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Background: Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially
provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can
be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of
the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult;
thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate abso-
lute, but not allele-specific, copy number profiles from tumor sequencing data have been described.
Materials and methods: We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing
data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We
applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The
Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated
using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm.
Results: Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson’s
r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was no-
ticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures,
Sequenza detected the correct ploidy in samples with tumor content as low as 30%.
Conclusions: The agreement between Sequenza and SNP array-based copy number profiles suggests that exome se-
quencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA
copy number aberrations.
Key words: cancer genomics, copy number alterations, mutations, next-generation sequencing, software

introduction
Cancer is a genetic disease in which specific mutations or
genomic aberrations can enable tumor initiation or progression,
and in certain cases can determine the effectiveness of specific
anticancer therapies. Several tumor resequencing projects have

collected and analyzed genetic material from large cohorts of
patients in an effort to identify important somatic events that may
represent drug targets or predictive biomarkers [1]. In such pro-
jects, nonsynonymous substitutions and short indels in coding
regions are typically detected by analyzing exome sequencing
data derived from matched pairs of tumor and normal tissues of
cancer patients, whereas larger aberrations such as copy number
alterations or loss of heterozygosity (LOH) are typically detected
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using genome-wide single nucleotide polymorphism (SNP) arrays,
which remains the current state-of-the-art.
Tumor tissue specimens comprise a mixture of cancer cells

and normal cells; therefore, analysis of tumor data must take the
specimen cellularity into consideration [2–5]. However, it is
currently not possible to make a histological estimate of tumor
cellularity and extract high-quality DNA from the very same
specimen; therefore, cellularity estimates based on histology are
commonly made from an adjacent tumor section which often
does not reflect the cellularity of the section used for DNA
sequencing. Thus, using the DNA itself to make cellularity esti-
mates is an appealing approach. Several methods have been
described that estimate, and then correct for, tumor cellularity
in SNP array data in order to improve copy number profiles
[2–5] or in DNA sequencing data for mutation calling [6].
Copy number profiles can be inferred from sequencing data of

sufficient depth and coverage, by using the relative number of
reads mapped to a given genomic position (depth ratio) as an in-
dicator of copy number. This approach has recently been demon-
strated in algorithms such as VarScan 2 [7] and APOLLOH [8],
wherein inferred copy number profiles from whole-exome se-
quencing alone (WES profiles) are largely concordant with pro-
files inferred from SNP array data (SNP profiles). APOLLOH
estimates the tumor cellularity, whereas VarScan 2 does not. In
addition, algorithms such as PurityEst [9] and PurBayes [10] are
specialized to estimate tumor cellularity directly from paired
tumor-normal sequence data. Only recently, newer tools includ-
ing absCN-seq [11] and newer versions of ABSOLUTE [4] have
provided methods to estimate cellularity and ploidy and calculate
copy number profiles directly from exome sequencing data.
In such algorithms, accurate cellularity and ploidy estimation is
essential for the generation of correct copy number profiles.
Here we describe Sequenza, a software package that uses paired

tumor-normal exome or whole-genome sequencing data to esti-
mate tumor cellularity and ploidy and to infer allele-specific
tumor copy number profiles. Using publicly available matched
tumor-normal data, we compare the results of exome sequence
data analyzed by Sequenza with SNP array data from the same
tumors analyzed by allele-specific copy number analysis of
tumors (ASCAT). For comparison, we also assess the perform-
ance of the previously described algorithms absCN-seq and
ABSOLUTE.

materials andmethods

algorithm
Sequenza is based on a probabilistic model applied to segmented data. The
observations include the average depth ratio (tumor versus normal) and B allele
frequency (the lesser of the two allelic fractions as measured at germline hetero-
zygous positions) for each segment. The model parameters include overall
tumor ploidy and cellularity, and segment-specific copy number and minor
allele copy number. The location of the segments and the segment-level disper-
sion are taken as known constants. We estimate model parameters using a
maximum a posteriori approach in which prior probabilities are defined for the
copy number such that two copies (by default) are preferred over other values.
Under this model, given values for cellularity and ploidy, the segment-level
parameters can be quickly estimated. Thus, we solve the overall estimation
problem using a grid-based search over reasonable values of cellularity and
ploidy (see supplementary Methods, available at Annals of Oncology online).

implementation
The Sequenza software consists of two distinct parts: a python-based preproces-
sing tool, and an R package implementing the model fitting and visualization
functions (supplementary Figure S1, available at Annals of Oncology online).

