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Abstract

The brain’s spontaneous, intrinsic activity is increasingly being shown to reveal brain function, 

delineate large scale brain networks, and diagnose brain disorders. One of the most studied and 

clinically utilized types of intrinsic brain activity are oscillations in the electrocorticogram 

(ECoG), a relatively localized measure of cortical synaptic activity. Here we objectively 

characterize the types of ECoG oscillations commonly observed over particular cortical areas 

when an individual is awake and immobile with eyes closed, using a surface-based cortical atlas 

and cluster analysis. Both methods show that [1] there is generally substantial variability in the 

dominant frequencies of cortical regions and substantial overlap in dominant frequencies across 

the areas sampled (primarily lateral central, temporal, and frontal areas), [2] theta (4–8 Hz) is the 

most dominant type of oscillation in the areas sampled with a mode around 7 Hz, [3] alpha (8–13 

Hz) is largely limited to parietal and occipital regions, and [4] beta (13–30 Hz) is prominent peri-

Rolandically, over the middle frontal gyrus, and the pars opercularis. In addition, the cluster 

analysis revealed seven types of ECoG spectral power densities (SPDs). Six of these have peaks at 

3, 5, 7 (narrow), 7 (broad), 10, and 17 Hz, while the remaining cluster is broadly distributed with 

less pronounced peaks at 8, 19, and 42 Hz. These categories largely corroborate conventional sub-

gamma frequency band distinctions (delta, theta, alpha, and beta) and suggest multiple sub-types 

of theta. Finally, we note that gamma/high gamma activity (30+ Hz) was at times prominently 
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observed, but was too infrequent and variable across individuals to be reliably characterized. 

These results should help identify abnormal patterns of ECoG oscillations, inform the 

interpretation of EEG/MEG intrinsic activity, and provide insight into the functions of these 

different oscillations and the networks that produce them. Specifically, our results support theories 

of the importance of theta oscillations in general cortical function, suggest that alpha activity is 

primarily related to sensory processing/attention, and demonstrate that beta networks extend far 

beyond primary sensorimotor regions.
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Introduction

Oscillations characteristic of the brain’s intrinsic activity

In recent years, the neurosciences have become increasingly interested in understanding the 

intrinsic activity of the brain (Kelly et al., 2012). This work is well motivated as intrinsic 

activity, typically measured when an individual is awake and immobile (i.e., in a “resting 

state”), has proven effective at identifying various functional brain networks (Kokkonen et 

al., 2009; Power et al., 2011), is likely to serve important functional roles (Raichle, 2006), 

and may be a biomarker of various neurological and psychiatric disorders (Fox and Greicius, 

2010). The longest studied and most clinically utilized types of intrinsic brain activity are 

oscillations in the electroencephalogram (EEG), magnetoencephalogram (MEG), and 

intracranial electroencephalogram/electrocorticogram (iEEG/ECoG), which primarily reflect 

cortical synaptic potentials (Kutas and Dale, 1997). Decades of research on this activity, 

originally called the “eigenströme” (Penfield and Jasper, 1954), have led to conventional 

classes of oscillations based on the fact that some of these rhythms are robustly 

characteristic of particular brain regions, functions and states. The most conventional 

frequency bands are: delta [1–4 Hz], theta [4–8 Hz], alpha/mu [8–13 Hz], beta [13–30 Hz], 

gamma [30–80 Hz], and high gamma [80–150 Hz] (Canolty et al., 2006; Crone et al., 2011; 

MacKay, 1997)1.

Perhaps the best studied of these rhythms are the occipital alpha and central mu rhythms, 

since they are clearly observed at the scalp. Occipital alpha is predominantly generated by 

the occipital cortex and is found to a lesser extent in the parietal and temporal lobes (Feige, 

2005; Perez-Borja et al., 1962; Sperling, 1993). It is likely produced by a loop between these 

cortical areas and the thalamus (Feige, 2005; Rowe et al., 2004), though it may reflect 

cortico-cortical interactions as well (Nunez et al., 2001). Alpha is increased by inattention 

and lack of visual input (Nunez et al., 2001) and the perceptibility of visual stimuli depends 

on alpha phase (Thut et al., 2012). Some interpret alpha as an idling rhythm that self-

organizes when cortical areas are disengaged. However, growing evidence that experimental 

manipulations of alpha affect perception (Jensen and Mazaheri, 2010; Klimesch et al., 2007; 

Thut et al., 2012) and that alpha phase may modulate local cortical activity (Voytek, 2010) 

1Note that the boundaries between the different frequency bands can vary slightly across studies.
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suggests that it serves an active role in attention and sensory processing and mediates 

communication between different cortical areas. Mu is in many ways the sensorimotor 

analog of occipital alpha. It is predominantly generated by the pre- and postcentral gyri 

(MacKay, 1997; Sperling, 1993) and at least partially reflects the interactions between these 

areas and the thalamus (MacKay, 1997). Mu amplitude is decreased by movement (MacKay, 

1997) and thus, like alpha, it is greatest when the cortical areas generating it are disengaged. 

Curiously, unlike alpha, it is not yet clear if mu phase modulates overall levels of local 

cortical activity (Miller et al., 2012).

Beta oscillations, like mu, are prominent in the pre- and postcentral gyri and are reduced at 

the onset of movement (Jenkinson and Brown, 2011; MacKay, 1997; Ritter et al., 2009). 

This has led some to speculate that beta acts to suppress the function of motor cortex by 

synchronizing its activity (Miller et al., 2012). Curiously, following movement onset, beta 

amplitude rebounds if the movement is sustained, and is enhanced when movements are 

suppressed (Jenkinson and Brown, 2011). Thus others have argued that beta functions to 

promote tonic motor activity at the expense of voluntary movement (Engel and Fries, 2010; 

Jenkinson and Brown, 2011). Cortical beta is likely to be partially generated via interactions 

with the basal ganglia and is enhanced in Parkinson’s disease (Jenkinson and Brown, 2011). 

