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Abstract

Axonal transport is essential for neuronal function, and many neurodevelopmental and 

neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde 

transport supplies distal axons with newly synthesized proteins and lipids, including synaptic 

components required to maintain presynaptic activity. Retrograde transport is required to maintain 

homeostasis by removing aging proteins and organelles from the distal axon for degradation and 

recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and 

injury response signaling. This review provides an overview of the axonal transport pathway and 

discusses its role in neuronal function.
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The active transport of organelles, proteins, and RNA along the extended axons of neurons 

has long fascinated scientists. The remarkable fact that the axon depends on the biosynthetic 

and degradative activities of the soma, located up to a meter away, highlights the importance 

of active transport. Genetic evidence confirms an essential role for active transport in the 

neuron, as defects in many of the proteins involved are sufficient to cause either 

neurodevelopmental or neurodegenerative disease (Table I).

Metabolic cell-labeling experiments in the 1960s demonstrated the rapid movement of 

newly synthesized proteins along the axon in a process once termed “cellulifugal transport” 

(Weiss, 1967). Experiments with drugs that disrupt the cellular cytoskeleton demonstrated 

that microtubules are required for active transport along the axon (Kreutzberg, 1969). Pulse-

chase labeling experiments led to the discovery of multiple phases of transport. (reviewed in 
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(Griffin et al., 1976)). Organelles were observed to move outward from the cell body at 

“fast” speeds of up to 400 mm/day, or ~1 μm/s, while cytoskeletal proteins and some soluble 

proteins were observed to move via “slow” transport, at speeds of <8 mm/day, or <0.1 μm/s. 

Outward-bound, anterograde (also known as orthograde) transport was most clearly defined 

by these metabolic labeling approaches. However, the retrograde transport of organelles 

from the distal axon back toward the cell body was also observed (Griffin et al., 1976). The 

development of live-cell imaging allowed the direct observation of organelle motility (Allen 

et al., 1982; Brady et al., 1982). These observations led to the discovery of the microtubule 

motor kinesin (Vale et al., 1985), now known as kinesin-1 (see Table I); cytoplasmic dynein 

was discovered soon after (Paschal et al., 1987). Breakthrough experiments using nerve 

ligation assays identified kinesin as a major motor for anterograde transport along the axon 

(Hirokawa et al., 1991), and dynein as the motor for retrograde transport (Hirokawa et al., 

1990).

Since these initial discoveries there has been considerable progress in understanding the 

mechanisms regulating the transport of organelles including mitochondria, lysosomes, 

autophagosomes, and endosomes (Figure 1), as well as the transport mechanisms involved 

in neurotrophic and injury signaling. Together, these studies support a model in which the 

regulation of transport is compartment-specific. The complement of motors, adaptors and 

scaffolding proteins bound to each cargo are organelle-specific, leading to distinct patterns 

of motility and localization along the axon. Thus, while broad themes emerge, the specific 

mechanisms regulating the transport of each organelle or protein complex may be unique. 

Further, there is increasing evidence for the localized regulation of trafficking in key zones 

along the axon, such as the axon initial segment or in the distal axon.

Here, we discuss both general themes and specific mechanisms involved in axonal transport. 

We will review recent progress and highlight some of the critical questions that remain, 

focusing on the mechanisms that regulate the dynamic trafficking of organelles along the 

axon.

MOLECULAR MOTORS DRIVE TRANSPORT ALONG THE NEURONAL 

CYTOSKELETON

The neuronal cytoskeleton

Microtubules, actin filaments, and intermediate filaments all contribute to the morphology 

and function of neurons, but axonal transport depends almost entirely on microtubules. 

Microtubules are polarized tubulin polymers with fast growing plus ends and more stable 

minus ends, organized in a generally radial array in the soma with plus ends directed toward 

the cortex. In the axon, parallel microtubules form a unipolar array with plus-ends oriented 

outward (Burton and Paige, 1981; Stepanova et al., 2003), while in dendrites microtubule 

organization is more complex, with microtubules often organized in arrays with mixed 

polarity (Baas et al., 1988; Kleele et al., 2014; Kwan et al., 2008). In the cell body, 

microtubule minus-ends may be rooted near the centrosome, but microtubules along axons 

are likely to be capped at their minus-ends by a mechanism that is not yet understood 

(Kuijpers and Hoogenraad, 2011).
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Microtubule-associated proteins, or MAPs, are bound along the length of axonal and 

dendritic microtubules. The canonical role for MAPs is to promote microtubule 

polymerization and stabilization; because of the high expression levels of MAPs in neurons, 

microtubules are generally more stable in these cells than in other cell types. MAPs may 

also function to regulate transport, as in vitro studies indicate they modulate the interaction 

of motors with the microtubule (Dixit et al., 2008b; Vershinin et al., 2007). The discovery of 

a specific class of MAPs, known as plus-end interacting proteins or +TIPs, has shown that 

microtubules in axons can be dynamic. Live-cell imaging with GFP-labeled +TIPs that bind 

selectively to actively growing microtubule plus ends has shown that axonal microtubules 

exhibit the parameters of dynamic instability observed in non-neuronal cells, including slow 

growth and rapid shortening, punctuated by catastrophe and rescue events, respectively 

(Stepanova et al., 2003; Stepanova et al., 2010). The +TIPS EB1 and EB3 recruit additional 

binding partners to microtubule ends, many of which have a role in the localized regulation 

of axonal transport (Moughamian et al., 2013).

Direct post-translational modification of tubulin is widespread in neurons (Janke and 

Bulinski, 2011). Microtubule modifications directly modulate the activities of motor 

proteins (Sirajuddin et al., 2014), potentially contributing to the polarized trafficking of 

motors into axons (Hammond et al., 2010; Jacobson et al., 2006; Konishi and Setou, 2009). 

The nucleotide state of microtubules can also affect motor activity and contribute to 

polarized vesicle transport (Nakata et al., 2011).

Kinesin and dynein motors drive axonal transport

The kinesin superfamily constitutes 45 genes in the human genome, 38 of which are 

expressed in brain (Miki et al., 2001). The neuronal motor proteome is more complex than 

that expressed in most other cell types, likely reflecting the enhanced importance of 

regulated and specific intracellular transport in neurons with their highly polarized 

morphology (Kuta et al., 2010; Silverman et al., 2010). A standardized nomenclature 

(Lawrence et al., 2004) groups kinesin genes into 14 sub-families that share structural and 

functional similarities; motors from the kinesin-1, kinesin-2, and kinesin-3 families all 

contribute to axonal transport dynamics.

Members of the kinesin-1 family drive the transport of a wide range of cargos along the 

axon at velocities of ~0.5–1 μm/s, including vesicles, organelles, proteins, and RNA 

particles (Hirokawa et al., 2010) (Figure 1). Active kinesin-1 motors are formed from a 

dimer of kinesin heavy chains (encoded by three mammalian genes, KIF5A, B and C); a 

dimer of kinesin light chains (KLCs) is often but not always part of the complex (Sun et al., 

2011) and contributes to the autoinhibitory mechanism of the motor.

Kinesin-2 and kinesin-3 motors are also critical for normal axonal transport (Figure 1). 

