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Abstract

The traditional quantitative genetics model was used as the unifying approach to

derive six existing and new definitions of genomic additive and dominance

relationships. The theoretical differences of these definitions were in the

assumptions of equal SNP effects (equivalent to across-SNP standardization),

equal SNP variances (equivalent to within-SNP standardization), and expected or

sample SNP additive and dominance variances. The six definitions of genomic

additive and dominance relationships on average were consistent with the pedigree

relationships, but had individual genomic specificity and large variations not

observed from pedigree relationships. These large variations may allow finding

least related genomes even within the same family for minimizing genomic

relatedness among breeding individuals. The six definitions of genomic

relationships generally had similar numerical results in genomic best linear

unbiased predictions of additive effects (GBLUP) and similar genomic REML

(GREML) estimates of additive heritability. Predicted SNP dominance effects and

GREML estimates of dominance heritability were similar within definitions

assuming equal SNP effects or within definitions assuming equal SNP variance, but

had differences between these two groups of definitions. We proposed a new

measure of genomic inbreeding coefficient based on parental genomic co-ancestry

coefficient and genomic additive correlation as a genomic approach for predicting

offspring inbreeding level. This genomic inbreeding coefficient had the highest

correlation with pedigree inbreeding coefficient among the four methods evaluated

for calculating genomic inbreeding coefficient in a Holstein sample and a swine

sample.
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Introduction

Genomic relationship among individuals is a measure of genomic relatedness or

similarity among individuals and allows genomic prediction and variance

component estimation to use theoretical results and computational strategies of

best linear unbiased prediction (BLUP). Genomic relationship is calculated using

genome-wide single nucleotide polymorphism (SNP) markers without referencing

to pedigree information. Therefore, genomic relationship is particularly appealing

for wildlife and animal populations where pedigree information is unavailable or

incomplete.

The first attempt to use marker information to construct the G matrix for using

BLUP to predict total marker effects was the approach of Nejati-Javaremi et al. [1]

that defines the G matrix as twice the average marker IBS probability (IBS 5

identity by state). VanRaden derived the first genomic additive relationship

formula based on the standardization of the 2-1-0 (or 0-1-2) coding of SNP

genotypes [2]. This formula divides the WaWa
0 matrix by the total expected

heterozygosity of all SNP markers, where Wa is the model matrix for SNP additive

effects with each SNP coding being the deviation of the 2-1-0 coding from its

mean. This approach leads to the prediction of genomic breeding values [2, 3].

Another method by Hayes and Goddard uses the average of the diagonal elements

of the WaWa
0 matrix in the denominator of the genomic relationships [3]. Rather

than using a common denominator for all relationships, a third method divides

each SNP’s additive coding by the SNP’s heterozygosity based on VanRaden’s

method for additive effects [4]. Da et al. proposed the quantitative genetics model

that partitions a genotypic value into breeding value and dominance deviation for

genomic prediction and variance component estimation of additive and

dominance effects [5, 6]. The genomic additive relationships using the

quantitative genetics model were identical to those based on standardization of

SNP 2-1-0 coding. VanRaden derived the genomic dominance relationship

formula based on the quantitative genetic model (Personal communication from

P. VanRaden to Y. Da, March 3, 2013, described in [6]), and Da et al. [6] extended

the method of Hayes and Goddard for genomic additive relationships [3] to

genomic dominance relationships. Su et al. proposed genomic dominance

relationships using the approach of standardization of the 0-1-0 dominance

coding [7]. Vitezica et al. [8] derived the dominance relationships using the

quantitative genetics model and showed that the genomic dominance relationship

of Su et al. [7] was a reparameterization of the quantitative genetics model.

Genomic relationships on average were consistent with the theoretical expectation

of the corresponding pedigree relationships [6]. This consistency provides a

justification for the interpretation of genomic relationships in parallel to pedigree

relationships. In contrast to pedigree relationships, genomic relationships are

realized relationships calculated from genome-wide SNP markers resulting from

generations of drift, recombination, mutation and selection that are not

considered by pedigree relationships, and estimates of genomic relationships for

different individuals generally had their own genomic specificity unobservable

Genomic Relationship and Inbreeding Coefficient

PLOS ONE | DOI:10.1371/journal.pone.0114484 December 17, 2014 2 / 23



from the pedigree estimates although on average genomic and pedigree

relationships were consistent [6].

Inbreeding is a major issue in animal breeding and wildlife conservation

because inbreeding may result in inbreeding depression associated with reduced

survival and fertility [9, 10]. Inbreeding coefficients calculated from SNP markers

do not require pedigree information and hence have wider applicability than

pedigree inbreeding coefficients that cannot be calculated without pedigree

information. Assuming the parallelism between genomic and pedigree relation-

ships, inbreeding coefficients could be calculated using diagonal elements of the

genomic additive relationship matrix as a function of the SNP model matrix for

genomic prediction [11]. To improve the correlation between genomic and

pedigree inbreeding coefficients, Yang et al. [4] proposed different diagonal

elements of the genomic additive relationship matrix that are not from the SNP

model matrix for genomic prediction, and Keller et al. [12] showed that genomic

inbreeding coefficients using runs of homozygosity (ROH) achieved higher

correlation with pedigree inbreeding coefficients than the method of Yang et al.

[4]. All these methods for calculating genomic inbreeding coefficients use the

individual’s own SNP data. However, predicting offspring inbreeding levels before

the offspring were born is an important issue in breeding plans. For this purpose,

a method of calculating offspring inbreeding coefficient from parental genomic

relationships can be developed.

In this study, we show that quantitative genetics theory can be the unifying

theory for deriving existing and new genomic additive and dominance relation-

ships and for studying the theoretical differences among various definitions of

genomic relationships. We propose a method for calculating genomic inbreeding

coefficient using a combination of genomic correlation from the quantitative

genetics model, classical definition of inbreeding coefficient, and the theoretical

expectation of genomic additive relationships. We also explore numerical

differences among various genomic relationships and inbreeding coefficients

using a Holstein sample and a swine sample.