Beta may also be produced by cortico-cortical and even cortico-spinal interactions. Indeed, 

modeling studies suggest that beta oscillations are ideally suited for communicating across 

long conduction delays (Bibbig et al., 2002; Kopell et al., 2000).

In scalp recordings, theta is most prominently seen over frontal midline locations (Maurer 

and Dierks, 1991; Mitchell et al., 2008; Nunez et al., 2001; Srinivasan et al., 2006) and has 

been found to be modulated by multiple cognitive demands such as working memory (Onton 

et al., 2005) and error monitoring (Debener et al., 2005). This “frontal-midline” theta is 

consistent with generators in the anterior cingulate (Onton et al., 2005), and correlates with 

simultaneously recorded BOLD activity in this area (Debener et al., 2005). Intracranial 

recordings have confirmed feedback related theta activity in the anterior cingulate (Wang, 

2005), but they have also revealed theta activity in many other cortical areas. Theta has been 

associated with the temporal lobe in human intracranial recordings (Sperling, 1993), though 

various tasks (navigation, speech comprehension, working memory) have been shown to 

modulate theta in occipital, frontal, pericentral, and orbitofrontal areas (Canolty et al., 2006; 

Kahana et al., 1999; Raghavachari, 2006). Many non-mutually exclusive, functions for 

cortical theta oscillations have been proposed such as executive attention (Wang, 2005), 

mediating communicating between different cortical areas by modulating local levels of 

activity (Canolty et al., 2006), mediating interactions with the hippocampus (Mitchell et al., 

2008), working memory maintenance (Raghavachari, 2006), and spike-phase encoding 

(Wang, 2010).

The other conventional frequency bands are not clearly associated with particular cortical 

areas. In healthy adults, delta power is broadly distributed at the scalp, being largest over 

frontal and medial centroparietal sites (Maurer and Dierks, 1991). Gamma and high gamma 

modulations by tasks or the phase of low frequency oscillations have been demonstrated 

across multiple cortical areas (Canolty et al., 2006; Crone et al., 2011; Miller et al., 2012; 

Voytek, 2010). However, it is likely that these modulations reflect broadband changes in the 
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magnitude of the 1/f distribution of spectral power rather than changes in the magnitude of 

oscillatory activity (Miller et al., 2009). Indeed, regions exhibiting particularly elevated 

levels of intrinsic gamma or high gamma activity (indicative of true oscillations) have not 

been established, though there is some evidence of gamma/high gamma activity in medial 

temporal cortical areas during both wake and sleep states (Uchida et al., 2001).

Outstanding questions

While a small number of cortical regions have been identified that robustly exhibit intrinsic 

oscillations in particular frequency ranges, it is not clear what type of intrinsic oscillatory 

activity is normally present for the majority of regions. For example, based on high-density 

EEG and MEG recordings, Nunez et al. (2001) and Srinivasan et al. (2006) have argued that 

alpha activity dominates the intrinsic activity of cortex in general, although some areas (e.g., 

occipital) exhibit more alpha power than others. However alpha activity is not reported as 

being that widespread in contemporary neurological intracranial EEG atlases (Sperling, 

1993, 2003). Similarly, although beta is clearly characteristic of sensorimotor cortex, it is 

not clear how far it extends beyond those areas. There are reports of intrinsic beta 

oscillations being found over other areas of the frontal lobe (Penfield and Jasper, 1954; 

Sperling, 1993) as well as the medial temporal lobe (Uchida et al., 2001). Developing a 

more comprehensive atlas of the types of oscillatory activity that are normally generated by 

different cortical areas is of obvious clinical importance, since such standards should aid in 

the identification of pathological brain areas. Moreover, it would help with interpreting the 

growing body of research on resting state EEG/MEG data (Mantini et al., 2007) and inform 

our understanding of the role and networks involved in producing these oscillations.

An additional shortcoming of our current knowledge of intrinsic brain oscillations is the lack 

of a clear understanding as to what types of frequencies of oscillations exist. The 

conventional frequency bands are likely based on the few most robust examples of intrinsic 

oscillations (e.g., occipital alpha, mu) and may not be generally valid (Niedermeyer and da 

Silva, 1993). For example, the theta band was originally defined to characterize EEG 

abnormalities produced by tumors whose periods were in between that of prototypical delta 

and alpha phenomena (Walter and Dovey, 1944). Decades of subsequent research have 

found that various factors can modulate theta activity in healthy individuals but it is quite 

possible that multiple, distinct physiological processes produce theta band oscillations and 

that some theta band activity may be functionally and physiologically identical to 

oscillations outside of the theta band (Mitchell et al., 2008). Since such frequency band 

conventions are often applied a priori to determine the spectral resolution of analyses 

(Mantini et al., 2007), there is a clear need to demonstrate their validity.

The present research aims to address these questions by measuring intrinsic oscillations 

across a wide range of cortical areas utilizing ECoG data obtained from a relatively large 

sample of patients with pharmacoresistant epilepsy. The data were acquired while 

participants were in a resting state and electrodes exhibiting pathological activity or near 

structural abnormalities were removed from analysis in order to capture normal brain 

activity as best as possible. ECoG data were grouped across participants according to a 

surface based atlas of cortical areas, and peaks were analyzed according to conventional 
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frequency bands. In addition, cluster analysis was applied to these data to distinguish types 

of cortical oscillations without having to make a priori anatomical or frequency band 

groupings.