Kinesin-2 members can assemble into either homodimeric or heterotrimeric motors 

(Scholey, 2013), while kinesin-3 motors undergo cargo-mediated dimerization resulting in 

the formation of highly processive motors when bound to intracellular organelles (Soppina 

et al., 2014). Kinesin-2 motors drive the anterograde motility of fodrin-positive plasma 

membrane precursors (Takeda et al., 2000), N-cadherin and β-catenin (Teng et al., 2005) and 

choline acetyltransferase (Ray et al., 1999), and are also associated with Rab7-positive late 
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endosome-lysosome compartments in the neuron (Castle et al., 2014; Hendricks et al., 

2010). Kinesin-3 motors drive the motility of synaptic vesicle precursors and dense core 

vesicles (Hall and Hedgecock, 1991; Lo et al., 2011; Okada et al., 1995).

Cytoplasmic dynein is the major motor driving retrograde transport. In contrast to the 

diversity of the kinesin superfamily, the motor subunit of cytoplasmic dynein is encoded by 

a single gene (reviewed in (Roberts et al., 2013)). Two dynein heavy chains (DHCs) 

dimerize by their N-terminal tail domains; additional intermediate chains, light intermediate 

chains, and light chains associate with the tails of the heavy chains to form a cargo-binding 

domain. Together, these proteins serve as the binding site for many of the proteins 

regulating dynein function in the cell. While there is a single gene encoding the motor 

domain of cytoplasmic dynein, there is more diversity in the other subunits of the dynein 

complex – for example, there are two genes encoding dynein intermediate chains, one of 

which is neuron-specific (DIC1) and two genes encoding dynein light intermediate chains 

(Kuta et al., 2010). There is evidence that these subunits can either co-assemble (Zhang et 

al., 2013) or alternatively assemble into distinct complexes with specialized functions 

(Mitchell et al., 2012; Salata et al., 2001) which may allow for organelle-specific 

recruitment or regulation.

Most dynein functions in the cell require the dynein activator, dynactin. Dynactin is a highly 

conserved multi-protein complex (Schroer, 2004) that is essential for normal neuronal 

function (LaMonte et al., 2002; Moughamian and Holzbaur, 2012). The base of dynactin is 

formed from a 37 nm-long actin-like polymer; both the Arp1 subunit that forms this polymer 

and additional dynactin subunits including p25 and p27 have been implicated in cargo 

binding (Holleran et al., 1996; Yeh et al., 2012; Zhang et al., 2011). Projecting from this 

base is a dimer of the subunit p150Glued (Holzbaur et al., 1991). This subunit binds directly 

to dynein intermediate chain (Karki and Holzbaur, 1995; Vaughan and Vallee, 1995), and 

also binds directly to microtubules via a CAP-Gly (Cytoskeletal Associated Protein-

Glycine-rich) domain (Waterman-Storer et al., 1995) and a lower affinity basic domain 

found in neuronal isoforms of p150Glued (Culver-Hanlon et al., 2006; Dixit et al., 2008a). In 

vitro assays demonstrate that these independent microtubule-binding domains increase the 

processivity of the dynein-dynactin motor complex (King and Schroer, 2000; Ross et al., 

2006) by enhancing the association of the motor with the microtubule (Ayloo et al., 2014). 

In neurons, the CAP-Gly domain of dynactin has a key role in the initiation of retrograde 

transport in the distal axon (Lloyd et al., 2012; Moughamian and Holzbaur, 2012).

The properties of kinesin and dynein motors have been explored in vitro at the single 

molecule level. Kinesin-1 motors move in a highly processive manner toward the plus-end 

of the microtubule, taking 8 nm steps in a straight path along a single protofilament. A 

single kinesin-1 motor has a stall force of 5–6 pN (Svoboda and Block, 1994), sufficient to 

move an organelle through the cytoplasm. Kinesin-2 motors also drive organelle motility 

along axons, and have a stall force of similar magnitude (5 pN). However, kinesin-2 exhibits 

force-dependent detachment from the microtubule (Schroeder et al., 2012), indicating that 

this motor may be less likely to win a tug-of-war interaction with an opposing motor such as 

dynein. Stall forces of kinesin-3 motors have not yet been determined. However, recent 
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work has shown that kinesin-3 motors become super-processive following cargo-mediated 

dimerization (Soppina et al., 2014).

Studies with purified mammalian dynein indicate that dynein is a fast motor, with velocities 

from 0.5 to 1 μm/sec. Unlike the highly processive unidirectional motility of kinesin-1, 

kinesin-2, and kinesin-3 motors, single mammalian dynein motors take frequent back- and 

side-steps during movement along the microtubule (Mallik et al., 2005; Ross et al., 2006). 

However, either the coordinated activities of multiple dynein motors (Mallik et al., 2005) or 

the binding of activators such as BICD2 (McKenney et al., 2014; Schlager et al., 2014) 

convert dynein to a unidirectional and highly processive motor. Dynein is a much weaker 

motor than kinesin-1 or kinesin-2; there is general although not complete consensus that the 

stall force for mammalian cytoplasmic dynein is ~1 pN (Mallik et al., 2004; Schroeder et al., 

2010).

While these observations might suggest that dynein is a less effective motor than kinesin, 

both the flexible nature of dynein and its ability to move backwards and sideways along a 

microtubule may allow the motor to function effectively in teams (Mallik et al., 2013), and 

to navigate around obstacles along its path (Dixit et al., 2008b). In contrast, kinesin-1 motors 

are much less capable of effectively working in teams (Mallik et al., 2013). Kinesin-1 

motors are also more likely than dynein to detach from the microtubule track upon 

encountering obstacles (Dixit et al., 2008b; Vershinin et al., 2007), although recent work has 

shown that kinesin-2 motors are more robust (Hoeprich et al., 2014).

Opposing motors bind simultaneously to cargos along the axon

Many axonal cargos have multiple motor types bound simultaneously (Figure 1). For 

example, late endosomes/lysosomes co-purify with kinesin-1, kinesin-2, and dynein motors 

(Hendricks et al., 2010). Similarly, kinesin-1 and dynein colocalize on single prion-positive 

vesicles undergoing transport along the axon (Encalada et al., 2011). Even cargos that move 

processively in a single direction over long distances, such as autophagosomes, co-purify 

with opposing dynein and kinesin motors (Maday et al., 2012). Quantitative analyses and 

live-cell trapping experiments suggest that 1–2 kinesins and 6–12 dyneins may act together 

to move a single organelle along the microtubule (Hendricks et al., 2012; Hendricks et al., 

2010; Rai et al., 2013).

Thus, it is essential to consider how multiple motors, and multiple types of motors may 

interact either cooperatively or competitively to yield effective motility. Multiple models 

have been put forth (Fu and Holzbaur, 2014; Gross, 2004; Gross et al., 2007; Muller et al., 

2008; Welte, 2004). The simplest model posits an unregulated tug-of-war between opposing 

kinesin and dynein motors. In a contrasting model, motors are coordinately regulated so that 

only a single motor type is active at any given time. Intermediate models suggest that one 

motor, such as kinesin, might be tightly regulated while the activity of dynein might be less 

carefully controlled; as dynein is a weaker motor than kinesin-1 it might simply be 

overpowered in situations where both motors are active simultaneously.

The motility of some axonal cargos, such as late endosomes/lysosomes, can be effectively 

modeled, at least to a first approximation, as a tug-of-war between opposing kinesin and 
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dynein motors (Hendricks et al., 2010; Muller et al., 2008). In contrast, the motility of other 

cargos in the degradative pathway such as autophagosomes exhibit strongly unidirectional 

motility indicating that kinesin motor activity can be effectively down-regulated (Fu et al., 

2014; Maday et al., 2012). Growing evidence suggests that the activities of opposing motors 

bound to the same cargo are regulated by scaffolding proteins (reviewed in (Fu and 

Holzbaur, 2014)).

