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Abstract

It is often valuable to compare protein structures to determine how similar they are. Structure 

comparison methods such as RMSD and GDT-TS are based solely on fixed geometry and do not 

take into account the intrinsic flexibility or energy landscape of the protein. We propose a method, 

which we call FlexE, that is based on a simple elastic network model and uses the deformation 

energy as measure of the similarity between two structures. FlexE can distinguish biologically 

relevant conformational changes from random changes, while existing geometry-based methods 

cannot. Additionally, FlexE incorporates the concept of thermal energy, which provides a rational 

way to determine when two models are “the same”. FlexE provides a unique measure of the 

similarity between protein structures that is complementary to existing methods.

1 How can we measure the similarity between two protein structures?

Often, there is a need to compare two protein structures. Comparisons are commonly made 

on a geometric basis, such as the root mean square deviation (RMSD) of the Cartesian 

coordinates of the best superposition of the two structures. But there are some problems with 

this. First, RMSD is not independent of the protein size1. Second, if the differences in 

structure are localized to a particular region, a superposition using a single alignment will 

lead to a spurious distribution of differences more globally throughout the structures. RMSD 

is not able to distinguish between a large change localized to a small region of the protein 

and a smaller change distributed globally across the entire structure. Given the importance 

of this problem, a large effort has been undertaken to improve on these metrics ranging from 

the use of Gaussian-weighted RMSD2, to introducing a rough approximation to protein 

flexibility3–6. One such alternative is to use local-global alignments (LGA)7. Here, many 

superpositions are performed and the score is given as the maximum fraction of Cα atoms 

that are positioned correctly to within a certain cutoff. This measure is size-independent and 

the choice of cutoff specifies the resolution of the structural comparison. The global distance 
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test total score (GDT-TS) is a commonly used metric of structural similarity that measures 

the average fraction of residues that are correct with 1, 2, 4, and 8Å cutoffs. GDT-TS is 

based on four different superpositions at different resolutions and is better able to distinguish 

between local and global changes than RMSD. GDT-TS has become the de facto standard 

for measuring structural similarity in the Critical Assessment of Structure Prediction (CASP) 

series of experiments8, although several other scores, including RMSD, are also used. For 

the purpose of this communication we will refer to geometric scores in general to mean 

either RMSD or GDT-TS.

There is an additional limitation of geometric structure comparisons. When comparing 

theoretical models, it is more relevant to compare energies than structures, because energy is 

the currency for understanding thermodynamically stable states and Boltzmann populations. 

Moreover, energies are the basis for protein motions and function9–13. Because energy 

surfaces are not isotropic, proteins can deform easily along some directions (flexible 

directions or soft modes) and deform very little in other directions. Thus, two different 

deformations of a protein that have exactly the same RMSD can potentially have very 

different energies (see Figure 1).

Here, we describe an energy-based method for comparing two protein structures. On the one 

hand, the only way this could be done without error would be if we knew the exact potential 

function and fully simulated the free energy differences between the two conformations, for 

example by molecular dynamics14. But such simulations would be prohibitively expensive. 

Furthermore, despite their atomistic nature, the current physical models governing 

simulations, despite their successes, are still too coarse to fully agree with all experimental 

data. Normal mode analysis15 (NMA) based on these atomistic potentials is faster, but still 

requires hours of computational time.

In the absence of a perfect energy function, and with the aim of a fast approximate 

computational methodology, here we use Elastic Network Models (ENM)16–20. This allows 

us to capture protein energies, motions and flexibility with small computational cost 

(seconds on a desktop) while still giving a relatively good correlation with more expensive 

MD and NMA methods21;22. ENM is often used to calculate normal modes (NMs) 

describing the collective modes of motion of the system. Our approach is different and 

novel: rather than calculating NMs, our interest is in obtaining an ENM based Hamiltonian 

around a reference structure, call it A. We then use this Hamiltonian to calculate the 

deformation energies (FlexE score) needed to sample a different conformation, B. In this 

way, we compare the energies of structures A and B. This is especially useful when the 

reference structure is a native structure and we want to evaluate the quality of theoretical 

models, such as in CASP comparisons. FlexE allows us also to relate energy differences 

between A and B to the thermal energy,  of a system, where kB is Boltzmann’s 

constant, T is the absolute temperature, and N is the number of residues. This allows us to 

say when two structures are within the thermal ensemble envelope around a native structure.