Materials and methods

Participants

ECoG data were provided by 15 individuals (6 males, mean/SD age = 32/13 years, 14 right 

handed, 1 left handed) with pharmacoresistant epilepsy undergoing intracranial EEG 

monitoring at the Hofstra North Shore-LIJ School of Medicine. All patients provided 

informed consent in accordance with the Declaration of Helsinki, as monitored by the local 

institutional review board. Low functioning patients and patients with grossly abnormal 

brains (e.g., significant prior resections or structural abnormalities) were excluded from 

participation. The decision to implant, the electrode targets, and the duration of implantation 

were determined entirely on clinical grounds without reference to this investigation. 

Fourteen participants received surgery following intracranial monitoring and, in all but one 

case, experienced at least some seizure relief (median/SIQR Engel outcome = 2.0/1.0), 

which suggests that abnormal brain areas were at least partially identified. The median time 

between surgery and the last clinical follow up with each patient is 13.5 months (SIQR = 

4.5).

ECoG data collection and spectral analysis

ECoG data were recorded using Adtech platinum 3 mm diameter electrodes and an Xltek 

EMU 128 clinical recording system. Sampling rate varied from 500 to 2000 Hz using an 

analog bandpass filter with half-power boundaries of 0.07 Hz and 40% of the sampling rate 

(e.g., 200 Hz upper cut off when recording at 500 Hz). Data recorded at 2000 Hz (two 

participants) were downsampled to 1000 Hz to ease computational demands using the 

MATLAB function decimate and a 30th order antialiasing FIR filter (MATLAB 7.9, The 

MathWorks Inc., Natick, MA, 2009). ECoG channels were recorded relative to a reference 

electrode screwed into the vertex of the skull. On average, 103 (SD = 21) electrodes were 

implanted per participant. A board certified neurologist identified electrodes over the ictal 

onset zone and near anatomical abnormalities (e.g., tumor, dysplasia). These electrodes as 

well as electrodes over non-neocortical areas (e.g., amygdala), contaminated by frequent 

interictal spikes or drift, or with poor signal-to-noise were rejected from analysis. This left 

an average of 81 (SD = 26) channels per participant. These remaining channels were 

converted to the average reference to minimize line noise.

Data were acquired when an experimenter asked the participant to lie still with her/his eyes 

closed for 3 to 7 min (10 participants) or from archived data based on simultaneously 

recorded video while patients appeared to be in resting wakefulness with eyes closed (five 

participants). For the archived data, five to six minute periods of time were found when the 

patient was awake but resting, and occasional periods of movement in these data were noted 

and removed from analysis. On average, each participant provided 4.75 (SD = 1.36) minutes 

of data for analysis. All but one participant was on some type of antiepileptic medication at 
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the time of data acquisition, though sometimes at tapered doses. All data were acquired at 

least 17 h since the last clinical seizure.

The spectral power density (SPD) for each channel was estimated using a one second 

moving window (0.5 s steps) and the discrete Fourier transform (DFT) with two Slepian 

tapers (Kleinfeld and Mitra, 2011) using the Chronux MATLAB toolbox (Bokil et al., 

2010). This provides a frequency resolution of 1 Hz and a frequency resolution bandwidth of 

3 Hz. Prior to the DFT the mean of each one second window was removed to dampen low 

frequency activity (e.g., drift). SPD estimates from each one second window were averaged 

using the 20% trimmed mean (Wilcox, 2003), so that averages were robust to occasional 

outliers. The SPD for each channel was estimated both for the raw data and for temporally 

whitened data. Temporal whitening simply consists of subtracting the value of each time 

point from that of the immediately subsequent time point (Kleinfeld and Mitra, 2011). This 

procedure dampens the 1/f tendency in the ECoG power spectra and makes SPD peaks more 

salient (Fig. 1).

To control for differences in overall power across channels and participants, the average 

SPD at each channel was normalized to unit power across frequencies of interest: 1–51, 64–

116, and 124–161 Hz. These frequency bands were chosen to avoid 60/120 Hz line noise 

and because non-artifactual SPD peaks were not observed above 161 Hz.

Electrode localization

To identify the electrode locations, all participants received an anatomical T1-weighted MRI 

before electrode implantation as well as a full head CT scan and an anatomical T1-weighted 

MRI after electrode implantation. Preimplant MRIs were performed on a General Electric 

Signa HDx 3-T scanner using one of two spoiled gradient recalled sequences [FOV = 256 or 

240 mm, voxel size 1 × 1 × 1 or 1.2 × 0.9 × 0.9, matrix 256 × 256, flip angle = 8, TR = 7.8 

or 6.5 ms, TE = 3.0 or 2.8, TI = 650 or 600 ms, acquisition plane = axial or sagittal, slices = 

180 or 170]. Postimplantation volumetric MRIs were performed on a 1.5 T scanner using 

standard clinical protocols.

Electrode locations were manually identified on the CT scan using the software BioImage 

Suite (Version 3, http://www.bioimagesuite.org). These locations were then mapped to the 

preimplant MRI via an affine transformation derived from coregistering the preimplant and 

postimplant MRIs and postimplant MRI and CT scans using FLIRT (Jenkinson and Smith, 

2001) and the skull-stripping BET algorithm (Smith, 2002), both part of the Oxford Centre 

for Functional MRI of the Brain (FMRIB) software library (FSL: www.fmrib.ox.ac.uk/fsl). 

The reconstructed pial surface was computed from the preimplant MRI using FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/) and the electrode coordinates projected to the pial 

surface (Dykstra et al., 2011) to correct for possible brain shift caused by electrode 

implantation and surgery. Intraoperative photographs and electrical stimulation mapping 

were used to corroborate this registration method. This pial surface projection method has 

been shown to produce results that are quite compatible with the electrode locations in 

intraoperative photographs (median disagreement of ~3 mm, Dykstra et al., 2011).
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Once electrode locations were projected to the pial surface, each electrode was assigned to 

one of 35 cortical areas (Figs. 1 & 4) using the Desikan-Killiany atlas (Desikan et al., 2006). 

