the
HRYV features of the night. The stress score S combines
the two individual scores Sp and Sy. For the estimation of
the scores, we use multinomial logistic regression (logit)
models.

The binomial logit is defined as

logit(p;) = Po.i + Br.i - X1+ ...+ Bm,i - Xm = ¥i, (D
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with i = {0, 1} and the logit function defined as

1ogit(p,-)=1n< pi ) )
1 —pi

Bo.i - - - Bm,i are the m regression coefficients for the class i,
and x1 ...Xx,, are the m variables or predictors of the linear
regression. The probability of the class i is

pi = logiF1 ). (3)

The binomial case is extended to the multinomial case
with three classes, i = {0, 1, 2}. The multinomial logit
model assigns the input variables x = [x| . .. x,,] the class ¢
with highest probability:

c(x) =arg max_(p;) € {0, 1,2}, (€))
ie{1,2,3}

where pg + p1 + p2 = 1. For more details, see, e.g., [24].

In our case, the input variables x are the features, and
the model parameters § are estimated using training data.
The motivation for choosing a three-class model is shown in
Fig. 4. The typical stress score distribution can be roughly
segmented into three regions, which in our case correspond
to three ordinal classes:

— 0 (low stress), if stress score < 0.3,
— 1 (moderate stress), if 0.3 < stress score < 0.7, and
— 2 (high stress), if stress score > 0.7.

3.4.1 Daily Stress Score

The daily stress score DS is a continuous value between 0
and 1 and reflects the stress level of the previous day. This
score can also be seen as the acute stress level of a person.
DSp and DSy are the individual scores using smartphone
data and HRV data. They are computed as

DSk = [pok, pik, p2x] - [0, 0.5, 117, ®)

Fig. 4 The stress score

0. Low Stress
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Fig. 5 An example of the visualization of DSp for the class probabil-
ities { pop, p1p, p2p} = {0.15, 0.3, 0.55}

with K € {P, H}. Figure 5 shows an example of the visual-
ization of DSp for the class probabilities {0.15, 0.3, 0.55}.If
training data from both modalities are available at the same
time, then a common logit model is trained with features
from both smartphone and HRV, and DS is computed as

DSk = [po, p1, p21-10,0.5, 117, ©6)

where {po, p1, p»} are the outcome probabilities of the
common model with the input x = [xp, xg]. However, in
a practical case, a common trained model is not available,
if for daily training, data from one modality are missing. In
that case, DS is computed using DSp and DSy as

DS = wpDSp + wyDSH. 7

wp and wy are the a priori weights which correspond to the
normalized classification accuracies of DSp and DSy.

3.4.2 Long-Term Stress Score

The long-term stress score LTS is a continuous value
between 0 and 1 and estimates the chronic stress level of a
person. Using a first-order low-pass filter, LTS at day d is
updated according to the rule

LTSy41 = LTSy + a - (c([xp, xu])/2 — LTSy), (8

with the filter coefficient & indicating the maximum change
of LTS that may occur from day d to d + 1. c([xp, xy]) is the
output class of the common logit model using as input all

1. Moderate Stress 2. High Stress
T T

distribution of one exemplary aF \
user Il Data

Frequency

0 0.1

T t T T T t

Interpolation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Stress Score [0-1]
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Fig. 6 An exemplary profile of 1
LTS over a period of 2 months
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features at day d + 1. If either of the modalities is missing,
then c([xp, xyg]) is reduced to c(xp) or c(xg). In case the
common trained model is not available for the classification,
then c([Xp, xg]) is modified to ¢*(xp, XH) as

€))

c*(xp, xg) = arg max_(¢;) € {0, 1,2},
iefl,2,3)

with g; wppip + wypig. The initial value LTSy is the
average of the daily stress scores DS during the training
days. Figure 6 shows an exemplary profile of LTS over a
period of 60 days with & = 0.1.

4 Evaluation

In this section, the experimental design of the conducted
user study is first explained. Then, aggregated smartphone
data over more than 1 day are shown for one specific user
as an example. The best feature subset for each modality is
determined, followed by the cross-validation analysis using
these features. The section is concluded with a discussion
part.