Methods

Quantitative genetics model for SNP markers assuming HWE

Under the assumption of Hardy-Weinberg equilibrium (HWE), the traditional

quantitative genetics model partitions a genotypic value into the summation of a

common mean, breeding value and dominance deviation [6, 13], i.e.,

gij~mzaijzdij~mzwaijazwdijd ð1Þ

where gij 5 genotypic value of SNP genotype AiAj(i,j~1,2), m 5 common mean,

a 5 average effect of gene substitution, d 5 dominance effect, wa11~2p2,

wa12~p2{p1, wa22~{2p1, wd11~{2p2
2, wd12~2p1p2, wd22~{2p2

1, aij~waija

5 breeding value, dij~wdijd 5 dominance deviation, and where p1 5 frequency

of A1 allele and p2~1{p1 5 frequency of A2. Since each individual has one
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genotype for each SNP, the breeding value and dominance deviation of each SNP

can be re-indexed as those of individual j with SNP i. The total genomic breeding

value and total genomic dominance deviation of m SNP markers of individual j

are aj~
Pm

i~1
aij~

Pm

i~1
waijai and dj~

Pm

i~1
dij~

Pm

i~1
wdijdi. The mathematical expec-

tations of breeding values and dominance deviations are null under HWE, i.e.,

E(aj)~E(dj)~0. The expected additive and dominance variances of the ith SNP

based on the classical formulae from quantitative genetics [13] are:

s2
ai~2p1i(1{p1i)a

2
i ~ ke

aia
2
i ð2Þ

s2
di~4p2

1i(1{p1i)
2d2

i ~ke
did

2
i ð3Þ

where ke
ai~2p1i(1-p1i) and ke

di~4p2
1i(1-p1i)

2. The average of expected additive and

dominance variances of the m SNPs are:

s2
a~(

Xm

i~1
s2

ai)=m~ ke
aa

2=m if ai~a ð4Þ

s2
a~(

Xm

i~1
s2

ai)=m~s2
ai~ke

aia
2
i if s2

ai~s2
ah, i=h; i,hƒm ð5Þ

s2
d~(

Xm

i~1
s2

di)=m~ ke
dd

2=m if di~d ð6Þ

s2
d~(

Xm

i~1
s2

di)=m~s2
di~ke

did
2
i if s2

di~s2
dh, i=h; i,hƒm ð7Þ

where ke
a~2

Pm
i~1 p1i(1-p1i) and ke

d~4
Pm

i~1 p2
1i(1-p1i)

2.

Genomic and pedigree covariances between two individuals

Based on the genomic breeding value and dominance deviation defined in Equation

1 and the results that the mean values of breeding values and dominance deviations

are null assuming HWE [13], the covariances between genomic breeding values and

between genomic dominance deviations of two individuals are:

s
g
ajk~cov(aj,ak) ~(1=m)

Xm

i~1
waijwaika

2
i ð8Þ

s
g
djk~cov(dj,dk) ~(1=m)

Xm

i~1
wdijwdikd

2
i ð9Þ
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Using pedigree relationships, the covariances between breeding values and

between dominance deviations of two individuals [13, 14] are:

s
p
ajk~cov(aj,ak) ~ Ajks

2
a ð10Þ

s
p
djk~cov(dj,dk)~ Djks

2
d ð11Þ

where Ajk 5 additive relationship between individuals j and k 5 26 (coancestry

coefficient between individuals j and k), and Djk 5 dominance relationship

between individuals j and k.

Mixed model for genomic prediction and variance component

estimation

The mixed model to implement the quantitative genetics model of Equation 1 can

be expressed as:

y~XbzZWaazZWddze ð12Þ

where Z 5 N 6 q incidence matrix allocating phenotypic observations to each

individual 5 identity matrix for one observation per individual (N 5 q), a 5 m

61 column vector of gene substitution (additive) effects of SNP markers, Wa 5 q

6 m model matrix of a, d 5 m 61 column vector of dominance effects of SNP

markers, Wd 5 q 6 m model matrix of d, b 5 c 61 vector of fixed effects, and X

5 N 6 c model matrix of b. Assumptions for the first and second moments are:

E(y)~Xb, Var(a)~s2
aIm, Var(d)~s2

dIm, Var(e)~R~s2
eIN, where s2

e 5 residual

variance, Im 5 m 6 m identity matrix, and IN 5 N 6 N identity matrix. The W

matrices of Equation 12 are the primary information for calculating genomic

relationships and inbreeding coefficients.

The average of the additive or dominance SNP coding in Equation 12 can be

shown to be null, i.e.,
Pq

j~1 waij~0 and
Pq

j~1 wdij~0 under the assumption of

Hardy-Weinberg equilibrium (HWE) (S1 Text, Part A), so that the means of

breeding values and dominance deviations for each SNP are null. Using this result,

the sample additive and dominance variances of the ith SNP are:

s2
ai~(1=q)(

Xq

j~1
w2
aij)a

2
i ~(wai

0wai=q)a2
i ~ ks

aia
2
i ð13Þ

s2
di~(1=q)(

Xq

j~1
w2
dij)d

2
i ~(wdi

0wdi=q)d2
i ~ks

did
2
i ð14Þ

where ks
ai~(wai

0wai=q), ks
di~(wdi

0wdi=q), wai 5 ithcolumn of Wa in Equation 12

and wdi 5 ith column of Wd in Equation 12 corresponding to the ith SNP. The

average of sample additive and dominance variances of the m SNPs are:
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s2
a~
Xm

i~1
s2

ai=m~(1=m)(
Xq

j~1
wajwaj

0)=q~ks
aa

2=m if ai~a ð15Þ

s2
a~
Xm

i~1
s2

ai=m~s2
ai~ks

aia
2
i if s2

ai~s2
ah, i=h; i,hƒm ð16Þ

s2
d~

Xm

i~1
s2

di=m~(1=m)(
Xq

j~1
wdjwdj

0)=q~ks
dd

2=m if di~d ð17Þ

s2
d~
Xm

i~1
s2

di=m~s2
di~ks

did
2
i if s2

di~s2
dh, i=h; i,hƒm ð18Þ

where ks
a~(

Pq
j~1 wajwaj

0)=q, ks
d~(

Pq
j~1 wdjwdj

0)=q, waj 5 jth row of Wa in

Equation 12, and wdj 5 jthrow of Wd in Equation 12.