For visualizing electrode locations across participants, electrode locations were mapped to 

the FreeSurfer average brain (Fig. 7) using FreeSurfer’s surface based co-registration (Fischl 

et al., 1999).

Cluster analysis

To identify types of SPDs, k-means cluster analysis was applied to the 1208 normalized 

SPDs from all channels. Each SPD was represented as a 142 dimensional vector, with each 

dimension corresponding to a different frequency (1–51, 64–116, & 124–161 Hz at 1 Hz 

steps). As mentioned previously, each vector was normalized such that all the elements of a 

vector summed to one. SPD was in units of (μV2)/Hz prior to normalization. The Euclidean 

distance between each normalized SPD was used as the measure of SPD dissimilarity for 

clustering.

Stability-based validation (Lange et al., 2004) was used to determine the number of latent 

clusters in the data. Specifically, to determine the relative stability of a specific number of 

clusters k, the following process was repeated 800 times:

1. The 1208 SPDs were randomly split into two equal groups: Group A and Group B

2. Each of the two groups was independently clustered using k-means and k clusters. 

For each group, the cluster analysis was repeated 50 times using different initial 

centroids (k randomly selected data points). The best solution of the 50 trials was 

used.

3. Each SPD in Group B was assigned to a cluster in Group A based on its distance to 

Group A’s cluster centroids. The amount of disagreement between the cluster 

solutions produced by both groups was then calculated.

4. The disagreement between cluster solutions is normalized by the amount of 

disagreement one would achieve from randomly assigning SPDs to clusters since 

with fewer clusters greater agreementis expected by chance. This normalization 

value was estimated by repeating steps 1–3 200 times and randomly permutating 

the cluster assignments in Group B before measuring split-half disagreement.

The disagreement from each of the 200 splits of the data was averaged (Fig. 5). Local 

minima in disagreement correspond to relatively stable solutions. For these local minima, 

the k-means process was repeated using the full set of SPDs 100 times using different initial 

centroids (k randomly selected data points). The best of the 100 solutions was taken as the 

final solution.

Results

Most commonly observed spectral power peaks

For each channel, frequencies exhibiting whitened SPD peaks were identified as those with 

greater power than the immediately preceding and subsequent frequencies (e.g., Fig. 1: 

Right). Fig. 2 shows the preponderance of peaks across frequencies of interest. This method 
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was generally effective at capturing peaks for frequencies below 40 Hz, due to the residual 

1/f trend in the SPD. However, as the SPDs tend to flatten at higher frequencies, small 

deviations in power often qualified as peaks even though they are likely not reliable. In the 

sub-40 Hz range, peaks are most commonly seen around 7 Hz with less frequent modes at 3, 

9, 15, 22, and possibly 35 Hz.

Cortical area average SPDs

Electrodes were grouped according to cortical area and their SPD averaged within 

participant and then across participants (i.e., the mean from each participant was weighted 

equally). Fig. 3 shows these averages both for nonwhitened and whitened SPDs (see also 

Supplemental Figs. 1 & 2). As with the prior analysis of peak frequencies (see previous 

section), theta peaks are prominent in several areas while alpha peaks are rare, seen only in 

lateral occipital cortex and, possibly, the pars opercularis. Beta peaks are seen in several 

areas, most clearly in the pre- and postcentral gyri. Tendencies for gamma/high gamma 

peaks (Supplemental Fig. 3) were also found over several temporal areas (entorhinal cortex, 

parahippocampal gyrus, temporal pole) and some frontal areas (orbitofrontal cortex, frontal 

pole). Since all of these tendencies are also observed in the nonwhitened data, they are 

clearly not an artifact of the whitening.

To determine how reliable these peaks are across individuals, the mean peak frequency 

across participants was estimated for each area in three frequency ranges based on 

conventional boundaries: 1–12 Hz (delta, theta, & alpha), 13–30 Hz (beta), and 31–127 Hz 

(gamma/high gamma). Data for each participant were weighted equally (despite individual 

variation in the number of electrodes in each area). Thus the degrees of freedom for each 

estimate is the number of participants contributing data to each area minus one. Estimates 

were made for the 23 cortical areas from which more than three participants contributed 

data. Areas with data from three or fewer participants were excluded as their estimates 

would be likely unreliable and including them would hurt statistical power at others. Two-

tailed, one sample t-tests were used to evaluate how reliably mean peak frequency differed 

from that of conventional boundaries in the 1–12 Hz band. Upper-tailed, one sample t-tests 

were used for beta and gamma bands and the peaks in these bands were log transformed to 

make their positively skewed distributions more normal (Zar, 1999). The Benjamini-

Hochberg false discovery rate (FDR) control algorithm (Benjamini and Hochberg, 1995) 

was used to adjust p-values for each family of 23 hypothesis tests.

In the lowest frequency band, mean peak frequency tended to be around the border of theta 

and alpha (Fig. 4: A). Indeed, the mean peak across all areas in this band was 7.0 Hz (SE: 

0.7 Hz), which is significantly below the 10 Hz peak frequency typically seen at the scalp 

(t(14) = −4.09, p = 0.001). Save for the frontal pole, pars orbitalis, entorhinal cortex, and the 

parahippocampal gyrus, the mean peak frequency of areas was reliably above the delta band. 