FlexE has some advantageous aspects: (1) independence from superposition criteria, (2) 

protein topology and flexibility are taken into account, (3) it can be used alone or with other 

metrics to assess protein model quality, (4) differences can be expressed on a per-residue 

Perez et al. Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



basis, so it is independent of protein size. In this work we will show the application of FlexE 

on two datasets: (1) structures involving large conformational transitions where the end 

states have been experimentally determined23; (2) the predictions from the refinement 

portion of the most recent CASP event (CASP9)24. We show that FlexE gives energies 

comparable to thermal energies for all pairs of structures in the first group. Furthermore, we 

find that FlexE can distinguish these biologically relevant motions from motions that have 

similar magnitude but are generated randomly. RMSD and GDT-TS cannot make such 

distinctions.

2 Methods

2.1 ENM

In elastic network models, proteins are modeled as beads (one per residue). Taking one 

structure as reference, the distribution of these beads in space systematically defines a set of 

pairwise springs (between beads located within an interaction cutoff distance), all of which 

are at their equilibrium lengths. Any conformation different than the reference will stretch 

those springs and the energetic cost of deforming the spring can be obtained according to 

Equation 1. The collection of all springs defines the Hamiltonian of the system and the total 

cost of deforming the structure is the addition of the energies for all springs.

(1)

Where γ is the spring force constant and dij represents the distance between two beads, 

where the superscript 0 is used to indicate the distance in the reference structure. The novel 

use of ENM resides in using directly this Hamiltonian to evaluate structures instead of 

deriving a Hessian to obtain the normal modes. There are several different elastic network 

models in the literature which differ in the choice of which springs to use and how to assign 

force constants. In the initial Rouse polymer model, springs were attached to beads (for 

proteins usually the Cα) that were contiguous in sequence space25. In the application to 

proteins, distance cutoffs were additionally introduced to take into account non-bonded 

interactions in proteins (thus taking into account the topology of the protein). Although these 

models capture the correct directions and relative magnitudes of motion, the absolute 

amount of motion along each deformation mode must be matched a posteriori to experiment 

(typically by matching X-ray crystallographic B-factors). This is due to the choice of spring 

constants when building the Hamiltonians. Several implementations introduce parameter 

free ENMs, where the spring constants are typically replaced by distance dependent generic 

functions that reproduce some underlying physical argument (such as reproducing 

experimental B-factors or MD trajectory data)26–29. Recently, Orozco and coworkers19 

introduced another parameter free ENM to better correlate with MD data (ED-ENM) and 

make it independent of scaling factors. In order to do this, two kind of springs are used. 

Residues close in sequence (from residue i up to i+3) follow one derivation. Residues that 

are close in space and not included in the first group have a different derivation (for details 

see19). We have used his functional form with a 12 Å cutoff in the current work since it 

gives us an absolute energetic scale and allows us to compare to the thermal energy of the 

system. In cases where only relative energies, rather than absolute energies, are important 
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(e.g. comparing structures within an ensemble), any other ENM methods would be equally 

suitable16;18;30;31.

The steps involved in creating the ENM can be schematically viewed in Figure 2. 

Implementation was carried out by using the existing Prody package32 from the Bahar lab 

and adding a small Python add-in to include the new ED-ENM method (available http://

github.com/laufercenter/FlexE).