The autoinhibition of kinesin-1 is key to this regulation. The binding of kinesin tail to the 

motor domain blocks motor function (Kaan et al., 2011); inhibition is relieved by specific 

binding partners such as the scaffolding proteins JIP1 and JIP3 (Blasius et al., 2007; Fu and 

Holzbaur, 2013; Sun et al., 2011). In the mechanisms explored in detail to date, tight 

regulation of kinesin-1 activation by scaffolding proteins allows for sustained axonal 

transport of organelles in either the anterograde or retrograde directions. The regulation of 

other kinesin sub-families is less well studied.

Regulation of dynein motors is also important to maintain axonal transport, but the 

mechanisms involved are not as well understood. Lis1 is a critical and conserved effector of 

dynein function. Structural studies indicate that Lis1 binds directly to the dynein motor 

domain, and uncouples ATP hydrolysis from force production, leading to sustained 

attachment of the motor to the microtubule (Huang et al., 2012). While induction of tight 

binding might be expected to block effective transport, instead it has been found that 

depletion of Lis1 inhibits the dynein-driven transport of late endosomes and lysosomes 

along the axon (Moughamian et al., 2013; Pandey and Smith, 2011); as well as 

mitochondrial motility in axons (Shao et al., 2013). Nde1 (also known as NudE) and Ndel1 

(also known as NudE-like or NudEL) form a complex with Lis1, and are similarly required 

for normal axonal transport of at least some dynein cargos (Pandey and Smith, 2011; Shao et 

al., 2013).

The Bicaudal D homolog (BICD) proteins are also key dynein effectors. BICD1 and BICD2 

recruit dynein-dynactin to Rab6 positive Golgi and cytoplasmic vesicles (Matanis et al., 

2002) as well as mRNAs including Fragile X Mental Retardation Protein (FMRP; (Bianco et 

al., 2010)). Recently BICD1 was shown to control the trafficking of activated neurotrophin 

receptors to degradation routes in order to balance the neuronal response to neurotrophin 

stimulation (Terenzio et al 2014). In vitro studies have shown that an N-terminal fragment of 

BICD2 induces highly processive dynein motility (McKenney et al., 2014; Schlager et al., 

2014).

Multiple additional mechanisms have been proposed to regulate motor activity on cargos 

moving along the axon. Rab GTPases have been shown to regulate motor recruitment to 

several cargos (reviewed in (Akhmanova and Hammer, 2010)). Scaffolding proteins are also 

key: huntingtin is involved in the regulation of BDNF-positive vesicles (Gauthier et al., 

2004) and autophagosomes (Wong and Holzbaur, 2014); JIP1 is involved in the regulation 

of APP-positive vesicles; JIP3 regulates the injury-signaling pathway in mammalian cells 

and lysosomal motility in zebrafish (Drerup and Nechiporuk, 2013); and the Miro/TRAK 

complex regulates motors bound to mitochondria (Macaskill et al., 2009b; Wang and 

Schwarz, 2009). Finally, there is clear evidence implicating upstream kinases in the 
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regulation of transport including Cdk5, JNK, and p38MAPK (Fu and Holzbaur, 2013; 

Horiuchi et al., 2007; Morfini et al., 2013; Pandey and Smith, 2011), but the mechanisms 

involved have not yet been fully elucidated.

Both common themes and cargo-specific mechanisms operate in the axonal transport of 
diverse axonal cargos

Live-cell and in vivo imaging of fluorescently-tagged organelles moving along axons have 

revealed a surprising diversity in the movement of specific populations, indicating that the 

regulation of the motors that drive transport likely occurs primarily at the level of the 

organelle, rather than reflecting an overall regulatory environment within the axon. While 

the observed patterns of motility are diverse, some common themes are emerging:

1. Motors remain stably associated with a cargo during transport along the axon, even 

when they are inactive.

2. Only a small complement of motors is necessary to effectively move even large (>1 

μm) organelles along the microtubule. These motors function in groups that usually 

include opposing motor activities.

3. Motors are regulated by mechanisms that may include Rab-specific recruitment, 

upstream regulation by kinases and phosphatases, and scaffolding proteins that 

control motor activity.

4. Mutations in motors, their adaptors, or their regulators can lead to 

neurodegeneration or neuronal cell death (Table I), consistent with an essential role 

for axonal transport in maintaining neuronal homeostasis.

Despite these common themes, accumulating evidence suggests that the motility of each 

cargo actively transported along the axon is regulated by a distinct mechanism.

FAST ANTEROGRADE TRANSPORT: AXONAL PROTEINS AND SYNAPTIC 

COMPONENTS

APP-positive vesicles

APP-positive vesicles are a canonical cargo of kinesin-1 motors (Kamal et al., 2000). APP-

positive vesicles are transported in a highly processive manner at rapid speeds (~1 μm/s), 

primarily in the anterograde direction although rapid retrograde motility is also observed 

(Falzone et al., 2009; Kaether et al., 2000). APP binds to the scaffolding protein JIP1 

(Matsuda et al., 2001; Scheinfeld et al., 2002). JIP1 is a JNK-binding scaffolding protein 

implicated in the regulation of constitutive axonal transport in Drosophila (Horiuchi et al., 

2005). The C-terminus of JIP1 binds to KLC (Verhey et al., 2001) and this binding 

contributes to the regulation of the kinesin-1 motor in concert with FEZ1 (Blasius et al., 

2007). JIP1 also binds directly to kinesin-1 heavy chain (KHC) and the p150Glued subunit of 

dynactin (Fu and Holzbaur, 2013). JIP1 binding to KHC activates the motor by relieving 

auto-inhibition, while the binding of JIP1 to dynactin competitively blocks this activation 

(Fu and Holzbaur, 2013).
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In the neuron, the relative affinity of JIP1 for kinesin-1 or dynactin is controlled by a JNK-

dependent phosphorylation site, which acts as a molecular switch to control the 

directionality of APP transport – when S421 in JIP1 is phosphorylated, anterograde transport 

of APP is favored, while dephosphorylation of S421 favors the retrograde motility of JIP1 

(Fu and Holzbaur, 2013). Regulation of this activation is likely to involve JNK, and possibly 

upstream kinases such as Wallenda/DLK (Horiuchi et al., 2007).

Synaptic vesicle precursors and dense core vesicles

A large fraction of vesicular organelles in the axon are components destined for the pre-

synapse, namely synaptic vesicle precursors (SVPs) and dense core vesicles (DCVs) packed 

with neuropeptides and neurotrophins.

Anterograde transport of SVPs is driven by motors from the kinesin-3 family, Unc-104 in C. 

elegans and KIF1A in mammals (Hall and Hedgecock, 1991; Okada et al., 1995). Neurons 

from unc-104 mutants and KIF1A knockout mice (Yonekawa et al., 1998) fail to develop 

normal synapses; synaptic precursors accumulate in the soma consistent with a transport 

defect. Conversely, overexpression of KIF1A promotes the formation of pre-synaptic 

boutons (Kondo et al., 2012). Kinesin-3 motors undergo cargo-mediated dimerization, 

which leads to the formation of highly processive anterograde motors to drive efficient 

delivery of synaptic components (Klopfenstein and Vale, 2004; Soppina et al., 2014).

Two adaptors have been proposed to couple kinesin-3 motors to SVPs, liprin-α and DENN/

MADD. Liprin-α is a multifunctional scaffolding protein that binds directly to KIF1A and 

many other neuronal scaffolding proteins (Shin et al., 2003); mutations in liprin-α perturb 

SVP transport (Miller et al., 2005). The protein DENN/MADD is required for the transport 

of SVPs and binds directly to the stalk domain of kinesin-3 motors (Niwa et al., 2008). 