No areas reliably showed peaks in the alpha band though the superior frontal gyrus, 

temporal pole, middle temporal gyrus, and entorhinal cortex tended to peak below alpha 

(padj > 0.05). Beta band peaks appeared reliably over the precentral, postcentral, rostral 

middle frontal, and caudal middle frontal gyri, as well as over the pars opercularis (Fig. 4: 

B). No areas showed reliable gamma peaks (padj > 0.18) though some channels with clear 
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gamma peaks were occasionally found. These tended to be in the anterior temporal lobe, 

especially over entorhinal and parahippocampal areas (Fig. 4: C).

Given the substantial individual variability in mean peak frequency, we looked to see if 

patient age or the circumstances in which the data were acquired could explain some of this 

variation using ordinary least squares linear regression. The regression model consisted of 

two predictors, an intercept, and a Gaussian noise term. The predictor representing the 

circumstances of data acquisition was coded as 1 if the data were acquired in a controlled 

manner and 0 if the data were extracted based on archived video. The analysis was applied 

independently to each of the 23 cortical areas with sufficient data and Benjamini-Hochberg 

FDR control was used to adjust p-values for each family of 23 tests. Again, peaks in the beta 

and gamma bands were log transformed to make their positively skewed distributions more 

normal. Estimated effects of age are presented in Supplemental Fig. 4. There was a general 

tendency for peak frequency to increase with age that approached significance in the 1–12 

Hz band over the superior frontal, rostral middle frontal, medial orbitofrontal, and middle 

temporal gyri (padj = 0.06). In the other frequency bands, no effects were reliable (padj > 

0.62). In contrast, the regression analysis found no evidence that peak frequency differed 

between data sets that were acquired in a controlled setting and those taken from archived 

video (padj > 0.18, Supplemental Fig. 5).

Cluster analysis

Two clusters proved to be the most reliable way of grouping the SPDs from all 1208 

channels (Fig. 5). The two cluster solution grouped together SPDs with delta and theta peaks 

separately from those with alpha and beta peaks (Fig. 6: A). There is a tendency for the 

higher frequency cluster to predominate pericentral, occipital, parietal areas and the lower to 

dominate the temporal and frontal lobes (Supplemental Fig. 6).

A clear local minima at seven clusters (Fig. 5) revealed a grouping of SPDs that was similar 

to conventional frequency band delineations (Fig. 6: B). The centroids of three of the seven 

clusters exhibited peaks at 3 (delta), 10 (alpha), and 17 (beta) Hz. Three other clusters fell 

within the theta band with centroid peaks at 5 and 7 Hz. The centroid of the final cluster was 

broadly distributed with slight peaks at 8, 19, and 42 Hz. Figs. 7, 8, and Supplemental Fig. 7 

show the distribution of cluster members across cortex. The delta cluster appears most 

clearly in frontal areas (especially the frontal pole), but also in superior temporal and inferior 

parietal regions. The 5 Hz cluster appears predominantly in frontal and temporal regions, 

though also in the posterior cingulate and precuneus where few participants had electrodes. 

The narrow band 7 Hz cluster appeared relatively frequently in parietal and temporal areas, 

whereas the broader 7 Hz cluster was predominantly in occipital and inferior temporal areas 

(though also in the frontal pole). The 10 Hz cluster was the most common type of SPD in 

occipital and parietal areas. The 17 Hz cluster was clearly predominant over the pericentral 

gryi and was also relatively common in the middle frontal gyrus and pars opercularis. 

Finally, the broadly distributed 8, 19, and 42 Hz cluster tended to occur most frequently over 

orbitofrontal and medial temporal regions.
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Discussion

Types and anatomical foci of oscillations in the human electrocorticogram

In the early years of human electrophysiology, it was thought that cytoarchitectonically 

distinct cortical regions would exhibit distinct patterns of intrinsic electric activity (Penfield 

and Jasper, 1954). However, this soon appeared not to be the case as expert visual inspection 

of spontaneous iEEG/EEG recordings identified only a handful of rhythms with a relatively 

crude degree of anatomical specificity (Ibid). With the recent significant advances in the 

development of human brain atlases, our ability to identify the location of intracranial 

electrodes relative to such atlases, and our tools for processing and identifying complex 

patterns in large amounts of electrophysiological data, we believe that the intrinsic electrical 

activity of the brain will prove to be much more anatomically differentiated and useful for 

identifying functional and diseased brain networks.

The present study is a step in this direction. Specifically, our goal was to characterize the 

types of oscillations apparent in the human electrocorticogram and the predominance of 

these oscillations in different cortical areas using a surface based cortical atlas as well as 

anatomically agnostic cluster analyses. Our results confirmed the presence of two of the 

most robustly observed rhythms: pericentral beta (MacKay, 1997) and occipital–parietal 

alpha (Perez-Borja et al., 1962; Sperling, 1993). In addition, evidence of theta oscillations 

was observed over superior frontal cortex, a location consistent with frontal midline theta 

activity found in EEG and MEG (Mitchell et al., 2008). The anterior cingulate is another 

putative source of frontal midline theta (Debener et al., 2005; Onton et al., 2005), but 

because only one participant had electrodes over the anterior cingulate, we could not assess 

the reliability of activity there. Surprisingly, pericentral mu (Sperling, 1993) was not 

robustly observed in these data. Although clear mu peaks were observed over the pre- and 

postcentral gyri in some channels, theta and beta peaks were more dominant in others, which 

masked the mu peaks in the group analyses. We suspect that mu activity would be more 

pronounced if we used a finer grained cortical atlas that parcellated pericentral cortex into 

more than just two areas (pre- and postcentral gyri).