2.2 Molecular Dynamics Simulations

Simulations were performed for the dataset of structures from CASP9 that: (1) did not have 

broken chains due to missing residues and (2) were monomers. Short 12 ns MD trajectories 

were performed using the AMBER33 program package with the parm99SB forcefield in 

explicit TIP3P34 water. Proteins were neutralized using Cl− or Na+ ions as needed35;36. The 

particle mesh Ewald method37;38 was used for electrostatic interactions and a 2 fs time step 

with SHAKE39 on hydrogen bonds was used. Temperature was maintained by using 

Langevin dynamics and a weak coupling algorithm was used to maintain pressure. We took 

200 structures from the last 1ns of simulation (5 picosecond spacing) to constitute the 

thermal ensemble and represent conformations that are easily accessible on the energy 

landscape of the protein.

2.3 FlexE

The energetic cost of deforming one structure into another is defined as:

(2)

Where n is the number of inter-residue distances below a given cutoff, kij is the spring force 

constant used and N is the number of residues. Dividing by the number of residues makes 

the scale protein independent. In order to get good agreement with MD energies, all kij are 

scaled by a factor of 0.40 with respect to the original Orozco and coworkers 

implementation19. The thermal energy is kBT/2 for each vibrational mode, and each protein 

has 3N−6 such modes. Accordingly, the FlexE energy is compared to ThermE = (3N

−6)kBT/2. Additionally, the FlexE score can be plotted on a per residue basis, which can 

help identify problematic areas of the model.

The FlexE score can be interpreted at different levels of resolution. For scores that are of the 

order of ThermE to ThermE + kBT the absolute values of the score are meaningful due to the 

parametrization using a physically fitted model (MD-ENM19). As the deformations grows 

larger, the elastic network hypothesis can break down, and the absolute values of the score 

loose their meaning. However, FlexE is still able to rank order structures successfully.

2.4 Protein Datasets

We have used two different datasets to evaluate FlexE. The first is a set of proteins that have 

been crystallized in two different conformations23. The second dataset is the set of 

predictions submitted for refinement in CASP9 and their corresponding experimental 
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structures as a test set for our method. For the first dataset the FlexE of relating both 

structures were compared with random structures generated to match the same amount of 

geometric displacement. For the second dataset comparison was made between the different 

predictions and a set of snapshots derived using MD simulations.

2.5 Alignment

One of the major bottlenecks when it comes to assessing structural similarity is obtaining an 

accurate alignment40. RMSD score is measured based on an optimal alignment, so the score 

is very sensitive to this alignment. GDT-TS on the other hand performs multiple alignments 

in order to reduce sensitivity to a global alignment. The major advantage of the FlexE 

method is that it works in internal coordinates (distances between Cα) and so it is 

independent of superposition artifacts.

3 Results and discussion

3.1 FlexE captures local and global protein conformation changes

In order to understand when the FlexE score might be useful, we have to understand what 

kind of interactions it can capture. The ENM model we used19 captures two kinds of 

interactions: those that are close in sequence and more global topological interactions 

between residues far apart in sequence. The first one arises from distortions to the structure 

that change the relationship between residues that are sequentially up to three residues apart. 

The second one arises from the interactions between residues that are close in space but far 

apart in sequence. We now show a couple of examples that are problematic for measures 

such as RMSD and how FlexE can capture these errors.

There is a well-known problem when using RMSD, where you can make wrong protein 

structure look more native-like (i.e., have a smaller RMSD to native) by simply making the 

wrong structure more compact by simply scaling the coordinates. For example, the RMSD 

from extended to native structure of 3noh (CASP code TR606), a 123 residue protein is 

118.5 Å. If we scale all the atomic positions by a factor of 0.95, this makes the protein more 

compact and the RMSD is reduced by 6 Å. This error is readily captured by FlexE. In this 

example, this increase in compactness increases the FlexE score by about 1 kcal/mol/

residue. Another artificial example is to place all the atoms at the center of mass of the 

native protein, giving an RMSD of 13.27 Å. However, performing this same 

compactification causes the FlexE to increase dramatically to 380 kcal/mol/residue.