DENN/MADD can differentiate between GTP and GDP forms of Rab3, a marker for SVPs, 

suggesting a mechanism for regulation of motor recruitment.

Once delivered to the pre-synaptic site, SVPs can be recycled locally. However, DCVs can 

only be packaged in the soma and must be continuously supplied, targeted to axon and/or 

dendrites depending on their content. DCV transport is also dependent on Unc-104/KIF1A 

motors, suggesting the mechanisms involved are similar to those driving SVP transport (Lo 

et al., 2011). Upstream regulation of kinesin-3 transport is regulated by Cdk5, which 

promotes the Unc-104-dependent transport of dense core vesicles into axons and inhibits the 

dynein-dependent transport of these vesicles into dendrites (Goodwin et al., 2012).

The current exception to the paradigm of kinesin-3-dependent transport of DCVs is BDNF 

transport. The neurotrophin BDNF is stored in DCVs and trafficked within axons to the pre-

synaptic site (Altar et al., 1997; Dieni et al., 2012). However, the axonal transport of BDNF 

is regulated by huntingtin (Gauthier et al., 2004), which scaffolds both kinesin-1 and dynein 

motors (Caviston and Holzbaur, 2009). The phosphorylation of huntingtin through the 

IGF-1/Akt pathway acts as a molecular switch to regulate the transport of BDNF-containing 

vesicles in axons (Colin et al., 2008; Zala et al., 2008). Phosphorylation of huntingtin at 

S421 promotes anterograde transport while dephosphorylation of huntingtin promotes 

retrograde transport (Colin et al., 2008). Biochemical studies indicate that phosphorylation 
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of S421 enhances the recruitment of kinesin-1 to BDNF transport vesicles and enhances the 

association of kinesin-1 motors with microtubules, leading to increased anterograde flux and 

BDNF release (Colin et al., 2008).

FAST RETROGRADE TRANSPORT: SIGNALING ENDOSOMES AND 

AUTOPHAGOSOMES

Signaling endosomes

The balance between neuronal survival and death is regulated by neurotrophin secretion 

from target tissues to modulate the connection with innervating neurons (Chowdary et al., 

2012; Harrington and Ginty, 2013). Neurotrophins bind to receptors on the presynaptic 

membrane and are transported from the distal axon toward the cell soma to effect changes in 

gene expression. Since these signals must be relayed over distances of up to 1 meter, robust 

mechanisms must exist to preserve the fidelity of information being carried.

Neurotrophins (NGF, BDNF, NT3/4) bind to and activate neurotrophin receptors (TrkA, 

TrkB, TrkC, p75NTR). Following receptor-mediated endocytosis, these receptor-ligand 

complexes are sorted into compartments called signaling endosomes for transport toward the 

cell soma (Chowdary et al., 2012; Harrington and Ginty, 2013). There is evidence for an 

early endosomal lineage for signaling endosomes, since these organelles are positive for 

EEA1 and Rab5B (Cui et al., 2007; Deinhardt et al., 2006; Delcroix et al., 2003), but they 

may mature to Rab7-positive compartments (Deinhardt et al., 2006; Sandow et al., 2000). 

Ligand-receptor complexes can be sustained during transport, resulting in activated Trk 

receptors (pTrks) and downstream signaling molecules (e.g. pERK1/2, B-Raf and p-p38) in 

both the axon and cell body (Bhattacharyya et al., 2002; Cui et al., 2007; Delcroix et al., 

2003; Grimes et al., 1997).

To relay information from the distal axon to the cell soma, signaling endosomes undergo 

robust retrograde transport. Ligation of the sciatic nerve results in the accumulation of 

activated neurotrophin receptors and signaling molecules distal to the ligation site, 

demonstrating a robust retrograde flux of signaling endosomes along the axon 

(Bhattacharyya et al., 2002; Delcroix et al., 2003; Ehlers et al., 1995). Precise spatial and 

temporal resolution of signaling endosome dynamics was revealed with NGF-coated 

quantum dots, which exhibited pronounced unidirectional motility toward the cell soma 

interspersed with frequent pauses; average speeds ranged from 0.2 μm/sec to 3 μm/sec (Cui 

et al., 2007). This retrograde transport depends on dynein-dynactin as inhibition of this 

motor complex prevents activated neurotrophin receptors from exiting the distal axon, 

thereby decreasing neuron viability (Heerssen et al., 2004).

Autophagosomes

Maintaining protein and organelle quality across the extended distance of the axon poses a 

unique challenge to the neuronal degradation machinery. Autophagy is an essential 

lysosomal degradation pathway in neurons (Hara et al., 2006; Komatsu et al., 2006; 

Komatsu et al., 2007), required to maintain cellular homeostasis. Autophagosomes are 

preferentially generated in the distal axon (Hollenbeck, 1993; Maday and Holzbaur, 2014; 
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Maday et al., 2012). For a short period after the compartment is formed, autophagosomes 

exhibit bidirectional motility, likely driven by both kinesin-1 and dynein motors, but they 

soon switch to robust retrograde transport along the length of the axon (Maday et al., 2012). 

Both live imaging and biochemical analysis have shown that dynein and kinesin-1 motors 

remain tightly bound to autophagosomes during retrograde movement along the axon, 

despite primarily unidirectional movement with few reversals and pauses (Maday et al., 

2012). Two scaffolding proteins, JIP1 and huntingtin, regulate autophagosome motility by 

interacting with both kinesin-1 and the retrograde dynein-dynactin motor complex (Fu et al., 

2014; Wong and Holzbaur, 2014). JIP1 binding to LC3 is required to effectively block the 

activation of kinesin-1 on these organelles, leading to the robust retrograde motility of 

autophagosomes along the axon (Fu et al., 2014).

As autophagosomes transit along the axon, they undergo maturation to form autolysosomes 

(Lee et al., 2011; Maday et al., 2012). Initial fusion with late endosomes occurs upon exit 

from the distal region of the axon but full acidification occurs as they approach the soma 

(Maday et al., 2012), consistent with a gradient of degradative function along the axon (Lee 

et al., 2011). Transport along the axon likely facilitates additional fusion events with 

lysosomes encountered en route to the cell soma, as inhibition of transport leads to defective 

acidification and accumulation of undigested contents within the lumen of the autolysosome 

(Fu et al., 2014; Wong and Holzbaur, 2014).

While some degradation may occur locally within the axon (Ashrafi et al., 2014), >80% of 

axonal autophagosomes formed by constitutive autophagy travel toward the cell soma 

(Maday et al., 2012) indicating a dependence on long-range axonal transport for clearance 

pathways. Delivery of autophagosomes to the cell soma may ensure efficient recycling of 

the amino acids generated to primary sites of protein synthesis. The pronounced retrograde 

motility characteristic of constitutive autophagy in neurons could also balance the net 

outward flow of organelles and proteins via fast and slow anterograde transport (Maday and 

Holzbaur, 2014).