Results and Discussion

Genomic relationships derived from the quantitative genetics

model

General formulations of genomic additive and dominance relationships

The general formulations of genomic additive and dominance relationships are

obtained by equating the genomic covariances of Equations 8–9 to the pedigree

covariances of Equations 10–11. Solving s
g
ajk~s

p
ajk for Ajkand solving s

g
djk~s

p
djk

for Djk yield:

Ajk~s
g
ajk=s

2
a~(1=m)

Xm

i~1
waijwaika

2
i =s

2
a~wajLawak

0=m ð19Þ

Djk ~s
g
djk=s

2
d~(1=m)

Xm

i~1
wdijwdikd

2
i =s

2
d~wdjLdwdk

0=m ð20Þ

where Ajk 5 genomic additive relationship, Djk 5 genomic dominance

relationship, waj or wak 5 jthor kth row of Wa in Equation 12, wdj or wdk 5 jth or

kth row of Wd in Equation 12, La 5 diag{a2
i =s

2
a} and Ld 5 diag{d2

i =s
2
d}, i 5

1,..,m. In matrix notations, Equations 19–20 can be expressed as:

Ag~WaLaWa
0=m ð21Þ

Dg ~WdLdWd
0=m ð22Þ

where Ag 5 genomic additive relationship matrix and Dg 5 genomic dominance

relationship matrix.

Various existing and new definitions can be derived from Equations 19–20 or

21–22. In this study, four existing definitions of genomic relationships and two
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new definitions are derived based on these equations (Table 1). From the point of

view of the quantitative genetics model, Definitions I-III assume equal SNP

effects, Definitions IV-VI assume equal SNP variances across SNP markers,

Definitions I and IV use expected SNP variance, and Definitions II and V use

sample SNP variance. The standardization of SNP coding for defining genomic

relationships is an across-SNP standardization using a common denominator for

all SNPs for Definitions I-III, and is a within-SNP standardization of each SNP

using its own SNP variance for Definitions IV-VI.

Definition I – equal SNP effects (across-SNP standardization), expected

variances

Assuming equal SNP additive and dominance effects, ai ~a and di ~d, and using

the expected additive and dominance variances of Equations 2–3, the genomic

relationships of Equations 19–20 reduce to:

Ajk~wajwak
0= ke

a ð23Þ

Djk ~wdjwdk
0=ke

d ð24Þ

where waj or wak 5 jth or kthrow of wa in Equation 12, wdj or wdk 5 jth or kth row

of Wd in Equation 12, ke
a is defined in Equation 4, and ke

d is defined in Equation

6. Equations 23–24 are the same as VanRaden’s formulae [2, 6].

Definition II – equal SNP effects (across-SNP standardization), sample variances

Assuming equal SNP effects for all SNP markers and using the sample variances of

Equations 15 and 17, the genomic relationships of Equations 19–20 reduce to:

Ajk~
Xm

i~1
waijwaik=ks

a~wajwak
0=ks

a ð25Þ

Table 1. Six definitions of genomic additive and dominance relationships.

Equal SNP effects Equal SNP variances

(Across-SNP standardization) (Within-SNP standardization)

Expected variances Definition I (Equations 23–24) Definition IV (Equations 27–28)

NAdditive relationships [2] NAdditive relationships, off-diagonals are the same as in
[4]

NDominance relationships [6] NDominance relationships [This article]

Sample variances Definition II (Equations 25–26) Definition V (Equations 29–30) [This article]

NAdditive relationships: [3] NAdditive relationships

NDominance relationships [6] NDominance relationships

Genomic correlations Definition III (Equations 31–32, and Aij from
Definition I or II) [6]

Definition VI (Equations 31–32 and Aij from Definition IV
or V) [This article]

NAdditive correlations NAdditive correlations

NDominance correlations NDominance correlations

doi:10.1371/journal.pone.0114484.t001
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Djk ~
Xm

i~1
wdijwdik=ks

d~wdjwdk
0=ks

d ð26Þ

where ks
a and ks

d are defined in Equations 15 and 17. Equation 25 is the same as in

[3], and Equation 26 is the same as in [6].

Definition IV – equal expected SNP variances (within-SNP standardization)

Assuming equal additive and dominance variances rather than equal additive and

dominance effects across SNP markers and using the expected variances of

Equations 2–3, the genomic relationships of Equations 19–20 reduce to:

Ajk~(1=m)
Xm

i~1
waijwaik =½2pi(1{pi)�~wajK

e
awaj

0 ð27Þ

Djk~(1=m)
Xm

i~1
wdijwdik =½4p2

i (1{pi)
2�~wdjK

e
dwdj

0 ð28Þ

where Ke
a~diagf1=(ke

aim)g and Ke
d~diagf1=(ke

dim)g, i 5 1,..,m, with ke
ai defined

in Equation 2 and ke
di defined in Equation 3. Off-diagonal elements of Equation 27

are the same as the off-diagonal elements in [4].

Definition V – equal sample SNP variances (within-SNP standardization)

Using sample variances of Equations 13–14 rather than the expected variances of

Equations 2–3, the genomic relationships of Equations 19–20 reduce to:

Ajk~(1=m)
Xm

i~1
waijwaik =ks

ai~wajK
s
awaj

0 ð29Þ

Djk~(1=m)
Xm

i~1
wdijwdik =ks

di~wdjK
s
dwdj

0 ð30Þ

where Ks
a~diagf1=(ks

aim)g and Ks
d~diagf1=(ks

dim)g, i 5 1,..,m, with ks
ai defined

in Equation 13 and ks
di defined in Equation 14.