The python script ‘sequenza-utils’ has two roles. First, it calculates the GC

content in sliding windows from a genome reference file in FASTA format.
Second, it processes the sequencing data from the tumor and normal speci-
mens, which must be in the Pileup format, as output by SAMtools [12]. For
genomic positions with sufficient sequencing depth (by default, >20 reads
total from tumor and normal specimens), the script extracts sequencing
depth, determines homozygous and heterozygous positions in the normal
specimen, and calculates the variant alleles and allelic frequency from the
tumor specimen. The output is a tab-delimited text file suitable for import
into R. Additionally, ‘sequenza-utils’ is compatible with the pypy python im-
plementation [13], which performs around six times faster than the standard
python implementation.

The ‘sequenza’ R package is used to perform the analysis on the output of
the sequenza-utils and is implemented with three high-level functions (supple-
mentary Figure S1B, available at Annals of Oncology online): first, sequenza.
extract efficiently reads the input file into R, performs GC-content normaliza-
tion of the tumor versus normal depth ratio, and performs allele-specific seg-
mentation using the ‘copynumber’ package [14]. Second, sequenza.fit applies
the model described in the supplementary Material, available at Annals of
Oncology online, to infer cellularity and ploidy parameters and copy number
profiles. Alternative solutions are also provided, using local maxima of the
posterior probability space. Finally, sequenza.results returns the results of the
estimation together with alternative solutions and visualization of the data and
the model along the genome and the individual chromosomes.

Detailed methods are available in supplementary Methods, available at
Annals of Oncology online. The software has a web page at http://www.cbs.
dtu.dk/biotools/sequenza and is freely available from CRAN.

data and analysis
Thousands of specimens are available from the TCGA; we arbitrarily selected
the first 10 ovarian serous carcinomas (OVCA) and 20 clear-cell renal cell
carcinomas (KIRC) sample IDs as of May 2013, when sorted alphabetically.
The SNP arrays for ovarian serous carcinomas and renal clear-cell carcin-
omas were obtained on 22 January 2010 and 17 November 2011, respective-
ly. Exome sequence data, previously aligned to the human genome version

hg19, was obtained in BAM format in May 2013.
The SNP array files were preprocessed using the aroma.affymetrix package

[15] as described [16], and copy number variations were determined using
ASCAT version 2.1 [3]; sex chromosomes were excluded from the analysis.

The Sequenza results were obtained using version 2.1.0 with default para-
meters; the input was generated by the python script sequenza-utils.py version
2.1.0 with default binning size of 50 bases for the exome sequencing or 200
bases for the whole-genome sequencing. The absCN-seq results were obtained
using version 1.0 with default parameters; the input was the same genomic
segments used by Sequenza as well as high-quality somatic mutations calls
detected by VarScan2 as described in the software documentation. The
ABSOLUTE results were obtained using software version 1.0.6 with default
parameters except that the platform was specified as ‘Illumina_WES’; the
input was the same genomic segments used with Sequenza and absCN-seq.

Exome sequencing data from 31 of the NCI-60 tumor cell lines, aligned to the
genome version hg19, were downloaded in May 2014 in the BAM format [17].

Whole-genome sequencing, aligned to the hg19 genome in the BAM
format at ×30 of coverage, of two cell lines HCC1143 and HCC1954, match-
ing normal blood, and simulated admixtures at tumor cellularity of 20%,
40%, 60%, and 80%, were obtained in March 2014 from the TCGA4 bench-
mark cohort (https://cghub.ucsc.edu/datasets/benchmark_download.html).
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All BAM files were processed to remove PCR duplicates and low-
quality mappings with Picard, and then converted to pileup format using
SAMtools [12].