BIDIRECTIONAL TRANSPORT: MITOCHONDRIA AND LYSOSOMES

Mitochondria

Localized regions within the neuron such as growth cones and synapses experience 

significant energetic demands. This requirement for ATP cannot be sustained by diffusion 

from the cell soma and must be handled locally within the neuron. Mitochondria, the 

organelles responsible for ATP production and intracellular calcium buffering, are actively 

shuttled and positioned within the neuron to meet the localized needs of the cell. Thus 

mitochondrial motility facilitates a dynamic response to balance environmental demands. In 

axons of hippocampal neurons grown in vitro, ~20–30% of mitochondria are motile, moving 

equally in both anterograde and retrograde directions; the remaining ~70–80% are stationary 

(reviewed in (Hollenbeck and Saxton, 2005)). In vivo, axonal mitochondria are ~10% motile 

and exhibit a greater bias in flux in the anterograde direction as compared to in vitro studies; 

~70% are anterograde and ~30% are retrograde (Misgeld et al., 2007; Pilling et al., 2006).
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Mitochondrial transport is regulated by neuronal activity (Sajic et al., 2013). Elevated 

intracellular calcium levels resulting from enhanced synaptic activity arrest mitochondrial 

motility in a highly localized fashion, since mitochondria as little as 15 μm away from the 

stimulation site remain motile (Li et al., 2004; Macaskill et al., 2009b; Wang and Schwarz, 

2009). Passing mitochondria become immobilized in areas of locally high [Ca2+] at active 

synapses where demands for energy and calcium buffering are high. The distribution of 

mitochondria at synapses in turn affects synaptic transmission and strength. Stable 

positioning of mitochondria at presynaptic boutons maintains a steady release of synaptic 

vesicles (SV), resulting in steady amplitudes of excitatory postsynaptic currents (EPSCs) 

(Sun et al., 2013).

Mitochondrial distribution is also coupled to the balance between mitochondrial fission and 

fusion. Mutations in the mitochondrial fission protein dynamin-related protein (DRP1) result 

in the accumulation of mitochondria in the soma of both Drosophila motor neurons 

(Verstreken et al., 2005) and cultured hippocampal neurons (Li et al., 2004). The resulting 

decrease in mitochondrial density at pre-synaptic terminals of the neuromuscular junction 

impairs SV release, a defect rescued with exogenous ATP (Verstreken et al., 2005).

The calcium-dependent arrest of mitochondrial motility is mediated by Mitochondrial Rho 

GTPase (Miro) (Fransson et al., 2003; Guo et al., 2005). Miro has two Ca2+-binding EF-

hand domains and two GTPase domains, and binds the kinesin-1 adaptors, TRAK1 and 

TRAK2, also known as Milton in Drosophila (Fransson et al., 2006; MacAskill et al., 

2009a). Ca2+ binding to Miro induces mitochondrial arrest, however controversy still 

surrounds the mechanism. One model proposes that high levels of calcium promote binding 

of Miro1 to the motor domain of kinesin-1, thereby sterically inhibiting access to the 

microtubule (Wang and Schwarz, 2009). A second model posits that elevated calcium levels 

cause the dissociation of kinesin-1 from mitochondria and the Miro/TRAK complex 

(Macaskill et al., 2009b). Differences between axonal versus dendritic modes of regulation 

may underlie some of these observations. Syntaphilin is enriched on stationary mitochondria 

in the axon and knockout mice show enhanced axonal mitochondrial motility, with no effect 

observed on the motility of dendritic mitochondria (Kang et al., 2008). Calcium promotes 

binding of syntaphilin to both microtubules and kinesin-1, thereby decreasing the ATPase 

rate of kinesin-1 and acting as a brake on motility (Chen and Sheng, 2013), but only in the 

axon. Thus, the differing models may reflect cell-compartment specific regulatory 

mechanisms for mitochondrial movement.

In addition to the Miro/TRAK complex, syntabulin (Cai et al., 2005), FEZ1 (Fujita et al., 

2007; Ikuta et al., 2007) and RanBP2 (Cho et al., 2007; Patil et al., 2013) have all been 

shown to recruit kinesin-1 to mitochondria to regulate mitochondrial motility. Whether these 

proteins can interact with the Miro1 complex or act independently remains to be established. 

However, in the absence of kinesin-1, a small population of mitochondria are still motile 

(Pilling et al., 2006), indicating that other kinesins also drive mitochondrial motility. There 

is evidence that both KIF1Bα (Nangaku et al., 1994) and KLP6 (Tanaka et al., 2011) 

contribute to the intracellular transport of mitochondria.
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The role of dynein in mitochondrial trafficking is less well studied. Mutations in kinesin-1 

and the Ca2+-dependent inactivation of kinesin-1 arrest mitochondrial motion in both 

anterograde as well as retrograde directions (Chen and Sheng, 2013; Macaskill et al., 2009b; 

Pilling et al., 2006; Wang and Schwarz, 2009), suggesting that the activity of oppositely-

directed motors is coordinated (Pilling et al., 2006). The TRAK proteins interact with the 

dynein/dynactin complex and may modulate this coordination (van Spronsen et al., 2013). 

Loss of Miro affects both anterograde and retrograde transport (Russo et al., 2009), also 

consistent with an integrated regulatory mechanism.

Late endosomes and lysosomes

Approximately half of the late endosomes/lysosomes in the axon undergo bidirectional 

motility characterized by frequent directional changes and pauses while the remaining half 

undergo either anterograde or retrograde directed transport in approximately equal 

proportion (Hendricks et al., 2010; Moughamian and Holzbaur, 2012). Dynein is necessary 

for the proper positioning of both late endosomes and lysosomes (Harada et al., 1998). 

Dynein is recruited to late endosomes and lysosomes via the Rab7 effector RILP (Rab7-

interacting lysosomal protein), which interacts directly with the C-terminus of the p150Glued 

subunit of dynactin (Johansson et al., 2007; Jordens et al., 2001). ORP1L, another Rab7 

effector, then facilitates transport by recruiting the RILP-Rab7-dynactin-dynein complex 

onto βIII spectrin-associated membranes via an interaction with the Arp1 subunit of dynactin 

(Holleran et al., 2001; Johansson et al., 2007). Dynein light intermediate chain (DLIC) may 

also function, independently of RILP, to recruit dynein to late endosomes and lysosomes 

(Tan et al., 2011). Snapin has also been proposed to regulate the recruitment of dynein to 

late endosomes through a direct interaction with the dynein-intermediate chain (DIC); this 

interaction may facilitate the fusion of late endosomes and lysosomes (Cai et al., 2010).

The anterograde transport of lysosomes is mediated by SKIP (SifA and kinesin-interacting 

protein), which links Arl8, a mature lysosome Arf-like G protein, directly to the light chain 

of kinesin-1 (Rosa-Ferreira and Munro, 2011). Kinesin-2 motors are also associated with 

late endosomes and lysosomes (Brown et al., 2005; Castle et al., 2014; Hendricks et al., 

2010), but the regulatory mechanisms that may control kinesin-2 activity, or that coordinate 

kinesin-2 function with the other lysosome-bound motors, remain to be determined.

SLOW AXONAL TRANSPORT OF CYTOSKELETAL POLYMERS AND 

SOLUBLE PROTEINS

While organelles and vesicles are transported relatively rapidly along the axon, the delivery 

of hundreds of different types of newly synthesized cytosolic proteins and cytoskeletal 

polymers occurs more slowly. The slow anterograde axonal transport of protein is 

subdivided into two speed categories: slow component a (SCa, mainly tubulin and 

neurofilaments) at rates of 0.2 to 1mm/day and slow component b (SCb, cytosolic proteins) 

which is around 10 fold faster at 1–10mm/day (reviewed in (Roy, 2014)). Due in large part 

to the difficulty in visualizing slow axonal transport in real time, it has remained the 

enigmatic cousin of fast axonal transport. Advances in imaging technologies and fluorescent 

probes, as well as computational modeling (Li et al., 2012; Scott et al., 2011), have allowed 
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significant conceptual advances in understanding the processes at work, although specific 

molecular mechanisms and often the motor proteins involved are not yet understood.