Definitions I-II and IV-V of genomic relationships can be represented by two

sets of formulations in matrix notations. For Definitions I and II assuming equal

SNP effects, Ag~WaWa
0=ka and Dg~WdWd

0=kd, where ka 5 ke
a defined in

Equation 4 and kd 5 ke
d defined in Equation 6 for Definition I, or ka 5 ks

adefined

in Equation 15 and kd 5 ks
d defined in Equation 17 for Definition II. For

Definitions IV and V assuming equal SNP variances, Ag~WaKaWa
0 and

Dg~WdKdWd
0, with Ka 5 Ke

a defined in Equation 27 and Kd 5 Ke
ddefined in

Equation 28 for Definition IV, or Ka 5 Ks
a defined in Equation 29 and Kd 5 Ks

d

defined in Equation 30 for Definition V.

Genomic correlations

Genomic relationships between two individuals of Definitions I-II and IV-V as

off-diagonal elements of the relationship matrices are not mathematically
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comparable for genomic relatedness because those off-diagonal elements are not

exactly correlations. Genomic correlations (Definitions III and VI) among

different individuals are mathematically comparable and provide a reference to

evaluate other genomic relationship definitions.

Definitions III and VI – genomic correlations

The general formulations of genomic additive and dominance correlations are:

cajk~Ajk=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AjjAkk

p
~genomic additive correlation ð31Þ

cdjk~Djk=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DjjDkk

p
~genomic dominance correlation ð32Þ

where Ajk and Djk can be from any of Definitions I, II, IV and V. Equation 31 is

the genomic version of Wright’s coefficient of relationship or theoretical

correlation between relatives [13, 15]. Based on Equations 31–32, the genomic

additive correlation matrix (Ca) and the genomic dominance correlation matrix

(Cd) can be expressed as:

Ca~Q{1
a AgQ{1

a ð33Þ

Cd~Q{1
d DgQ{1

d ð34Þ

where Qa 5 diag{A1=2
ii } 5 m 6 m diagonal matrix, and Qd 5 diag{D1=2

ii } 5 m 6
m matrix. The diagonal elements of these two correlation matrices are ‘1’. The off-

diagonal elements of Ca are cajk and the off-diagonal elements of Cd are cdjk

between individuals (j ? k). We will refer to Equations 31–34 as ‘Definition III’ if

Ajk and Djk are from Definition I or II (Equations 23–24 or 25–26), or as

‘Definition VI’ if Ajk and Djk are from Definition IV or V (Equations 27–28 or 29–

30). It can be readily shown that Ajk and Djk values from Definitions I and II yield

identical Ca and Cd of Definition III. Numerical results showed that Ajk and Djk

values from Definition IV and V were nearly completely correlated (correlation 5

0.999, S1 Table). Therefore, we will use Ajk and Djk values from Definition V only

in Definition VI. The six definitions of genomic additive and dominance

relationships are implemented in GVCBLUP 3.9 [16], which is freely available at

http://animalgene.umn.edu.

Genomic inbreeding coefficient based on parental genomic additive relationship

We formulate genomic inbreeding coefficients using parental genomic relation-

ships based on the following results: 1) The inbreeding coefficient of an individual

is the coancestry coefficient between the parents, 2) Ajk 5 additive relationship

between individuals j and k 5 26(coancestry coefficient between individuals j

and k) [13], and 3) Genomic additive relationships on average are consistent with

Genomic Relationship and Inbreeding Coefficient
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pedigree ‘26(coancestry coefficient)’ according to results in this article and in our

previous report [6]. With these results, we define the genomic inbreeding

coefficient of an individual as:

FA~Fjk~0:5Ajk ð35Þ

or

Fc~Fjk~0:5cajk ð36Þ

where individuals j and k are the parents of the individual; FA 5 genomic

inbreeding coefficient using parental additive genomic relationship of Definition

I, II, IV or V; Fc 5 genomic inbreeding coefficient using parental additive

genomic correlation of Definition III or VI; Fjk 5 genomic coancestry coefficient

between parents j and k; Ajk 5 genomic additive relationship between the parents

calculated from any of Definitions I, II, IV or V; and cajk 5 genomic correlation

between the parents from Definition III or VI. In this study, cajk of Definition III

uses Ajk, Ajj and Akk from Definition II, and cajk of Definition VI uses Ajk, Ajj and

Akk from Definition V.

Comparison of different definitions of genomic relationships and

correlations

Genomic additive and dominance relationships between individuals

The average values of genomic additive and dominance relationships were

consistent with theoretical expectations of pedigree relationships in the Holstein

sample (Fig. 1) and the swine sample (Fig. 2).

For the Holstein sample, the average genomic additive relationships were below

but close to those of ‘26(coancestry coefficient)’ calculated from the pedigree

data. The genomic additive relationships of Definitions I-VI were 0.459–0.469 for

parent-offspring, 0.489–0.515 for full-sibs, and 0.205–0.212 for half-sibs,

compared to ‘26(coancestry coefficient)’ average value of 0.574 for parent

offspring, 0.575 for full-sibs, and 0.341 for half-sibs (Table 2).

For the swine sample, the average genomic additive relationships were almost

the same as those of ‘26(coancestry coefficient)’ calculated from the pedigree

data. The genomic additive relationships of Definitions I-VI were 0.513–0.534 for

parent offspring, 0.526–0.543 for full-sibs and 0.289–0.299 for half-sibs, compared

to ‘26(coancestry coefficient)’ average value of 0.528 for parent offspring, 0.530

for full-sibs, and 0.294 for half-sibs (Table 3).

Genomic additive relationships from the swine sample were clearly more

consistent with the pedigree relationships than those from the Holstein sample.