results

application of sequenza to tumor exome
sequencing data
To compare Sequenza WES profiles with the current state-of-
the-art, SNP profiles, we obtained paired tumor-normal exome
and Affymetrix SNP6 arrays from 10 OVCA patients [18] and
20 KIRC patients [19]. We chose renal and ovarian cancer

because these represent two widely different cancer types: clear-
cell renal cancer has low cellularity and few copy number varia-
tions, whereas ovarian cancer typically shows extensive copy
number alterations and high tumor cellularity.
The exome data were processed with Sequenza using default

settings. Running on a single CPU core, this required an average
per-specimen running time of 4 h for preprocessing, 30 min for
segmentation, and 4 min for model fitting and parameter esti-
mation. Results from a representative sample are shown in
Figure 1. Of the 20 renal cancer copy number profiles, 17 exhib-
ited 3p loss (supplementary Figure S5, available at Annals of
Oncology online), consistent with previous observations of renal
cancer [19].
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Figure 1. Representative output of the Sequenza algorithm. Exome sequencing data from an ovarian tumor (TCGA-42-2591-01A) and matched normal (TCGA-
42-2591-10A) specimen were applied to Sequenza. (A) The log posterior probability (LPP) of the observed data were calculated for a range of candidate ploidy and
cellularity values. The point estimate is the ploidy and cellularity with maximum LPP. The 95% confidence region is the smallest (not necessarily contiguous) set

of points with a total posterior probability >0.95. The background color indicates the rank of the LPP (blue =most likely, white = least likely), provided here to con-
trast other possible parameters that are very unlikely under our model but might still be of interest. Local maxima are indicated with a ‘+’ and indicate possible al-
ternative solutions. (B) Observed depth ratio and BAF values for each genomic segment (black circles and dots) along with the representative joint LPP density
(colors). The representative joint LPP density is calculated for the cellularity and ploidy estimates identified in (A), and is calculated for a hypothetical representa-
tive 10 Mb segment. The actual joint LPP density is dependent on segment size and variability and thus varies quantitatively but not qualitatively for each
segment. Observed segments with highly unlikely DR and BAF values may indicate subclonality, measurement errors, or incorrect model parameters. (C)
Chromosome plot indicating mutant allele frequency (top panel), B allele frequency (middle panel), and depth ratio (bottom panel) according to genomic pos-
ition. Here, chromosome 1 is shown. The mutant allele frequency at a given position is the fraction of reads with a mutation, and is displayed if >0.1 for each
genomic position with sufficient sequencing depth. For the sake of visualization, the B allele frequency and depth ratio are summarized within 1 Mb windows stag-
gered every 0.5 Mb. Within each window, a thick black line indicates the median value, and a blue bar indicates the interquartile range. Red lines indicate segmen-
ted values. The thin dotted lines indicate the expectation values under the fitted model; their placement is based on the estimated cellularity, ploidy, and copy
number profile. In the top panel, the dotted lines indicate the number of alleles with mutation, with the lowest line starting at one. In the middle panel, the dotted
lines indicate the minor allele copy number, with the lowest line starting at zero. In the lower panel, the dotted lines indicate the copy number.
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comparison between exome/Sequenza and SNP
array/ASCAT profiles
There is no tumor gold standard that could be used to validate
the performance of Sequenza. However, the use of SNP arrays
processed by ASCAT is an established approach for determining
copy number profiles; therefore, a positive agreement between
these two platforms would confirm the performance of
Sequenza. Hereafter, for simplicity, we use the terms ‘Sequenza’
and ‘ASCAT’ with the understanding that it is actually the com-
bined measurement platform/software that is being considered.
Sequenza and ASCAT both provide estimates of cellularity and
ploidy, and we found a strong correlation for both parameters
(r = 0.90 and r = 0.42, respectively, Figure 2A and B, Table 1).
Interestingly, the ploidy comparison seems to be characterized
by a few large outliers, many of which have low cellularity.
Details about three highly discordant samples are shown in
supplementary Figures S6–S8, available at Annals of Oncology
online.
Both Sequenza and ASCAT return a list of genomic segments,

each with an estimated copy number state. However, the break-
points between segments are different, and the genomic coverage
of the two platforms is not the same. We compared only the posi-
tions covered in the segmentation for both platforms (Figure 2C).
Aside from samples where the Sequenza and ASCAT ploidy

estimates disagree, the genome fraction with perfect agreement
(DCN equal to zero) was generally high, with a median value of
69%. However, as expected, samples with ploidy disagreement
were also discordant in their copy number profiles.
To assess copy number profile agreement between the two

platforms in a ploidy-independent manner, we carried out hier-
archical clustering of the sample profiles using a Pearson correl-
ation distance metric. In all but one case, sample profiles from the
same patient derived from different platforms clustered together
(data not shown), and are thus more similar to each other than to
other profiles, even when the ploidy call is substantially different
between the two algorithms.