4.1 Study Design

For our experiment, 35 users working in three IT companies
participated for 4 months in the period between end of May
2012 and end of September 2012. The occupation of the
subjects ranges from software developer to CEO of the com-
pany. The ages are equally distributed from 25 to 62 years.
Eleven participants are female.

The participants had either iPhone 4 or iPhone 4S. The
app was installed on their own devices in order to be able to
use the smartphones in the usual way. The app can run on
iPhone 4s at maximum for 12 h and on iPhone 4 for 14 h.
The participants were equipped with Wahoo chest belts,
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which they used to collect HRV data during night. Table 3
summarizes the statistics of the collected data.

4.2 Visualization of the Data

Phone calls, questionnaire events, motion, and battery level
can be visualized on a plot such as shown in Fig. 7, where
data from 2 days of one exemplary user are depicted. The
battery level graph indicates that there is data gap between
the 2 days. When the battery level falls below 50 %, the
accelerometer is disabled, and when the battery undergoes
the 30 % threshold, the GPS sensor is disabled which forces
the app to be inactive and to disable the data collection in
the background. Data collection is reactivated when the bat-
tery exceeds that threshold again and the app is put in the
foreground, by either directly opening the app or when the
user clicks the next notification message which asks him to
fill in the next PANAS questionnaire. Beside that, the back-
ground sensing is stopped when the user starts an HRV night
session and is reactivated when the user wakes up in the
morning.

4.3 Feature Selection
We separate the feature selection procedure into two con-

secutive steps: first, the feature set is reduced using cross-
correlation analysis, and then, the remaining features are fed

Table 3 Data statistics

Number of users 35
Number of days 127
Number of PANAS filled out 1,672
Number of HRV recordings 245
Number of Audio recordings 958
Amount of data (MB) 875
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into a sequential feature selection method to find the best
subset in terms of classification accuracy.

Feature Reduction We remove highly correlated features,
since one of the requirements for the predictor variables to
obtain successful linear regression models is to be indepen-
dent. For this, we use the data of all users together. Table 4
shows the cross-correlation matrix of the phone call fea-
tures. Highly correlated and significant values tell us that the
feature set can and should be reduced to three features (num-
ber of phone calls, percent in/out, and, e.g., mean (length)).
A similar conclusion can be given for the case of nonlinear
HRYV features shown in Table 5 where only SD1/SD2 is cho-
sen. The cross-correlation analysis is also applied to other
categories of smartphone and HRV features. As a result of
the feature reduction, we end up with 13 smartphone and 10
HRV features.

Sequential Feature Selection For each separate user, we
apply the feature selection method, which, starting from
an empty set, sequentially selects a subset of features until
there is no improvement in prediction. For each candidate

Table 4 Correlation matrix of the phone call features

r No.of  Sum Mean Std. % in/out
calls (calls)  (length)  (length)

No. of calls 1.00 0.60T  0.48* 0.65% 0.33

Sum (calls) 0.60* 1.00 0.91* 0.86* 0.42*

Mean (length)  0.48%  0.91* 1.00 0.80* 0.59*

Std. (length) 0.657  0.86* 0.80* 1.00 0.25*

% infout 0.33 0.42* 0.59* 0.25* 1.00

Tp <0.05*p < 0.01

feature subset, a 10-fold cross-validation on the user data is
performed. For each user, we get a different subset with the
corresponding feature importance. Using only smartphone
features, the algorithm selects two to five features over all
users and four to six features using only HRV features.
Table 6 shows the list of selected features ordered by the
average importance over all users. The third column shows
the result of the feature selection applied to the concatena-
tion of all smartphone and HRV features. From the seven
selected features, in the merged case, four features belong
to HRV and three belong to smartphone. This ratio gives a
qualitative indication that the HRV features are in general
more important.

4.4 Cross-validation

The DS as well as the LTS is directly derived from the
output of the logit classification. We therefore use the accu-
racy of that classification to evaluate the overall system. The
self-assessment stress score is mapped into one of the three
stress categories. The recognition is correct if the output of
the logit classification is the same as the mapped class and
wrong otherwise.