This difference likely was due to two factors. First, most Holstein cattle with SNP

genotypes were distributed in the last 3–5 generations of the pedigree that

approximately comprised of ten generations [17], whereas pigs with SNP data

were distributed across the entire swine pedigree (S1 Figure). Consequently, the
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Holstein cattle with SNP genotypes on average were subjected to more generations

of genetic sampling than the pigs with SNP genotypes, resulting in less genomic

relationships among the Holstein cattle. Second, sources of samples could have

contributed to different degrees of genomic relatedness: the Holstein sample was

from a diverse source of three companies and five universities [18], whereas the

swine sample was from one company only [19]. In both Holstein and swine

samples, genomic correlations of Definitions III and VI had mean additive

correlations that were slightly closer to the mean of pedigree additive relationships

(Tables 2 and 3). This slight advantage could be the reason why Definitions III

and VI had better genomic inbreeding coefficients, as to be shown. Overall, the

average genomic additive relationships were remarkably consistent with the

theoretical expectation of ‘26(coancestry coefficient)’.

For genomic dominance relationships, only full-sibs are expected to have

dominance relationship value of 0.25 assuming no inbreeding. Parent-offspring

and half-sibs are expected to have no dominance relationship. The observed

genomic dominance relationships were consistent with these theoretical

expectations. The average genomic dominance relationships of Definitions I-VI

Fig. 1. Genomic additive and dominance relationships by Definitions I-VI for parent-offspring (239 pairs), full-sibs (48 pairs) and half-sibs (23,941)
of the Holstein sample.

doi:10.1371/journal.pone.0114484.g001
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were 0.283–0.306 in the Holstein sample and were 0.257–0.272 in the swine

sample for full-sibs, and were nearly zero for parent-offspring and half-sibs in

both samples. The higher mean values of genomic dominance relationships of

full-sibs in the Holstein sample were due to the three outliers that were nearly ‘1’

among the 48 data points (Fig. 1). With the removal of those three outliers that

likely were identical twins, the mean of additive relationships drops to 0.228 for

Definition I to 0.237 for Definition VI, and the mean of dominance relationships

drops to 0.231 for Definition V or 0.249 for Definition VI. Overall, the average

genomic dominance relationships were also remarkably consistent with the

theoretical expectations.

Realized versus expected relatedness

Genomic and pedigree relationships had a major difference: genomic relationships

had individual genomic specificity and large variations not observed in pedigree

relationships. For the Holstein sample, the range of genomic additive relationships

was 20.039 to 0.584 for parent-offspring, compared to pedigree relationships of

0.500–0.653; 20.042 to 1.036 for full-sibs (the 1.036 value likely was due to

Fig. 2. Genomic additive and dominance relationships by Definitions I-VI for parent-offspring (3518 pairs), full-sibs (1441 pairs) and half-sibs
(23,628 pairs) of the swine sample.

doi:10.1371/journal.pone.0114484.g002
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identical twins), compared to pedigree relationships of 0.531–0.605; and 20.120

to 0.444 for half-sibs, compared to pedigree relationships of 0.250–0.508

(Table 2). For the swine sample, the range of genomic additive relationships was

0.310–0.924 for parent-offspring, compared to pedigree relationships of 0.500–

0.692; 0.278–0.938 for full-sibs, compared to pedigree relationships of 0.531–

0.605; and 20.030 to 0.932 for half-sibs, compared to pedigree relationships of

0.250–0.525 (Table 3). Genomic dominance relationships also had large variations

(Tables 2 and 3). These large variations indicate that genomic relationships can be

used to find least related genomes within the same family or among closely related

individuals on the pedigree. This is important for minimizing genomic similarity

in breeding plans and wildlife conservation, particularly in populations with small

effective population sizes such as in endangered species. In contrast, pedigree

relationships generally do not reflect real variations of genomic relatedness

because genomic and pedigree relationships were mostly uncorrelated except for

the case of half-sibs where the correlation between genomic and pedigree additive

relationships was 0.212–0.216 for the Holstein sample and was 0.141–0.247 for the

Table 2. Genomic and pedigree relationships of the Holstein sample.

Definition Additive Dominance

Mean¡SD Range Mean¡SD Range

Parent-offspring (239 pairs)

I 0.459¡0.087 20.038, 0.574 20.006¡0.029 20.071, 0.092

II 0.468¡0.089 20.039, 0.584 20.006¡0.029 20.072, 0.094

III 0.469¡0.084 20.037, 0.556 20.006¡0.029 20.073, 0.089

IV 0.461¡0.088 20.034, 0.567 20.005¡0.028 20.057, 0.109

V 0.465¡0.088 20.035, 0.571 20.005¡0.027 20.062, 0.113

VI 0.469¡0.084 20.035, 0.556 20.005¡0.027 20.058, 0.107

26(coancestry coefficient) 0.574¡0.022 0.500, 0.652 - -

Full-sibs (48 pairs)

I 0.489¡0.143 20.042, 1.017 0.290¡0.188 0.004, 1.011

II 0.498¡0.146 20.042, 1.036 0.294¡0.191 0.004, 1.027

III 0.515¡0.159 20.041, 0.985 0.306¡0.206 0.004, 0.986

IV 0.488¡0.146 20.042, 1.008 0.283¡0.186 0.005, 1.032

V 0.491¡0.147 20.042, 1.015 0.284¡0.186 0.005, 1.029

VI 0.514¡0.159 20.041, 0.984 0.307¡0.204 0.005, 0.984

26(coancestry coefficient) 0.575¡0.016 0.531, 0.605 - -

Half-sibs (23,941 pairs)

I 0.205¡0.073 20.118, 0.436 0.003¡0.020 20.066, 0.168

II 0.208¡0.074 20.120, 0.444 0.003¡0.019 20.067, 0.171

III 0.212¡0.074 20.119, 0.438 0.003¡0.021 20.067, 0.168

IV 0.201¡0.072 20.109, 0.439 0.003¡0.019 20.058, 0.202

V 0.203¡0.072 20.110, 0.442 0.003¡0.021 20.059, 0.202

VI 0.210¡0.073 20.110, 0.439 0.004¡0.020 20.061, 0.201

26(coancestry coefficient) 0.341¡0.023 0.250, 0.508 - -

doi:10.1371/journal.pone.0114484.t002
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swine sample (S1 Table). These results indicate that using pedigree relationships

to select individuals with least related genomes would have only limited success.