In addition to confirming those expected rhythms, several novel results were obtained. In 

particular, the most dominant oscillation seen throughout the cortical areas sampled tended 

to be around 7 Hz. This was apparent in both the whitened and unwhitened SPDs when 

grouping electrodes by cortical area and also in the peak histograms and cluster analysis of 

the whitened SPDs. This is a surprising result given that ~10 Hz activity is generally the 

most prominent SPD peak at the scalp (Maurer and Dierks, 1991; Nunez et al., 1978, 2001), 

and that attempts to localize eyes closed high-density EEG and MEG data have suggested 

that alpha should be the most dominant frequency across much of cortex (Nunez et al., 2001; 

Srinivasan et al., 2006). However, the result is quite clear in these data and appear to be 

corroborated by a previous, smaller ECoG study by Voytek (2010) that analyzed ECoG data 

from two patients performing a variety of visual, auditory, and/or motor tasks. Their study 

found that theta power was generally stronger than alpha across all the areas sampled 

(occipital, temporal, and parietal sites were sampled in both patients). The propenderance of 

theta supports theories that posit a very general role for theta in cortical processing, such as 
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mediating communication between cortical areas (Canolty et al., 2006), top-down 

processing (Kahana et al., 2001), and learning and memory (Mitchell et al., 2008; 

Raghavachari, 2006; Wang, 2010). In contrast, alpha activity was generally limited to the 

occipital and parietal lobes, which suggests a more limited role in cortical processing than 

has been proposed previously (Nunez et al., 2001). In particular, alpha may primarily be 

involved in some aspects of sensory processing and attention (Jensen and Mazaheri, 2010; 

Klimesch et al., 2007; Voytek, 2010).

It is not clear why theta activity is much more prominent in ECoG recordings than in EEG/

MEG. It may be that alpha volume conducts to the scalp better than theta because alpha’s 

magnitude is greater or alpha is more phase coherent across areas. In addition, clinicians 

have observed that drowsiness enhances EEG theta power and diminishes alpha oscillations 

(Niedermeyer and da Silva, 1993) and some of our participants may have been in a fatigued 

state due to the potential discomfort of multi-day intracranial EEG monitoring. However, it 

is not clear how strong an effect drowsiness has on the peak frequencies of intracranial EEG 

and there is some evidence from experimental studies that fatigue can produce broadband 

increases in EEG power as well (especially in the alpha and beta bands, Huang et al., 2008). 

Finally, since almost all participants were on antiepileptic drugs (AEDs) at the time of data 

acquisition, it is possible that they are at least partially responsible for the predominance of 

theta activity as AEDs tend to enhance EEG theta power (Blume, 2006) and to enhance 

lower frequencies (e.g., delta and theta) relative to higher frequencies in iEEG (Zaveri et al., 

2010). Nonetheless, the effect of AEDs appears to be quite small at the scalp (~4% at 

occipital electrodes–Salinsky et al., 2002, 2003, 2007) and it is not clear how large the 

differential effect of AEDs on intracranial theta and alpha is (Zaveri et al., 2010). 

Consequently, we think AEDs alone are unlikely to explain the clear predominance of theta 

in our data. Replicating this study using simultaneous ECoG and EEG recordings and 

controlling for medications should help determine the extent to which volume conduction 

and drug effects can explain why theta is much more prevalent in intracranial than scalp 

EEG.

Another novel result involving theta, was the evidence of two subbands of theta activity, 5 

and 7 Hz, found by the cluster analysis. The channels displaying increased 5 Hz activity 

appeared predominantly in the frontal and temporal regions, and in the posterior cingulate 

and precuneus in the few participants who had electrodes there. Channels showing 

predominantly 7 Hz activity appeared relatively frequently in the occipital, temporal, and 

parietal lobes, and also over the frontal pole. Although multiple, dissociable mechanisms for 

theta are likely to exist (Mitchell et al., 2008), to the best of our knowledge, different low 

and high theta sub-bands have not been established. Given that much research on ECoG 

oscillations is based on time-frequency analysis with relatively crude frequency resolution, 

distinct theta sub-bands may exist but be typically blurred together in analyses. 

Alternatively, the distinct clusters may reflect more individual differences in theta peak 

frequency than functional differences. Thus further work is needed to establish if these sub-

bands are indeed meaningful.

Below these frequencies, in the delta band, we found several channels with clear ~3 Hz 

peaks. These channels tended to be in frontal areas (especially the frontal pole), but also 
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were found in superior temporal and inferior parietal regions. The predominance of 

intracranial 3 Hz activity in the frontal lobes appears consistent with the relatively high delta 

power typically found across frontal scalp regions (Maurer and Dierks, 1991). Note that it is 

likely that the preponderance of delta activity is underestimated and its central frequency 

distorted in our results because we high-pass filtered the data (whitening and removal of the 

DC component of each one second epoch) prior to estimating SPDs. Alternative data 

preprocessing might better capture delta band activity.

In addition to confirming the pericentral dominance of beta activity, we also found 

pronounced beta activity in other frontal regions. Although beta activity has been described 

as being generally characteristic of the frontal lobe (Sperling, 1993), we found that it was 

particularly prominent in the middle frontal gyrus (both rostrally and caudally) and the pars 

opercularis. Tendencies for beta activity were also observed over the lateral orbitofrontal 

gyrus and entorhinal cortex, but not as consistently. Given that Uchida et al. (2001) found 

beta activity over the medial temporal lobe, we believe that entorhinal beta is reliable, 

though not as pronounced as it is in frontal areas. Frontal beta may simply reflect its role in 

areas involving motor networks (Fesl and Yousry, 2007; Jenkinson and Brown, 2011; 

MacKay, 1997). However, beta activity in these regions has also been associated with other 

cognitive functions such as speech comprehension (Canolty et al., 2007), visual perception 

(Sehatpour et al., 2008), and executive functions (Buschman et al., 2012). Thus this activity 

may reflect a more general role for beta in mediating long distance communication between 

these areas and other brain regions (Bibbig et al., 2002; Kopell et al., 2000), language 

processing (Canolty et al., 2007), or maintaining cognitive states (Engel and Fries, 2010). 