On the other hand, the distance part of the ENM describes the topology of the protein. That 

is, how different secondary structure elements interact with each other. Two highlights are 

of importance here: loops that don’t have restriction of movement can be greatly penalized 

using geometric measurements, whereas FlexE understands that these regions are flexible 

and does not penalize deviations as much. On the other hand, some models have 

conformations that are randomly more compact and thus lead to lower geometric values, 

however, the interactions between amino acids are not the correct ones and thus the FlexE 

score is observed to increase. In the following sections we will describe how these effects 

play out when describing real proteins.

Perez et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.2 FlexE can distinguish realistic from nonphysical transitions

Imagine two different situations. In Case 1, protein conformation A is the most likely 

structure in the native basin and conformation B is produced by an energetically feasible 

thermal fluctuation of A. Let us also assume that A and B differ by X Å RMSD. Now, let us 

consider Case 2. Again conformations A and B differ by X Å RMSD, but now B was 

generated from A by some arbitrary physically unrealistic process rather than as a result of 

thermal fluctuations. It is desirable for a structural comparison method to be able to 

distinguish between Case 1 and Case 2. We will now show that FlexE is able to make such a 

distinction, while RMSD and GDT-TS are not.

We chose several proteins for which there exist X-ray structures of two different stable 

states (see Table 1). The differences range from less than 2 Å to more than 12 Å (Figure 3). 

The selected structures span a wide range of sizes (50 to 800 residues) and topologies. 

Analyzing the pairs of crystal structures, most of the differences fall close to the thermal 

threshold as judged by FlexE. We then generated an ensemble of structures by randomly 

wiggling the atom positions so that their RMSD differences were of the same magnitude as 

the biologically relevant transition. The FlexE analysis can distinguish the real biological 

conformational pairs from the artificial ones, for the same RMSD (Figure 3) or GDT-TS (SI 

Figure 1) difference.

Interestingly, the random models show a correlation between both GDT or RMSD and the 

logarithm of FlexE. That is, for random displacements from the native structure, FlexE and 

the geometric methods provide essentially the same information. However, certain special, 

highly collective motions of the protein—corresponding to physically realistic motions—

give much lower energies, while still giving high values for the geometric methods.

The results above indicate that stable structures in proteins may differ by relatively small 

energies, even when they differ by large RMSDs. This follows from a close relationship 

between function and flexibility41–46. FlexE is able to capture these energetic relationships, 

while traditional geometric measures are not.

3.3 FlexE improves assessment of protein models

We show here how FlexE can enhance our insights into prediction errors made of protein 

structures, such as in CASP, the blind protein-structure prediction event24;47. Currently, 

predicted protein structures are assessed based on geometric criteria (GDT-TS, RMSD and 

SphereGrinder), agreement with observed physical constraint (Molprobity) and side chain 

metrics (GTS-SC) (see24 for definitions). We will now show some cases from previous 

CASP events in which two predicted structures have the same RMSD from native, but very 

different FlexE scores, and other cases having very different RMSDs but similar FlexE 

scores. Supplementary Table 1 lists the names of the proteins corresponding to the examined 

CASP targets.

The CASP9 refinement dataset provides a set of diverse structures ranging from close to 

native (around 2 Å RMSD from native) to far (8 Å RMSD; see Figure 4). For the 14 targets 

assessed during CASP924 we have used FlexE to test the benefits of a measure that includes 

protein topology and flexibility. As a first check we used models derived from MD around 
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the native state for each target. MD models represent a physically meaningful set of models 

that describe the thermal ensemble. Figures 4 and SI 2–13 show how the ENM model 

correctly identifies these models as belonging to the thermal ensemble, despite having 

different RMSD values to the native state.

The only significant exception is 3n70 (CASP code TR567, see SI table 1 for complete list 

of structure names and functions). On close inspection, the increase of FlexE score is due to 

a short flexible N-terminal fragment that is stabilized in a helical conformation by contacts 

in the crystal environment and which becomes unstructured during MD (see Figure 2 from 

ref.24). This is not a deficiency of FlexE, which correctly identifies the lost of secondary 

structure; it merely reflects the difference between crystal and simulation conditions. We 

note that for the rest of structures the FlexE and MD thermal region overlap significantly.