Genomic relationships can be viewed as the realized genetic relationships among

individuals, because each individual’s genome is the realization of various factors

affecting an individual’s genetic composition, including genetic sampling from

parents to offspring, recombination, selection and mating systems over

generations, whereas pedigree relationships do not consider all these factors.

Therefore, genomic relationships should be preferred to pedigree relationships for

measuring genomic relatedness of different individuals.

Genomic inbreeding coefficients

We compared four methods for calculating genomic inbreeding coefficients: i)

Using the individual’s diagonal element of genomic additive relationship based on

the SNP model matrix for genomic prediction: F~Aii{1, where Aii 5 the ith

diagonal element of Ag by Definition I, II, IV or V from the SNP model matrix for

genomic prediction; ii) Using the individual’s diagonal element of genomic

Table 3. Genomic and pedigree relationships of the swine sample.

Definition Additive Dominance

Mean¡SD Range Mean¡SD Range

Parent-offspring (3518 pairs)

I 0.534¡0.090 0.334, 0.856 0.033¡0.066 20.137, 0.368

II 0.517¡0.087 0.324, 0.829 0.032¡0.064 20.132, 0.356

III 0.523¡0.043 0.376, 0.691 0.029¡0.060 20.148, 0.300

IV 0.533¡0.108 0.321, 0.924 0.038¡0.084 20.130, 0.618

V 0.513¡0.099 0.310, 0.880 0.030¡0.065 20.116, 0.414

VI 0.522¡0.044 0.369, 0.685 0.026¡0.059 20.139, 0.278

26(coancestry coefficient) 0.528¡0.031 0.500, 0.723 - -

Full-sibs (1441 pairs)

I 0.543¡0.100 0.300, 0.891 0.272¡0.087 0.044, 0.598

II 0.526¡0.097 0.290, 0.862 0.263¡0.084 0.042, 0.579

III 0.529¡0.067 0.284, 0.726 0.265¡0.074 0.044, 0.499

IV 0.542¡0.112 0.290, 0.938 0.287¡0.138 0.017, 1.063

V 0.522¡0.105 0.287, 0.889 0.257¡0.103 0.015, 0.691

VI 0.527¡0.067 0.278, 0.719 0.262¡0.081 0.016, 0.528

26(coancestry coefficient) 0.530¡0.037 0.500, 0.692 - -

Half-sibs (23,628 pairs)

I 0.299¡0.091 20.037, 0.830 0.028¡0.049 20.136, 0.551

II 0.289¡0.088 20.036, 0.804 0.027¡0.048 20.131, 0.533

III 0.295¡0.073 20.034, 0.660 0.026¡0.047 20.124, 0.413

IV 0.298¡0.097 20.030, 0.932 0.031¡0.060 20.147, 0.816

V 0.286¡0.091 20.034, 0.886 0.026¡0.049 20.138, 0.611

VI 0.293¡0.071 20.032, 0.662 0.025¡0.048 20.122, 0.438

26(coancestry coefficient) 0.294¡0.039 0.250, 0.525 - -

doi:10.1371/journal.pone.0114484.t003
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additive relationship designed for calculating inbreeding coefficient (not from

SNP model matrix for genomic prediction) [4, 12]: F~Aii{1, where Aii 5 the

ithdiagonal element of Definition IVb; iii) Using parental genomic additive

relationship: FA~Fjk~0:5Ajk (Equation 35 using Ajk from Definition I, II, IV or

V); and iv) Using parental genomic additive correction: Fc~Fjk~0:5cajk

(Equation 36 using cajk from Definition III or VI). The swine sample was used to

compare these four methods (Table 4). The averages of genomic inbreeding

coefficients of Methods ii)-iv) were close to the average of pedigree inbreeding

coefficients, whereas the averages of genomic inbreeding coefficients Methods i)

had the largest departure from the average of pedigree inbreeding coefficients.

Method iv) using cajk had exactly the same or almost the same largest inbreeding

coefficient as that from the pedigree, whereas Methods i) and ii) all had much

larger variations of inbreeding coefficients measured by SD and the range of the

inbreeding coefficient estimates. Method iv) using cajk of Definition VI had the

highest correlation (r) with pedigree inbreeding coefficients (r50.434), followed

by Method iv) using cajk of Definition III (r50.419), Method iii) using Ajk from

Definitions I, II, IV and V (r50.367–0.380), Method ii) of Yang et al. [4]

(r50.305), and Method i) using Aii from Definitions I, II, IV and V (r50.071–

0.131) (Table 5). While having the highest correlation with pedigree inbreeding

coefficients, Method iv) as a method using parental SNP data also maintained

most of the genomic specificity of the methods using the individual’s own SNP

data as discussed below.

The individual-by-individual comparison of Methods i), ii) and iv) with the

pedigree method showed that Method iv) had similar patterns of the deviations as

Table 4. Statistical summary of genomic inbreeding coefficients of 1022 individuals with genotyped parents in the swine sample.