comparison with other methods
We are aware of two previously published methods to generate
copy number profiles from exome sequencing data in a way that
accounts for tumor cellularity: ABSOLUTE [4] and absCN-seq
[11]. We assessed the performance of these methods using the
same criteria as we used to evaluate Sequenza. Similarly to
above, we use the terms ‘ABSOLUTE’ and ‘absCN-seq’ to indi-
cate the results derived from exome sequencing applied to each
specific method, and we compared the results of each algorithm
with the results from ASCAT applied to SNP array data. To
focus the comparison on ploidy and copy number estimation
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Figure 2. Comparison of cellularity and ploidy estimates and copy number profiles derived from exome sequence to those derived from SNP array and testing
on simulated data. (A–C) Matched tumor-normal exome sequencing and SNP array data from 10 ovarian cancer patients and 20 renal cell carcinoma patients
were obtained from TCGA. Exome data was analyzed with Sequenza, and SNP array data were analyzed with ASCAT. (A) Ploidy and (B) cellularity estimates
were compared between the two platforms. (C) Copy number profiles were compared by calculating the absolute difference in estimated copy number for each
genomic position (ΔCN). The figure indicates the fraction of the covered genome with each level of ΔCN. Asterisks indicate tumors for which the Sequenza cel-
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algorithms rather than segmentation algorithms, we used the
same segmented input (processed by copynumber [14]) as
input to each algorithm. The comparison results for each algo-
rithm are summarized in Table 1.
First, we compared cellularity and ploidy estimates. The

ABSOLUTE estimates of cellularity and ploidy were weakly corre-
lated with ASCAT estimates (r = 0.19 and r = 0.13, supplementary
Figure S2A and B). The absCN-seq estimates were moderately
correlated with the ASCAT cellularity estimate (r = 0.46), but had
a negative correlation with the ASCAT ploidy estimate (r =−0.26,
supplementary Figure S3A and B, available at Annals of Oncology
online). Next, we compared segment-wise copy number esti-
mates. As expected from the low agreement in ploidy estimates,
the majority of samples showed substantial disagreement with
ASCAT copy number estimates (supplementary Figure S2C and
S3C, available at Annals of Oncology online).
Previous publications of copy number inference algorithms

have stated the performance obtained after manual selection of
a single solution from a set of multiple solutions proposed by
the algorithm. Thus, we manually inspected the list of possible
solutions from the three algorithms and selected the solution
with best agreement to the SNP array solution. As expected, this
resulted in increased accuracy for all three algorithms, with
Sequenza obtaining the highest agreement (Table 1).

application to cell line data
We applied Sequenza to exome sequencing data from 31 cell
lines from the NCI-60 panel [17], and compared the estimated
ploidy with previously published modal chromosome numbers
derived from spectral karyotyping [20]. These particular
samples were selected to compare Sequenza performance with
previously published results [11]. To accommodate the lack of
matched normals in this dataset, we modified our algorithm to
calculate the depth ratio and identify the heterozygous positions
from two different sources: we used the near-diploid hematopoi-
etic cell line SR as the normal genome for depth ratio calcula-
tion, and the selected cell line itself to determine heterozygous
positions. However, with this approach, any LOH regions in the
cell line would result in the absence of identified heterozygous
positions; thus, we adjusted to zero the B allele frequency of
segments with fewer than three heterozygous positions per
megabase. Despite the suboptimal input data, we obtained a
root mean square error (RMSE) between the karyotype-derived
ploidy and Sequenza-estimated ploidy of 1.2 (supplementary