The initial models that predictors were asked to refine (red dot in Figure 4 and SI Fig. 2–13) 

give information about the suitability of the target for refinement. It can be seen that target 

3nhv (CASP code TR592, see SI table 1) already falls within the thermal ensemble and 3n70 

is close to this threshold as well, so these targets are likely difficult to improve. 

Additionally, the starting model for 3n70 is below the MD thermal ensemble (see above 

paragraph). When a structure falls within the thermal ensemble of the native structure, it 

may not be useful to attempt to further improve it because it is already essentially the same 

as the native structure. Inside FlexE, this can be monitored by defining a lower threshold for 

the thermal ensemble (we used 300K for this examples to match MD data, lower 

temperatures will result in tighter ensembles). In particular, many experimental structures 

are solved at lower temperatures, so the ensembles would be narrower than those depicted in 

Figure 4.

Looking at the actual model submissions, RMSD and log(FlexE score) show a certain 

degree of correlation (see Figure 4 and SI Figure 2–13). In particular, two behaviours are 

observed for starting models that are geometrically close or far from the native state. In the 

first scenario, small geometric improvements on the initial model are achieved, but those 

that improve the RMSD have a significant improvement in FlexE score. Most predictor 

groups have problems improving the initial models in this conditions, and in fact most 

groups make the structure worst (see 3nhv in Figure 4). In the second scenario, we have an 

opposite trend. Many groups are able to improve on the geometry significantly, but the 

FlexE score improvement is not as good (see 3nkl (CASP code TR622, see SI table 1) in 

Figure 4). The first scenario is able to improve in details (correct topology and contacts) 

whereas for the second scenario the improvement comes from large conformational changes 

that bring residues in the vicinity of where they are supposed to be (but not necessarily 

forming the right contacts). If we think on a funnel like potential energy surface48 that 

guides proteins to the native conformation, when starting near the native it should be very 

easy to follow the gradient improving the structure and the further away we start, the 

gradient would be smaller. However, we observe that most methods have the opposite 

tendency. From an entropic point of view, the number of available conformations increases 

with increasing RMSD. In particular, for RMSD=0.0 Å there is only one conformation 

available. So there are many more possibilities to make the structure worse by X Å than 

improve it by the same amount. From a physics point of view it could also be telling us that 
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the potential energy surface used for refinement is very crude or that sampling has not been 

achieved by following a physical potential. More physics-driven refinement coupled to 

current methodologies could make for more accurate refinement.

Finally, we show three examples where using geometry alone would be misleading to judge 

the quality of the models. First, Figure 5) shows models with the same geometric score but 

different FlexE score. The core part of the structure, which has intertwining β-sheets and a 

small α-helix, is mostly correct in both the models. Those regions have small energy 

differences. However, the two models differ in the upper part of the structure, where Figure 

5 shows large energy differences from FlexE. From a geometric point of view, the two 

models are fairly equivalent because both predicted loops seem equally good or bad. FlexE 

shows the model on the left has a more native-like topology and therefore a lower FlexE 

score.

Second, Figure 6, shows two structures having same FlexE score and different RMSDs. The 

loop indicated by the arrow can be open or closed. While RMSD comparison would indicate 

the structure on the right is worse, we think the better interpretation from FlexE is that the 

loop is sufficiently floppy that both structures should be judged as equivalent predictions.

Third, Figure 7 shows a situation in which FlexE and RMSD disagree about which 

prediction is best. The leftmost structure has the lowest RMSD because of the good packing 

of the helix on top. However, FlexE does not “like” that structure, which is a β strand in the 

native structure. FlexE captures the energetic cost of breaking the hydrogens bond involved 

in the α-helix and forming the β-sheet.

4 FlexE compares protein structures by energies and complements 

comparisons by RMSDs

We have introduced FlexE, a computational method for comparing two structures of a 

protein. It computes an elastic deformation energy from one structure A to the other B based 

on the Elastic Network Model, but in principle, any other energy function could be used. 