Movement of neurofilaments by slow axonal transport has been well characterized. The vast 

majority of neurofilament protein is transported as assembled units of oligomers (Brown, 

2000; Wang et al., 2000; Yan and Brown, 2005), moving in both the forward and reverse 

direction by engaging kinesin-1 and dynein motors (Shah et al., 2000; Uchida et al., 2009; 

Wagner et al., 2004; Yabe et al., 1999). Neurofilament subunit M binds directly to dynein 

(Wagner et al., 2004); KIF5A appears to be the primary kinesin-1 isoform for neurofilament 

transport (Wang, 2010), but the mechanisms regulating the recruitment of this motor remain 

unknown. In a breakthrough study, Brown and colleagues determined that the overall slow 

net rate of transport of neurofilaments along the axon is a result of short-lived motor-driven 

movements punctuated by extended pauses (Wang et al., 2000). How the activities of dynein 

and kinesin-1 are regulated in the context of neurofilament transport to result in such a 

disparate rate of transport compared to vesicular motility is unknown.

The slow axonal transport of the two other key cytoskeletal families, actin and tubulin, is 

more ambiguous. Analysis is complicated by the rapid polymerization and depolymerization 

rates of the polymers. Analogous to neurofilament transport, the movement of short 

microtubule fragments may be driven by motor proteins (Wang and Brown, 2002), although 

there is also evidence for the transport of soluble tubulin dimers in a kinesin-dependent 

manner (Terada et al., 2000). In contrast, the slow transport of actin occurs in growth-cone 

like waves that support neurite growth during development (Flynn et al., 2009), but how 

actin is replenished in mature neurons is unknown.

Slow axonal transport also carries a large and diverse pool of cytosolic proteins, with more 

than 200 distinct components although the complete proteome is unknown (Roy, 2014). A 

handful of examples have been studied so far. Current models suggest that proteins in this 

pool, such as synapsin, form spontaneously aggregated complexes (Scott et al., 2011) that 

undergo ‘dynamic recruitment’ to allow short bursts of anterograde transport by hitching a 

ride on passing vesicles (Tang et al., 2013).

Both the dynamic recruitment model for soluble proteins and the stop-and-go model for 

neurofilament transport (Brown and Jung, 2013; Roy, 2014) rely on the same microtubule 

motors that power fast axonal transport. The major differences in transport rates observed 

arise from differences in the time spent actively engaged in transport. Thus, slow axonal 

transport is a balance between long pauses and short bouts of motility. Despite the apparent 

inefficiency of this mechanism, it is worth stating that the amount of protein delivered to the 

pre-synapse by slow axonal transport outweighs that of fast axonal transport by at least 3 to 

1 (Garner and Mahler, 1987; McEwen and Grafstein, 1968; Roy, 2014). The persistent and 

constitutive delivery of new material to the axon terminal by slow transport is critical to 

synapse survival.

An important outcome of slow axonal transport as it relates to neuronal function is the age 

of proteins conveyed by this method. Proteins that reach the axon terminus of a 1 m axon 

could be anywhere from four to twelve months old and might persist for as long as another 
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100 days (Garner and Mahler, 1987). Recent work suggests that mitochondria are also aged 

in distal neurites (Ferree et al., 2013). This fact highlights the specific axonal requirement 

for distal quality control (Maday and Holzbaur, 2014) and for chaperones (Song et al., 2013; 

Terada et al., 2010) that maintain the integrity of the proteome in the distal axon.

REGIONAL SPECIFICITY OF AXONAL TRANSPORT

Axonal transport is not uniform along the axon, as cargos exhibit different motility patterns 

within distinct regions of the axon. Both the axon initial segment and the distal axon are key 

sites for regulatory control. Site-specific organization of the microtubule cytoskeleton may 

provide a structural basis for the motility differences observed.

The axon initial segment

The AIS has a highly specialized cytoskeletal architecture. Microtubules are stabilized at the 

AIS by +TIPS EB1 and EB3 interacting with ankyrin G (Leterrier et al., 2011). The AIS has 

been proposed to act as a selective filter to exclude somatodendritic vesicular cargos from 

entering the axon. Live imaging studies indicate that axonal cargos move from cell body to 

axon with no change in velocity, while dendritic cargos that enter the base of the axon are 

specifically arrested at the start of the AIS (Petersen et al., 2014). Multiple mechanisms have 

been proposed to explain the underlying mechanism. One model posits that a dense actin 

meshwork at the AIS is key (Song et al., 2009; Watanabe et al., 2012), although neither 

polarized actin arrays nor dense actin meshworks were seen in recent platinum replica EM 

analysis (Jones et al., 2014) nor by super-resolution imaging (Xu et al., 2013). Alternatively, 

differences in the microtubule cytoskeleton may be critical in mediating axonal/dendritic 

sorting. It has been proposed that the mixed microtubule polarity of dendrites may be 

sufficient to allow dynein motors to selectively steer dendritic cargos to this compartment 

(Kapitein et al., 2010). Or, post-translational modifications to the microtubule cytoskeleton 

may contribute to the regulation of axonal vs. dendritic cargo sorting (Hammond et al., 

2010; Nakata and Hirokawa, 2003; Setou et al., 2002). The recent observation that axo-

dendritic selectivity precedes the establishment of both the AIS and mixed microtubule 

polarity in dendrites (Petersen et al., 2014) favors the interpretation that kinesin motors 

driving axonal cargos are responding to microtubule-based cues (Jacobson et al., 2006), but 

more work is required to fully establish this model.

Intriguingly, there is some evidence that the AIS also affects retrograde transport, as dense 

core vesicles in Drosophila circulating through the axon reverse at both the distal and the 

proximal axon, further implicating these regions of the axon as specialized zones for 

transport regulation (Wong et al., 2012).

Distal initiation of retrograde transport

Cargos undergoing retrograde transport often initiate motility very far from the soma, in the 

distal axon. Microtubules in the distal axon display enhanced dynamicity, with an enriched 

population of actively growing microtubule plus ends (Moughamian et al., 2013). Efficient 

initiation of retrograde transport from the distal axon requires a set of microtubule plus-end 

interacting proteins, or +TIPs (Lloyd et al., 2012; Moughamian and Holzbaur, 2012; 
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Moughamian et al., 2013). The CAP-Gly domain of the p150Glued subunit of dynactin 

interacts with additional +TIP proteins, CLIP-170 and the end-binding proteins EB1 and 

EB3. Ordered recruitment of these plus-end binding proteins has been proposed to facilitate 

the active loading of the dynein-dynactin motor complex onto dynamic microtubule ends 

(Moughamian et al., 2013). This mechanism enhances retrograde transport initiation for 

multiple cargos, including early endosomes, late endosomes and lysosomes, and 

mitochondria (Moughamian et al., 2013).