Figure S4A, available at Annals of Oncology online), comparable
with results of absCN-seq applied to the same data (0.55) [11].
For comparison to previously published results in which

manual inspection of solutions was carried out, we carried out a
similar analysis in which we visually inspected two to four alter-
native solutions, and for eight of the samples selected a solution
different from the point estimate, resulting in an RMSE of 0.44
(supplementary Figure S4B, available at Annals of Oncology
online). This can be compared with previously published results
in which absCN-seq obtained an RMSE of 0.34 using the same
data [11], or to results obtained with SNP array of the NCI-60
cohort with an RMSE of 0.54 using ABSOLUTE and 0.85 using
ASCAT [4].
To assess how ploidy estimation accuracy is affected by low cellu-

larity, we analyzed simulated tumor-normal admixtures at propor-
tions of 100%, 80%, 60%, 40%, and 20% provided by the ‘TCGA
benchmark 4’ whole-genome sequencing of the HCC1143 and
HCC1954 cell lines [21]. Transformations from the normal-tumor
reads admixture percentage to tumor content have to consider the
tetraploid genomes of the cell line. Result from the simulations
shows that the algorithm estimates the correct ploidy until the
cellularity values decrease to below 0.3 (Figure 2D and E).

discussion
We have described a simple model to infer accurate copy number
profiles from next-generation sequencing data and its implemen-
tation in the software package Sequenza. For the majority of spe-
cimens we analyzed, we observed a strong agreement between the
output of Sequenza and the output from ASCAT using matched
SNP array data. The few cases with substantial disagreement in
copy number profile seem to stem from disagreement in the
ploidy and were more common in specimens with low cellularity.
It is possible to determine ploidy experimentally using flow cyto-
metry [22], but this was not carried out on the TCGA specimens.
In cases where experimentally derived ploidy data are available, it
is possible with Sequenza to explicitly specify the ploidy rather
than determine it by model fitting.
One advantage of SNP arrays over exome sequencing is the

genomic coverage. SNP arrays are often designed to both deter-
mine SNP genotypes and detect copy number changes. In par-
ticular, the Affymetrix SNP6.0 platform used for the samples
tested in this manuscript covers more than 900 000 positions
evenly distributed in the genome for copy number detection,
and another 900 000 SNP positions, of which on average ∼26%

Table 1. Performance of various algorithms on TCGA exome data

Algorithm rr rc FDCN¼0 RMSEr RMSEc

Sequenza 0.90 (0.91) 0.42 (0.94) 0.69 0.095 (0.087) 0.95 (0.25)
ABSOLUTE 0.19 (0.61) 0.13 (0.50) 0.08 0.35 (0.19) 1.81 (1.08)
absCN-seq 0.46 (0.65) −0.26 (0.46) 0.02 0.16 (0.13) 1.91 (0.76)

rr, rc = Pearson correlation of cellularity or ploidy estimates (respectively) with those of ASCAT. FDCN¼0 = median (over all samples) fraction of the
genome with copy number estimate equal to that of ASCAT. rCN =median (over all samples) Pearson correlation of copy number profile with that of
ASCAT. The numbers in parentheses indicate the result when the set of alternative solutions is visually inspected.
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are heterozygous in a given individual. This design allows for
highly accurate allele-specific determination of copy number
profiles. In contrast, exome enrichment kits are generally not
designed for the purpose of determining copy number states.
Covered genomic regions are based on known exons, which are
on average ∼150 bases in size, and are not evenly distributed
throughout the genome. Inference of allele-specific copy
numbers requires heterozygous positions and thus can only be
achieved for those exons that include SNPs. When working with
the exome sequencing data, we recorded an average of 45 000
heterozygous positions for each patient, corresponding to ∼1/5
the number identified by the SNP arrays.
However, it seems likely that whole-genome sequencing will

eventually become more cost efficient and widely used than
exome sequencing. Sequenza is compatible with whole-genome
data, and we expect this to result in increased accuracy due to
better genomic coverage and increased number of heterozygous
positions. In fact, when processing available whole-genome
sequencing data (data not shown), we identified an average of
1.7 × 106 heterozygous SNPs, and genotyping and depth infor-
mation for 2.6 × 109 positions.
We are aware of four other methods also designed to estimate