With regard to entorhinal beta, Uchida et al. (2001) have speculated that it is the human 

analog of “rhythmic slow activity” in animal models of memory and involved in memory 

consolidation.

With regard to the gamma and high gamma bands, peaks in these ranges were observed in 

some electrodes but this activity was not pronounced enough and varied too much across 

participants to be reliably characterized. When gamma peaks were present, they tended to be 

in the temporal lobe, especially over anterior and medial regions. There was evidence for 

gamma activity in the orbitofrontal cortex as well. Uchida et al. (2001) previously reported 

gamma peaks in the intrinsic activity of the medial temporal lobe. However, it is not clear 

from their analyses if these peaks were reliably observed across participants, and they note 

that the anatomical focus of this activity varied across individuals. Thus their results may be 

compatible with ours. Part of the difficulty with attempting to characterize gamma activity is 

that gamma power is relatively weak even after whitening the data to dampen the 1/f SPD 

trend. Alternative filtering could enhance the ability to detect and characterize gamma.

Finally, we note that while some cortical areas did exhibit reliable peaks in spectral power 

that differentiated them from other areas, in general there was substantial variability in the 

dominant frequencies within each region. This suggests a low degree of regional specificity 

for oscillations across the cortical parcellations used here. There are several reasons why we 

are likely underestimating the degree of regional specificity. We suspect that individual 

differences in patient state and characteristics could account for a lot of this variability. We 

found a borderline significant trend for peak frequency in the 1–12 Hz range to increase with 
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age over several frontal areas and the middle temporal gyrus. This would be consistent with 

evidence of a decrease in EEG theta and delta power relative to alpha power observed with 

increasing age (Dustman et al., 1999). We did not find any evidence of systematic 

differences in spectral peaks between data collected in a controlled setting and those 

gathered from archived data based on video of the patients. However, even though care was 

taken to make sure patients were alert and immobile during data collection, there may have 

been significant differences in the state of alertness and restedness across patients that would 

affect our results (Niedermeyer and da Silva, 1993). Moreover, differences in medication 

and patient etiology may have systematically influenced dominant frequencies to some 

extent as well.

Shortcomings of the Desikan-Killiany cortical parcellation used to define areas and the fact 

that several analyses combined electrodes across hemispheres may also have contributed to 

the high within-area variability in dominant frequencies. The anatomically agnostic cluster 

analysis (Fig. 7) suggests that a finer grained cortical parcellation than the 35 area Desikan-

Killiany atlas might provide somewhat greater anatomical specificity. However, there is still 

a considerable amount of local heterogeneity in the types of spectral peaks found by the 

cluster analysis, suggesting that the degree of improvement would be small. Alternatively, it 

may be that the pattern of gyrification, on which our cortical parcellation is based, is a poor 

match to oscillatory networks and that functionally defined areas (e.g., Craddock et al., 

2011; Power et al., 2011) might better identify homologous areas across individuals with 

more similar oscillatory dynamics.

Limitations of methods & future work

The greatest limitation of this study is that the data were all acquired from individuals with 

pharmacologically intractable epilepsy undergoing invasive intracranial EEG monitoring for 

a period of several days. Consequently, it is possible that the data are not very representative 

of normal brain activity. Although we excluded patients with extensive brain abnormalities 

and specific electrodes exhibiting epileptiform activity or near structural abnormalities, it is 

still possible that the data may be confounded due to factors such as brain reorganization, 

medications, the influence of abnormal areas on the regions included in our analysis, 

pathological areas mis-diagnosed as healthy and included in our analysis, and the possible 

effects of intracranial monitoring. Our results, however, are corroborated in many ways by 

non-invasive measures in healthy adults and invasive animal recordings. Moreover, EEG 

effects of AEDs appear to be rather limited (Blume, 2006; Salinsky et al., 2002, 2003, 

2007). Future work using animal models or simultaneous ECoG and non-invasive measures 

should provide a better sense of how representative these results are of normal human brain 

activity. Moreover, in the future, we hope to compare ECoG oscillations as patient 

medications are varied during the course of their observation (e.g., Zaveri et al., 2010). This 

should give us a clearer sense of how antiepileptic and analgesic medications might have 

affected these results.

Another limitation of this study is the anatomical sampling bias of ECoG recordings. The 

number of ECoG electrodes is necessarily restricted and they are placed only over the gyri 

of suspected pathological areas or adjacent eloquent cortex. In these data, we have frequent 
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coverage of much of the lateral surfaces of the frontal, parietal, and temporal lobes. 

However, there are few medial or occipital lobe electrodes, and we combined electrodes 

from both hemispheres for some analyses to maximize the number of participants 

contributing data to each cortical area. These shortcomings could have biased our analyses 

because the coverage within a cortical area was not uniform, because some areas contributed 

disproportionally to the clustering results, and because there may be some significant 

hemispheric asymmetries in intrinsic oscillations (Srinivasan et al., 2006). For example, 

alpha activity surely would have been more prominent in our data had we had greater 

coverage of occipital areas (Perez-Borja et al., 1962). However, given that we were able to 

record from most cortical areas in several participants and captured many expected 

oscillatory phenomena (including posterior alpha), we do not think this bias is severe. 

Hopefully, advances in ECoG technology (Viventi et al., 2011), developing larger databases 

of ECoG data like these (www.ieeg.org), and animal models will allow more 

comprehensive, detailed, and uniform sampling of cortical activity in the near future that 

will mitigate this issue.

Note that although these methodological limitations complicate making generalizations 

about normal brain function, they do not limit the potential clinical utility of these data since 

they should be representative of ECoG data collected from nonepileptiform cortical areas of 

individuals with pharmacologically intractable epilepsy. Some abnormalities in intrinsic 

brain oscillations have been previously identified that are indicative of pathological areas. 