The dynein-binding protein Lis1 is also a +TIP, and has been proposed to act as an initiation 

factor for dynein-mediated transport in fungi (Lenz et al., 2006). In neurons, however, Lis1 

is required for transport all along the axon, not just in regions of increased microtubule 

dynamicity (Moughamian et al., 2013; Pandey and Smith, 2011). Lis1 likely acts directly on 

dynein, priming the motor for transport (Huang et al., 2012) and/or recruiting the dynein/

dynactin complex onto certain cargos (Dix et al., 2013). In sensory neurons, the 

spectraplakin BPAG1n4 and the endosomal protein retrolinkin have also been reported to be 

required for sustained retrograde transport along the axon, in a mechanism that also depends 

on dynamic microtubule plus ends (Kapur et al., 2014).

mRNA TRANSPORT, LOCAL PROTEIN SYNTHESIS, AND INJURY 

SIGNALING

To carry out domain-specific tasks, neurons can locally regulate the proteome in response to 

dynamic changes in the environment. Local translation of mRNAs has been well 

characterized in dendrites (Holt and Schuman, 2013), but local translation in the axon is less 

well understood. Some direct evidence for this process comes from metabolic labeling 

studies to measure newly synthesized protein from severed axons (Merianda et al., 2009; 

Willis et al., 2005).

Sequences within the 5′ and 3′ UTR of mRNAs, are recognized by RNA-binding proteins 

and direct transport to either dendrites or the axon (Holt and Schuman, 2013; Merianda et 

al., 2013). mRNA is transported as translationally-repressed RNA granules along with 

RNA-binding proteins and ribosomes (Kanai et al., 2004; Knowles et al., 1996; Krichevsky 

and Kosik, 2001). These RNA granules exhibit bidirectional as well as confined oscillatory 

movement dependent on plus- and minus-end directed microtubule-based motors (Alami et 

al., 2014; Davidovic et al., 2007; Gumy et al., 2014; Kanai et al., 2004; Ling et al., 2004; 

Zhang et al., 2001). While mechanistic details are lacking, motor recruitment may be 

regulated by 3′ UTR localization signals (Amrute-Nayak and Bullock, 2012; Serano and 

Cohen, 1995).

Two prominent mechanisms initiate mRNA transport and local translation in the axon - 

axonal injury and chemotrophic signals. Injury in the distal axon induces local translation of 

importin-β, which heterodimerizes with importin-α to bind dynein (Hanz et al., 2003). These 

α/β dimers have high affinity for binding to the nuclear localization signals of transcription 

factors (e.g., STAT3; also translated locally upon injury). Thus, injury-induced local 

translation of importin-β assembles a retrograde signaling complex that delivers 

transcription factors to the nucleus to initiate a pro-regenerative transcriptional program 
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(Hanz et al., 2003; Perry et al., 2012; Rishal and Fainzilber, 2014). Conditional disruption of 

the axon targeting sequence within the 3′ UTR of importin-β depletes importin-β mRNA and 

protein from the axon, causing delayed axon regeneration in vivo (Perry et al., 2012). Local 

translation of vimentin links pERK to importin-βmediated retrograde signaling to further 

modulate the transcriptional program (Perlson et al., 2005).

Axonal injury also induces the formation of the retrograde signaling complex DLK-pJNK3-

JIP3-dynein/dynactin. Injury-induced calcium influx activates the mitogen-activated protein 

kinase kinase kinase dual leucine zipper kinase (DLK), which in turn activates c-Jun NH2-

terminal kinase (JNK3) (Rishal and Fainzilber, 2014). JNK3 is linked to axonal transport 

vesicles via the JNK-interacting protein JIP3 (Cavalli et al., 2005). While JIP3 can interact 

with both kinesin and dynactin, injury induces preferential association with dynactin 

(Cavalli et al., 2005). Thus, upon injury, a complex is assembled of DLK-pJNK3-JIP3-

dynein/dynactin that transports activated transcription factors (e.g., pSTAT3) to the nucleus 

to initiate axonal regeneration (Cavalli et al., 2005; Rishal and Fainzilber, 2014; Shin et al., 

2012). In the absence of DLK, retrograde transport of pSTAT3 and JIP3 is blocked, 

resulting in delayed axonal regeneration (Shin et al., 2012).

Enhanced calcium influx at the injury site also back-propogates along the axon toward the 

cell soma to elicit changes in gene expression (Cho et al., 2013). Elevated intracellular 

calcium in the soma induces PKCμ-dependent export of HDAC5 from the nucleus, resulting 

in enhanced histone acetylation and activation of a pro-regenerative transcriptional program 

(Cho et al., 2013). Export of HDAC5 from the nucleus serves a dual function, as subsequent 

anterograde transport of HDAC5 to the injury site increases tubulin deacetylation, 

promoting growth cone dynamics and axon regeneration (Cho and Cavalli, 2012).

Chemotrophic signals can also induce mRNA transport and local translation in the distal 

axon and growth cone (reviewed in (Rishal and Fainzilber, 2014)). Treatment with 

neurotrophins localizes β-actin mRNA to the distal axon and growth cone; increased β-actin 

mRNA is concomitant with increased β-actin protein and forward protrusion of the growth 

cone (Bassell et al., 1998; Zhang et al., 2001). Interference with the 3′ UTR axonal targeting 

signal prevents distal accumulation of β-actin mRNA and protein, resulting in growth cone 

retraction (Zhang et al., 2001). Transport and translation of β-actin mRNA in the axon can 

be induced by NGF added exclusively to the axonal compartment, indicating an efficient 

relay of information from the distal axon to the cell soma and back (Willis et al., 2005). 

Translocation of β-actin mRNA into axons has also been observed in vivo upon axonal 

injury (Willis et al., 2011).

THE ENERGY REQUIREMENTS OF AXONAL TRANSPORT

Axonal transport is an energetically costly process as molecular motors hydrolyze ATP to 

carry out the work of stepping along microtubules. The conventional kinesin-1 motor 

consumes one molecule of ATP for every 8 nm step taken (Hackney, 1994). Measurements 

to date indicate a typical vesicle has one to two kinesins bound and exerting force at any one 

time (Encalada et al., 2011; Hendricks et al., 2012; Hendricks et al., 2010; Rai et al., 2013; 

Soppina et al., 2009). Taking the example of an average axon in the rat cortex, 40 mm in 
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length, a single vesicle traversing this axon in the anterograde direction would require ~5 × 

106 ATP molecules to do so: assuming no tug-of-war or switch events occur, which can be 

frequent in vivo (Hendricks et al., 2010; Soppina et al., 2009). In the 1 m-long axons of 

human motor neurons, the minimum ATP consumed per anterograde transport event reaches 

~1.25 × 108 ATP molecules.

Unlike the consistent unidirectional stepping of kinesin-1 motors, the step size of single 

cytoplasmic dynein motors purified from mammalian brain ranges from 8 to 32 nm in length 

and can include backsteps (Mallik et al., 2004; Ross et al., 2006). However, recent in vitro 

and in vivo measurements show that dynein acts in teams of 6–12 motors per vesicle to 

produce persistent retrograde motility, and under these conditions motor teams show a step 

size of 8 nm (Hendricks et al., 2010; Rai et al., 2013; Soppina et al., 2009). Thus, a single 

vesicle traversing a human motor neuron from neuromuscular junction back to the soma 

would require a minimum of ~7.5 × 108 ATP molecules.

Strikingly, however, the amount of ATP hydrolyzed during axonal transport is relatively 

inconsequential compared to the amount of ATP consumed by those same neurons to fire 

action potentials and maintain resting potentials. A single action potential propagated along 

a 40 mm-long axon would require ~1 ×108 ATP molecules, and thus, axonal transport likely 

amounts to a fraction of the 25% of energy allocated to the housekeeping budget of the grey 

matter (Harris and Attwell, 2012).