copy number profiles in tumor samples of unknown cellularity,
but only two of these are designed to work on exome sequencing
data. The three algorithms have many common elements in their
models, but several important differences. AbsCN-seq uses a least
squares method to estimate the most likely model, providing a
fast running time; whereas ABSOLUTE and Sequenza use likeli-
hood or posterior probability to estimate the best solution.
ABSOLUTE incorporates prior probabilities from previous
karyotype analyses, whereas Sequenza uses much simpler prior
probabilities on copy numbers that are the same on each segment
to estimate the best solution. AbsCN-seq does not incorporate
prior probabilities. Additionally, Sequenza and ABSOLUTE
provide graphical reports to further inspect the alternative solu-
tions, whereas absCN-seq reports only the numerical alternative
cellularity and ploidy values. One possible advantage of Sequenza
over the other two algorithms is the use of the B allele frequency,
which not only provides additional information beyond the depth
ratio, but also enables calculation of allele-specific copy number,
whereas the other algorithms provide only absolute copy number
profiles. However, the requirement for the B allele frequency is a
drawback in cases where it is not possible to accurately determine
the heterozygous positions, for example in cell lines where the
normal sample is not available.
In our comparison with previously published methods

ABSOLUTE and absCN-seq, we found that Sequenza shows
substantially stronger agreement with SNP array-based cellular-
ity, ploidy, and copy number estimates. However, in the analysis
of cell line exome data, absCN-seq performed better than
Sequenza, likely because Sequenza relies on identification of
heterozygous positions from a matched normal sample that was
not available for these cell lines.
One limitation of Sequenza as well as its competing algo-

rithms is that the segmentation is taken as a given; a more
sophisticated analysis would consider uncertainty in the assign-
ment of segment boundaries. Also, Sequenza does not account
for possible heterogeneity of mutations within a tumor speci-
men, which has important consequences for patient diagnosis

and for identification of driver mutations [23, 24]. However, it is
possible to use the variant allele frequency and corresponding
copy number states from Sequenza as input for external software
such as PyClone [25] in order to resolve subclonal structures.
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Chemotherapy benefit for ‘ER-positive’ breast cancer
and contamination of Nonluminal subtypes—waiting
for TAILORx and RxPONDER
Z. Sun1,†, A. Prat2,3,†, M. C. U. Cheang4, R. D. Gelber1* & C. M. Perou5*
1IBCSG Statistical Center, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, USA; 2Translational Genomics Group, Vall D’Hebron Institute
of Oncology (VHIO), Barcelona; 3Department of Medical Oncology, Hospital Clínic, Barcelona, Spain; 4Clinical Trials and Statistics Unit, The Institute of Cancer Research,
Belmont, UK; 5Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
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Background: Retrospective analyses of NSABP B20 and SWOG 8814 showed a large benefit of chemotherapy in
patients with ER-positive tumors and high OncotypeDX Recurrence Score (RS≥31). However, it might be possible that
both studies may be contaminated by non-luminal tumors, especially in high-risk RS group.
Methods: We conducted simulations in order to obtain a better understanding of how the NSABP B20 and SWOG
8814 results would have been if non-luminal breast cancer would have been excluded. Simulations were done separately
for the node-negative and node-positive cohorts.
Results and conclusion: The results of the simulations suggest that the non-luminal tumors are augmenting the ap-
parent benefit of chemotherapy, but do not appear to be responsible for the entire effect. These simulations could provide
information about the potential influence of contamination by unexpected tumor subtypes on the future results of
TAILORx and RxPONDER clinical trials
Key words: basal-like, ER-positive, Her2-enriched, luminal A, luminal B, PAM50, OncotypeDX Recurrence Score

introduction
Adjuvant chemotherapy has been widely used in the treatment
of estrogen receptor (ER) and/or progesterone receptor (PR)-

positive breast cancer. Based on the Early Breast Cancer Trialists
Collaborative Group meta-analysis, the addition of adjuvant
chemotherapy to tamoxifen reduces the risk of breast cancer
relapse and mortality in hormone receptor-positive disease by
∼30% and 20%, respectively, but without considering subgroups
[1]. The indication of adjuvant chemotherapy includes women
with negative axillary lymph nodes and tumors above 0.5 cm at
very low absolute risk of recurrence [2]. Routine use of adjuvant
chemotherapy for women with positive axillary lymph node(s)
is recommended [3, 4].
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