For example, structural abnormalities (e.g., gliosis) can cause focal attentuation of alpha and 

beta activity (Sperling, 2003) and there is growing evidenct that extremely high frequency 

oscillations are indicative of epileptogenic cortex (Bragin et al., 2010). We suspect that the 

intrinsic oscillatory activity of epileptogenic cortical areas will likely significantly deviate 

from that of nonepileptogenic areas in ways that have escaped notice due to the lack of 

quantitative norms. In future work, we plan to determine if this is indeed the case and 

encourage others to also collect resting state data like those we have analyzed here to help 

establish such norms (similar to what is being attempted with fMRI for the diagnosis of 

brain disorders–Biswal et al., 2010).

Conclusions

Our analysis of intrinsic activity across a large number of human cortical areas found 

distinct frequencies of oscillations that are particularly likely to occur. Although the types of 

oscillations most prominent in a particular cortical area were generally quite variable, some 

frequencies of oscillations proved to be characteristic of a few specific cortical areas. Cluster 

analysis suggests seven typical types of oscillations. Six of these have peaks at 3, 5, 7 

(narrow), 7 (broad), 10, and 17 Hz, while the remaining cluster is broadly distributed with 

less pronounced peaks at 8, 19, and 42 Hz. These categories largely corroborate 

conventional sub-gamma frequency band distinctions (delta, theta, alpha, and beta), and 

suggest multiple sub-types of theta. Of these types, the most prominent frequency of 

oscillation observed was around 7 Hz, which is significantly lower than the 10 Hz activity 

that dominates the intrinsic activity apparent in EEG/MEG recordings. Seven Hz activity 

was found widely throughout the brain (though was particularly prominent over some 

temporal and parietal regions). Prominent 10 Hz activity was found as well, but this was 
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largely limited to occipital and parietal regions where it likely serves a role in sensory 

processing and attention. As expected, 17 Hz activity was found prominently over pre- and 

post-central gyri. It was also pronounced over the middle frontal gyrus and pars opercularis, 

which may reflect the role of these area sinmotor networks, language processing, and 

executive functions. Three Hz, delta band peaks were found in several channels and tended 

to occur in frontal areas (especially the frontal pole), but also were found in superior 

temporal and inferior parietal regions. Finally, gamma/high gamma activity (+30 Hz) was 

sometimes prominently observed but was too infrequent and variable across individuals to 

be reliably characterized.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
[Left] Cortical surface of a single participant, S1, with electrode locations represented as 

black disks. Different colors indicate different cortical areas according to the Desikan-

Killiany atlas. [Middle] One second of resting state activity from a single electrode over 

S1’s left postcentral gyrus, LGd64. The raw time series is shown in gray under the whitened 

version of the time series. [Right] Trimmed mean spectral power density (SPD) of S1’s 

LGd64 channel before and after whitening. SPD is normalized to unit power across the 

frequencies of interest before being log transformed. Dashed lines indicate peaks in the 

whitened SPD. Note that SPD values from 51 to 64 Hz and from 117 to 123 Hz were 

ignored due to line noise; linear interpolations across those bands are shown.
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Fig. 2. 
Histogram of SPD peaks of whitened data found across all electrodes and participants. Note 

that Hertz is scaled logarithmically.
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Fig. 3. 
Mean SPDs of nonwhitened [A] and whitened [B] data per cortical area across all 

participants. SPDs are color coded according to cortical area (shown in the middle). Dashed 

lines indicate conventional delta, theta, alpha, and beta boundaries. Only data from areas 

with more than three subjects are shown for comparison with Fig. 4.
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Fig. 4. 
Mean frequency that exhibits maximal power in whitened data SPDs across three frequency 

bands. Errors bars indicate 95% confidence intervals (t-distribution assumed, no correction 

for multiple comparisons). [A] Dashed lines indicate conventional delta, theta, and alpha 

boundaries. Asterisks below error bars indicate that mean peak frequency is significantly 

(padj < 0.05 FDR corrected) above delta. No error bars are significantly below alpha after 

FDR adjustment. [B–C] Solid lines indicate lower boundary of frequency range; no 

deviation from this line indicates an absence of peaks. Asterisks above error bars indicate 

significant peaks. Bars are color coded according to cortical area [D] and organized from 

most anterior to most posterior area.

Groppe et al. Page 22

Neuroimage. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. 
Mean clustering disagreement between independent applications of k-means to split-halves 

of all SPDs. A disagreement of 0 means that perfectly compatible clustering solutions were 

derived. A disagreement of 1 means that completely incompatible solutions were derived. 

Raw error is normalized by dividing it by the disagreement expected by chance. Error bars 

are 95% confidence intervals (t-distribution assumed).
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Fig. 6. 
SPD centroids of two [A] and seven [B] cluster solutions of all 1208 SPDs. Dashed lines 

indicate conventional delta, theta, alpha, beta, gamma, and high gamma boundaries. Note 

that Hertz is logarithmically scaled.
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Fig. 7. 
Locations of all 1208 electrodes on average cortical surface. Electrodes are color coded to 

indicate cluster membership (see Fig. 6: B).
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Fig. 8. 
Proportions of electrodes belonging to each cluster in various cortical areas (see Fig. 4: D) 

averaged across participants. Clusters are color coded according to Figs. 6: B & 7. Error bars 

indicate 68% confidence intervals (Zar, 1999), equivalent to standard error for normally 

distributed variables. * indicates that some clusters occurred significantly more frequently 

than others in that area (Chi2 test, padj < 0.05 FDR corrected for 25 comparisons–Benjamini 

and Hochberg, 1995). Only areas covered by more than one electrode (out of all 1208) were 

included in this analysis.
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