One mechanism proposed to specifically address the energy demands of axonal transport is 

based on the finding that glycolytic enzymes are bound to the surface of vesicles moving 

along the axon, and can serve as an independent source of ATP for the motors driving 

transport of these vesicles (Zala et al., 2013). The identification of an energy source 

independent of mitochondria that can power vesicular transport is intriguing, and may allow 

cargos to transit any gaps in ATP gradients between unevenly dispersed mitochondria along 

the axon (MacAskill and Kittler, 2010; Zala et al., 2013). However, it remains unclear 

whether on-board energy production by glycolysis is required for axonal transport in vivo, 

as the energetic life of glia and neurons are intimately linked (Saab et al., 2013). Glia supply 

neurons with lactate under conditions of glucose shortage, bypassing glycolysis in the axon. 

Indeed, myelinated axons can survive for extended periods with only lactate, while fast 

axonal transport would be predicted to stop under these conditions if solely dependent on 

glycolysis. Further, there are several forms of axonal transport not associated with vesicular 

membranes including slow axonal transport and the movement of RNA granules. Without an 

onboard ATP supplier, these transport processes would experience regions of slow to no 

motility in the hypothesized low ATP regions. Alternatively, diffusion may be sufficient to 

maintain consistent levels of ATP along the axon. In either case, an onboard mechanism of 

glycolysis might become more relevant in situations of fast action potential firing – a high-

energy task that increases local ATP demands, potentially restricting the ATP available for 

housekeeping tasks.
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COMMON THEMES AND OUTSTANDING QUESTIONS

The compartmentalized nature of neurons requires active mechanisms of transport to 

distribute organelles to localized regions of demand. The differing patterns of motility 

observed for distinct organelles may reflect underlying functional differences. For example, 

mitochondrial motility facilitates distribution to sites of need, where these organelles 

become tethered to supply local needs for energy production and calcium buffering. 

Similarly, the bidirectional movement of mRNA granules may effectively distribute these 

particles to sites of local synthesis. Upon arrival, mRNA granules remain poised in a 

translationally-repressed state to rapidly respond to stimuli such as axonal injury. Other 

organelles, such as signaling endosomes, must relay information across the extended 

distance of the axon and thus undergo long journeys with highly processive, unidirectional 

motility to efficiently move from distal axon to cell soma. And degradative organelles such 

as autophagosomes must efficiently clear damaged organelles and aggregated proteins, 

recycling components back to the cell body for reuse.

Many major outstanding questions remain unanswered. How is organelle movement in the 

axon choreographed? How is the complement of motors associated with each organelle 

regulated? Since most organelles may have opposing motors bound simultaneously, future 

work will determine how oppositely-directed motors are coordinated to achieve organelle-

specific differences in motility patterns. Further work is also required to uncover regional-

specific differences in organelle transport within the neuron. Advances in imaging 

technology will continue to facilitate the study of these pathways both in cells and in vivo 

and will provide insights into the alteration of these pathways in stress and disease. A 

growing number of human diseases, both neurodevelopmental and neurodegenerative, are 

caused by mutations in the axonal transport machinery (Table I). Further, axonal transport is 

misregulated in many of the major neurodegenerative diseases affecting human populations, 

including ALS, Alzheimer’s, Huntington’s and Parkinson’s diseases (Millecamps and 

Julien, 2013). Thus, continued research into the molecular mechanisms involved in axonal 

transport and its regulation should provide new insights pointing toward development of 

novel therapeutic approaches in future.
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FIGURE 1. Molecular mechanisms of axonal transport
Microtubule motor proteins kinesin and dynein drive the movement of organelles, vesicles, 

RNA granules, and proteins along the axon. Kinesins drive anterograde transport outward 

from the soma, and dynein drives retrograde transport back from distal axon. However, most 

cargos may have both motor types bound simultaneously. Cargo-bound motors are regulated 

by organelle-specific complements of scaffolding and adaptor proteins. To avoid either 

distal accumulation or distal depletion of cellular components, anterograde and retrograde 

axonal transport must be in balance.
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TABLE 1

Neurodevelopmental and neurodegenerative diseases caused by mutations in the axonal transport machinery

Protein(s) Gene(s) with known mutation Disease(s) References

Motor proteins

Dynactin Dctn1 Perry syndrome
ALS/MND

(Puls et al., 2003)
(Farrer et al., 2009)
(Caroppo et al., 2014)
(Araki et al., 2014)

Dynein Dync1h1 CMT
SMA-LED
ID
MCD (Epilepsy)

(Weedon et al., 2011)
(Tsurusaki et al., 2012)
(Harms et al., 2012)
(Willemsen et al., 2012)
(Poirier et al., 2013)
(Fiorillo et al., 2014)

Kinesin-1 KIF5A
KIF5C

HSP (SPG10)
ID
MCD

(Ebbing et al., 2008)
(de Ligt et al., 2012)
(Poirier et al., 2013)

Kinesin-13 KIF2A CDCBM3/MCD (Poirier et al., 2013)

Kinesin-3 KIF1A
KIF1B
KIF1C

HSP (SPG30)
CMT2A
HSN
MR
SPAX

(Erlich et al., 2011)
(Zhao et al., 2001)
(Riviere et al., 2011)
(Hamdan et al., 2011)
(Klebe et al., 2012)
(Dor et al., 2014)
(Novarino et al., 2014)

Kinesin-4 KIF21A CFEOM (Yamada et al., 2003)

Motor adaptors and regulators

BICD2 BICD2 SMA
HSP

(Neveling et al., 2013)
(Peeters et al., 2013)
(Oates et al., 2013)

Huntingtin HTT HD The HDCRG (1993)

Lis-1 PAFAH1B1 Lissencephaly (Dobyns et al., 1993)
(Reiner et al., 1993)

NDE1 NDE1 Microcephaly
MHAC

(Alkuraya et al., 2011)
(Bakircioglu et al., 2011)
(Paciorkowski et al., 2013)

Rab7 RAB7A CMT2B (Verhoeven et al., 2003)

Cytoskeleton and associated proteins (e.g. MAPs)

CLIP-170 CLIP1 ID (Larti et al., 2014)

Doublecortin DCX Lissencephaly (des Portes et al., 1998a; des Portes et al., 1998b)
(Gleeson et al., 1998)

Microtubules TUBA1A
TUBA8
TUBG1
TUBB3
TUBB2B

Lissencephaly
MCD
Microcephaly
Polymicrogyria
CFEOM

(Keays et al., 2007)
(Poirier et al., 2007)
(Jaglin et al., 2009)
(Abdollahi et al., 2009)
(Poirier et al., 2010)
(Tischfield et al., 2010)
(Chew et al., 2013)
(Poirier et al., 2013)

Neurofilaments NEFL CMT (Mersiyanova et al., 2000)

Spastin SPAST HSP (SPG4) (Hazan et al., 1999)

Tau MAPT FTD
Pick disease
AD

(Hutton et al., 1998)
(Murrell et al., 1999)
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Abbreviations: AD, Alzheimer’s Disease; ARID, Autosomal Recessive Intellectual Disability; CDCBM3, complex cortical dysplasia with other 
brain malformations-3; CFEOM, congenital fibrosis of the extraocular muscles; CMT, Charcot-Marie-Tooth disease; FTD, frontotemporal 
dementia; HD, Huntington’s Disease; HMN, hereditary motor neuropathy; HSN, hereditary sensory neuropathy; HSP, Hereditary Spastic 
Paraplegia; ID, Intellectual Disability; MCD, Malformations of Cortical Development; PD, Parkinson’s Disease; MR, Mental Retardation; SMA, 
Spinal Muscular Atrophy; SMA-LED, SMA-Lower Extremity Dominant; SPAX, spastic ataxia.
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