Such comparisons give insights that can complement comparisons of structure that are based 

on geometric measures such RMSD or GDT-TS. We show ways that these methods are 

complementary. One example is a floppy loop. Suppose two researchers predict that loop to 

be in two different conformations. In a CASP event, the researcher finding the lowest 

RMSD would be judged best. But if the FlexE score shows the two loops have the same 

energy, it implies that both loop conformations are equally good. Or, suppose that two 

researchers predict two structures having the same RMSD to native. They would be judged 

to be equally good predictions. But, if they have very different FlexE scores, we show cases 

where we argue the better prediction is the one with the lower value of this energy score. In 

particular, we show that FlexE has the capability of recognizing when two structures are 

both true stable states of a protein versus when the two structures are generated by 

nonphysical processes. We believe FlexE will be useful for getting added insights when 

comparing protein structures.
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Figure 1. 
Schematic representation of conformational space showing the RMSD and energy for three 

structures. Structures A and B have the same RMSD, but Structure A has a lower energy. 

Structures A and C have the same energy, but Structure A has a higher RMSD.
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Figure 2. 
Creation of an elastic network model. First, the model is reduced to just the Cα atoms. Next, 

springs are added for contacts that are close in sequence (up to i+3). Finally, springs are 

added for atoms that are close in space with a force constant that varies with distance. The 

strength of each spring is indicated by the thickness of each line.
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Figure 3. 
FlexE can distinguish between experimentally observed and random changes, while RMSD 

cannot. Each red dot corresponds to an experimentally observed conformation transition. 

The black dots are random conformational changes obtained by the wiggling of residues to 

produce RMSD scores of the same magnitude. Supporting Information Figure 1 shows 

similar results for GDT-TS. Maltose Binding protein is depicted on the left and Bcl-xl on the 

right.
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Figure 4. 
FlexE score per residue vs RMSD for three CASP9 proteins. MD ensembles (yellow circles) 

from 200 structures extracted from the last 1ns of a 12ns trajectory in explicit water starting 

from the native structure are shown to exemplify the thermal ensemble. The starting model 

that CASP participants were given to refine is shown in red. Black crosses represent 

structures submitted by different groups during CASP9. FlexE and RMSD scores are 

obtained by comparing to the native structure, which would be at RMSD=0 and FlexE=0. 

The grey area denotes the thermal region around 3/2kBT. The notation TR567, TR592 and 

TR622 refers to three different refinement targets during CASP9, for reference, the PDB 

code is also given.
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Figure 5. 
Example for two structural models corresponding to PDB code 3npp (CASP code TR530, 

see SI table 1) where the two models have the same RMSD but very different FlexE values. 

The lower FlexE score in the left can be rationalized by the formation of contacts that are 

similar to the native structure.
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Figure 6. 
Example for two structural models corresponding to PDB code 2kyy (CASP code TR557, 

see SI table 1) where the two models have the same FlexE score but very different RMSDs. 

The arrow points at the area responsible for the large variation in RMSD score. FlexE 

assigns this area as flexible and therefore does not penalize this conformational change.
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Figure 7. 
Example for two structural models corresponding to PDB code 3nrl (CASP code TR624, see 

SI table 1), here the model on the left despite having better RMSD has the wrong secondary 

structure (top helix) leading to high deformation energies.
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Table 1

Structures used for large motions

Target PDB1 PDB2

Scallop myosin 1kk7 1kk8

Acyl Carrier Protein 1acp 2fae

Aspartate Aminotransferase 1ama 8aat

Bcl-xl 1bxl 1ysn

Calcium Sensor 1k9k 1k9p

Calmodulin 1cll 1ctr

Cyclin Dependent Kinase Inhibitor 1dc2 2a5e

Cystatin 1a67 1cew

Hydrolase 1qz3 1u4n

LacRepressor 1lcc 1lqc

LambdaCro 5cro 6cro

Lupin Hydrolase 1f3y 1jkn

Maltose Binding Protein 1omp 3mbp

Pin1 1f8a 1pin
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