Figure 8 shows the histogram of the recorded HRV night
sessions. Eleven users have collected 10 and more HRV

Table 5 Correlation matrix of the nonlinear HRV features

r SD1 SD2 SD1/SD2
SD1 1.00 0.85* 0.77*
SD2 0.85* 1.00 0.81*
SD1/SD2 0.77* 0.81* 1.00

*p < 0.01
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Table 6 Selected features from sequential feature selection for smart-
phone, HRYV, and concatenated smartphone + HRV features. They are
sorted by the average importance

Order Smartphone HRV All features
1 No. of calls LF/HF LF/HF

2 Audio length SD1/SD2 No. of calls
3 Distance Sleep length SD1/SD2

4 Speech energy RMSSD Sleep length
5 Mean call length HRYV index Audio length
6 Mean RR Distance

7 RMMSD

night sessions, but on the other side, there are 12 users who
have only one or less recordings. Since we are interested in
combining smartphone data and HRV data, we consider the
smartphone data for only those days where HRV recordings
are available as well.

The General Model vs. User-Specific Models The general
model uses aggregated features of all 35 participants. For
a user-specific model, data of one participant which has
at least 10 HRV night sessions recorded are used. In both
cases, three logit models are trained: the model trained with
only smartphone features, Mp; the model trained with only
HRYV features, My; and the model trained with all features,
M. In the general case, the feature subsets are the columns
shown in Table 6. In the user-specific case, the feature set of
a specific user results from the previous sequential feature
selection for that user.

Cross-validation Results To calculate the classification
accuracy of the user-specific models, we employ the leave-
one-day-out cross-validation procedure for each user sep-
arately. For Mp, we get an average accuracy of 55 %,
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59 % for My, and 61 % for M, for the three-class recog-
nition problem (low, moderate, and high stress) with 40 %
(0.7-0.3) baseline. For the general model, we use the leave-
one-participant-out cross-validation and get the accuracies
of 45 % for Mp, 52 % for My, and 53 % for M. My out-
performs Mp in both cases by at least 4 %. This finding is
aline with the assumption from the feature selection, which
says that HRV features are more important. Moreover, the
higher decrease of the accuracy for Mp indicates that the
smartphone features are more user sensitive than the HRV
features.

4.5 Discussion

Study Design Except for a short description on how to use
the app, the participants were not given any other instruc-
tions about the study. They used the system in a completely
unconstrained environment. When answering to the stress
self-assessment question, they were not aware about our
definition of work-related stress. For some of them, stress
was not necessarily a negative event or feeling. Addition-
ally, what we have not considered so far is the differentiation
between the pure working period and the time spent at
home in the evening and between workdays and weekend
days.

Feature Selection For both smartphone and HRYV, at least
one feature from each category remains in the feature sub-
sets. But, we can also notice that no feature from accelerom-
eter, address book, calendar, and battery has been selected at
all. This is due to the fact that most people do not use their
own smartphones for business purposes. The smartphone
lies on the desk, and all business contacts and calendar
events are stored on the computer. Regarding HRV, the
selected features are similar to feature sets found in related
works. And, a valuable outcome is that simple features such

Fig. 8 Histogram of the
recorded HRV night sessions

Frequency (No of users)

0123 456 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28
No of recorded HRV night sessions
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as the sleep duration and the length of the audio response
seem to be important for both modalities.

Cross-validation In the evaluation of the system, we did not
consider the ordinal characteristic of the stress classes. The
mismatch between classes 0 and 1 or between 1 and 2 should
be less penalized than the mismatch between 0 and 2. Com-
pared with the best results achieved in recent works (= 80 to
90 %), the accuracy of 61 % seems to be poor at first view.
But, considering the fact that we dared to go out of labora-
tory environment and had no artificial stressors at all during
the day, we can conclude that 21 % above chance is reason-
able. But, at the same time, we see that there is room for
improvement in any aspect, not only including study design
and machine learning methods but also incorporating other
sensors for stress detection.