Method Short name, source of Aii, Ajk or cajk Mean¡SD Range

i) F 5 Aii–1 F-I, Aii of Equation 23 0.013¡0.098 20.156, 0.436

F 5 Aii–1 F-II, Aii of Equation 25 20.019¡0.095 20.183, 0.390

F 5 Aii–1 F-IV, Aii of Equation 27 0.009¡0.132 20.197, 0.541

F 5 Aii–1 F-V, Aii of Equation 29 20.026¡0.120 20.220, 0.478

ii) F 5 Aii–1 F-IVb, [4, 12] 0.024¡0.056 20.098, 0.309

iii) FA 5 0.5Ajk FA-I, Ajk of Equation 23 0.026¡0.048 20.060, 0.190

FA 5 0.5Ajk FA –II, Ajk of Equation 25 0.025¡0.046 20.058, 0.184

FA 5 0.5Ajk FA –IV, Ajk of Equation 27 0.028¡0.048 20.062, 0.199

FA 5 0.5Ajk FA –V, Ajk of Equation 29 0.025¡0.045 20.058, 0.188

iv) Fc 5 0.5cajk Fc-III, cajk from Equations 33 and 25 0.024¡0.043 20.061, 0.159

Fc 5 0.5cajk Fc-VI, cajk from Equations 33 and 29 0.023¡0.042 20.059, 0.154

Pedigree Fp - 0.021¡0.024 0.000, 0.159

Definition IVb: The individual’s diagonal element of genomic additive relationship of each SNP is 1/p2, 0 and 1/p1 for A1A1, A1A2 and A2A2 genotypes

respectively, where p1 5 allele frequency of A1, and p2512p1 [4, 12]. Fp is the pedigree inbreeding coefficient.

doi:10.1371/journal.pone.0114484.t004
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Method i) and ii) from the pedigree estimates of inbreeding coefficients and

maintained most of the individual genomic specificity of a realized inbreeding

coefficient. Fig. 3 shows that the three representative genomic methods for

Table 5. Correlation (r) between genomic and pedigree inbreeding coefficients.

F-II F-IV F-V F-IVb FA-I FA-II FA-IV FA-V Fc-III Fc-VI Fp

F-I 1.000 0.986 0.988 0.867 0.806 0.806 0.811 0.804 0.768 0.753 0.131

F-II 0.986 0.988 0.867 0.806 0.806 0.811 0.804 0.768 0.753 0.131

F-IV 0.999 0.790 0.763 0.763 0.772 0.763 0.717 0.700 0.071

F-V 0.794 0.761 0.761 0.769 0.761 0.716 0.700 0.080

F-IVb 0.834 0.834 0.837 0.835 0.823 0.820 0.305

FA-I 1.000 0.997 0.998 0.993 0.988 0.377

FA-II 0.997 0.998 0.993 0.988 0.377

FA-IV 0.999 0.987 0.997 0.367

FA-V 0.990 0.985 0.380

Fc-III 0.989 0.419

Fc-VI 0.434

F-I, F-II, F-IV, F-V, F-IVb, FA-I, FA-II, FA-IV, FA-V, Fc-III and Fc-VI are defined in Table 4. Fp is the pedigree inbreeding coefficient.

doi:10.1371/journal.pone.0114484.t005

Fig. 3. Comparison of three methods for calculating genomic inbreeding coefficients with pedigree
inbreeding coefficients using a swine sample of 1022 individuals with genotyped parents. The three
representative genomic methods for estimating inbreeding coefficient mostly had similar patterns of deviations
from the pedigree estimates, but F-I (Method i) had the largest variations and Fc-VI (Method iv) had the
smallest variations. For the group of individuals marked by ‘A’, all three genomic methods had high inbreeding
coefficients whereas the pedigree method had ‘0’ inbreeding coefficients. For the group of individuals marked
‘B’, all three genomic methods had lower inbreeding coefficients than the pedigree estimates that were among
the highest inbreeding coefficients in this sample.

doi:10.1371/journal.pone.0114484.g003
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estimating inbreeding coefficient mostly had similar patterns of deviations from

the pedigree estimates, but F-I (Method i) had the largest variations and Fc-VI

(Method iv) had the smallest variations. For the group of individuals marked by

‘A’, all three genomic methods had high inbreeding coefficients whereas the

pedigree method had ‘0’ inbreeding coefficients. These large differences between

the genomic and pedigree estimates could have been due to pedigree errors or

missing pedigree information. If either problem were true, this would be an

example showing the usefulness of genomic inbreeding in the absence of pedigree

information or in the presence of pedigree errors. For the group of individuals

marked ‘B’, all three genomic methods had lower inbreeding coefficients than the

pedigree estimates that were among the highest inbreeding coefficients in this

sample. The correlation of inbreeding coefficients was 0.70–0.75 between Method

iv) and Method i), and was 0.82 between Method iv) and Method ii), indicating

that Method iv) maintained most of the genomic specificity of Methods i) and ii)

while having the highest correlation with pedigree inbreeding coefficients

(Table 5). Method iv) and the other methods (including the ROH method to be

discussed) could be complementary methods for calculating genomic inbreeding

coefficients: Method iv) for predicting offspring inbreeding level using parental

SNP genotypes even before the offspring were born, and the other methods for

calculating genomic inbreeding coefficient using the individual’s own SNP

genotypes. Method iv) could be a useful genomic tool for managing inbreeding

levels in breeding plans and wildlife conservation by calculating the predicted

inbreeding coefficients for all hypothetical offspring of all possible mates and by

selecting the mates with the lowest predicted offspring inbreeding coefficients,

similar to the approach of a software for minimizing inbreeding in breeding plans

using pedigree information [20].

The high correlation between genomic inbreeding coefficients from Method iv)

and pedigree inbreeding coefficients likely was due to two reasons. First, genomic

correlations had smaller variations than genomic relationships, SD 50.043–0.044

for Definitions III and VI of genomic additive correlations, and SD 50.087–0.108

for Definitions I, II IV and V of genomic additive relationships (Table 3). Second,

Method iv) used the same theoretical formula as pedigree inbreeding coefficient,

i.e., inbreeding coefficient of the individual 5 coancestry coefficient of the

parents, except that Method iv) uses parental SNP genotypes and pedigree

inbreeding coefficient uses parental pedigree information. Within Method iv), the

substantially higher correlation of Equation 36 than Equation 35 with the pedigree

approach could be due to the fact that the genomic cajk average values of

Definition VI were closer to the pedigree average Ajk than genomic Ajk values of

Definitions I, II, IV and V, as shown in Tables 2 and 3. The exact reason why

genomic inbreeding coefficients using the individual’s diagonal genomic additive

relationship of Definitions I, II, IV and V had the lowest correlation with pedigree

estimates was unclear, but two potential reasons could be identified. First, the

diagonal elements of Definitions I, II, IV and V fluctuated above and below ‘1’ (S2

Figure) so that about half of the individuals had diagonal values below ‘1’. Second,
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diagonal elements of genomic relationships had large variations (Table 6, S2

Figure). It is worth noting that Definition IV had the largest variations in genomic

relationships (additive and dominance), and its genomic inbreeding coefficient

had the least correlation with pedigree inbreeding coefficient (r50.071, Table 5).