5 Conclusion and Ongoing Work

We have presented an iPhone-based app, which combines
the recording of all available smartphone data with the col-
lection of subjective assessments and voice messages during
workday and the recording of HRV data during night. We
employed the app to 35 users over 4 months in a real work-
ing environment. We analyzed the collected data aiming to
find the appropriate feature set for smartphone and HRV in
order to build logistic regression models for discriminating
stress levels. We have defined two different stress scores,
the daily stress score estimating the acute stress level of the
previous day and the long-term stress score, which is the
accumulated stress over the last days and weeks and which
estimates the chronic stress level of a person.

With the cross-correlation analysis, we were able to
remove highly correlated features, and the following auto-
matic feature selection led to the best feature subset for each
individual user. We noticed that the HRV features are in
general more important than the smartphone features.

Finally, we saw that the classification models have to be
trained with user-specific data. The model using only HRV
data outperforms the model using only smartphone data.
The best accuracy, when all features are combined, is 61 %
for the three-class recognition problem.

When a user installs the app, the initial period is used
to gather objective (smartphone and HRV) and subjective
(stress self-assessments) data to train the user-specific logit
models. During this calibration phase, the pre-built general
models are used to calculate the stress scores. When enough
data for that specific user are collected, the user-specific
model is built, and from now on, the app switches from
training to classification mode. The estimated stress score
is daily shown on the smartphone, and the user is asked
the self-assessment questions from time to time in order

181

to dynamically update the models and to be able to catch
changes in user’s lifestyle.

There are some improvements and extensions that we
plan to do next:

Stress Question Beside the question in its absolute form,
namely “How stressful have you felt today?,” the user is
asked additionally two questions in relative form:

“How stressful have you felt today compared to yester-
day (much less to much more)?”

“How stressful have you felt today compared to last
week (much less to much more)?”

For the relative questions, the input slider is initially posi-
tioned in the middle (0.5). The user can then move the slider
towards the much less or the much more end. By moving
the slider towards either of the far edges, the user generates
an input that goes up to 75 % () of the distance remain-
ing from the reference value towards O (if slider < 0.5) or
towards 1 (if slider > 0.5). More formally, the slider input
(in) is turned into an absolute value (out) [0—1] based on
the reference value (ref) from yesterday or last week and
a = 0.75 as follows:

(= ref —ref - (1 —in/0.5) - o
~ |ref+ (1 —red) - ((in — 0.5)/0.5) -

ifin < 0.5,
ifin > 0.5.

The overall input of each day is calculated as the average
of the three questions, with the above transformation applied
to the two relative questions slider inputs beforehand. For
the yesterday relative question, the reference value ref is the
input from yesterday. For the last week relative question, the
reference value ref is the average of all inputs from the last
week. We propose this change as we belief it may help with
removing input bias and ensure a more rapid coverage of all
three input classes.

Model Selection Different other linear and nonlinear clas-
sification and regression methods will be evaluated, e.g.,
SVM or Random Forrest.

Detect Sleep Stages We have used the whole HRV night
session to extract the time and frequency domain features so
far. But, stress is manifested in the RR intervals signal dur-
ing sleep differently in each sleep stage [6]. Therefore, to
have reliable HRV features, the differentiation of the sleep
stages would be of benefit. We will evaluate methods to sep-
arate the wake stage, the rapid eye movement (REM) stage,
and the non-REM stages from each other, based on the
distribution of the HF/LF ratio and the typical sleep stage
cycles (see, e.g., [27]).

HRV During Day We have seen from a related work that
measuring HRV during the day is useful as well. Therefore,
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an HRV session of 15 min before going to sleep and another
session of 15 min just after waking up in the morning
will be a good supplement to the existing measures during
sleep.

Additional Wearable Device Beside the Wahoo chest belt,
we plan to use other physiological sensors as well. The
Empatica (http://www.empatica.com) E2 sensor is a wrist-
worn device which is able to read the blood pressure, the
skin conductivity, the body temperature, and the body move-
ment. An alternative to that is the Affectiva (http://www.
affectiva.com) Q Sensor based on [30].
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