Method ii) was a substantial improvement over Method i) in correlation with

pedigree estimates, r50.305 for Method ii), compared to r50.071–0.131 for

Method i). However, diagonal elements used by Method ii) also had a large

number of individuals with diagonal elements less than ‘1’ (S2 Figure). The

averages of diagonal elements of Definitions I, II, VI and V used by Method i) and

Definition IVb used by Method ii) were about ‘1’ for the Holstein sample

compared to the average of 1.05 of the pedigree diagonal values, and were 1.033–

1.036 for the swine sample compared to the average of 1.017 of the pedigree

diagonal values (Table 6).

We were unable to make direct comparison between Method iv) and the

approach of runs of homozygosity (ROH) for calculating genomic inbreeding

coefficients [12], because the Holstein sample has a small number of parents with

SNP genotypes and the swine sample has anonymous SNP markers with unknown

chromosome position. However, based on results in this study and in Keller et al.

[12], Method iv) would be competitive for calculating genomic inbreeding

coefficients in terms of correlation with pedigree inbreeding coefficients. In Fig. 6

of Keller et al., the correlation between the genomic inbreeding coefficients using

ROH and the pedigree inbreeding coefficients were higher than that of Yang et al.

[4] (or Method ii) in this article) by less than 0.10, whereas such correlation from

Method iv) was 0.114–0.129 higher than Method ii) of Yang et al. [4].

Table 6. Statistical summary of diagonal values of additive and dominance relationships.

Definition Additive Dominance

Mean¡SD Range Mean¡SD Range

Holstein cattle (n 5 1654)

I 0.982¡0.056 0.751, 1.545 0.984¡0.058 0.791, 1.631

II 1.000¡0.057 0.764, 1.573 1.000¡0.059 0.804, 1.658

IV 0.983¡0.066 0.776, 1.699 0.980¡0.163 0.701, 3.104

V 0.991¡0.066 0.783, 1.707 0.991¡0.157 0.708, 3.031

IVb 0.993¡0.042 0.874, 1.441 - -

26(coancestry coefficient) 1.050¡0.021 1.000, 1.300 - -

Swine (n 5 3534)

I 1.033¡0.105 0.844, 1.649 1.034¡0.123 0.825, 1.852

II 1.000¡0.102 0.817, 1.600 1.000¡0.119 0.798, 1.791

IV 1.035¡0.142 0.803, 1.924 1.106¡0.327 0.676, 3.922

V 0.999¡0.131 0.780, 1.850 0.999¡0.219 0.661, 3.137

IVb 1.036¡0.060 0.883, 1.427 - -

26(coancestry coefficient) 1.017¡0.027 1.000, 1.259 - -

doi:10.1371/journal.pone.0114484.t006
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GBLUP and GREML from different definitions of genomic relationships

Definitions I-VI essentially had the same GBLUP of breeding values and

dominance deviations that mostly had correlations of 0.99 among GBLUP from

different definitions (S2 Table). For GREML estimates of additive and dominance

heritabilities, the six definitions also had similar results except the dominance

heritability of Trait 3 for which Definitions IV and V had higher estimates, h2
d 5

0.103 for Definition IV and 0.094 for Definition V, compared to h2
d 5 0.031–0.064

for the other four definitions (Table 7). The different GREML estimates of

dominance heritabilities by Definitions IV and V could be due to differences

between SNP dominance effects from these two definitions and those from the

other definitions, see below.

SNP additive and dominance effects

Fig. 4 shows the distribution of SNP additive and dominance effects from

Definitions I-VI and correlations of SNP effects between different definitions of

genomic relationships. Both additive and dominance SNP effects had bell-shape

distributions, but dominance effects (blue histograms in diagonal graphs) had a

much narrower distribution than additive effects (red curves in diagonal graphs),

consistent with the low dominance heritability and high additive heritability of the

trait. By the sizes and distributions of SNP additive and dominance effects, the six

definitions could be divided into two groups: Definitions I-III under the

assumption of ‘equal SNP effects’ or ‘across-SNP standardization’ as one group,

Table 7. Estimated genomic heritabilities from the swine sample.

Trait Heritability Definition of genomic relationship or correlation

I II III IV V VI

1 h2
a

0.032 0.033 0.035 0.034 0.035 0.036

h2
d

7.6661027 7.6261027 9.9261027 6.0661027 1.2061026 1.0361026

H2 0.032 0.033 0.035 0.034 0.035 0.036

2 h2
a

0.263 0.269 0.269 0.266 0.273 0.274

h2
d

0.016 0.016 0.022 0.004 0.008 0.018

H2 0.279 0.285 0.291 0.270 0.280 0.292

3 h2
a

0.211 0.216 0.209 0.216 0.222 0.217

h2
d

0.064 0.065 0.031 0.103 0.094 0.033

H2 0.275 0.281 0.241 0.318 0.317 0.251

4 h2
a

0.346 0.353 0.353 0.348 0.355 0.354

h2
d

0.007 0.007 0.009 2.0961027 0.003 0.010

H2 0.353 0.360 0.363 0.348 0.357 0.364

5 h2
a

0.375 0.382 0.388 0.377 0.384 0.392

h2
d

0.054 0.055 0.059 0.043 0.054 0.062

H2 0.429 0.437 0.446 0.420 0.438 0.454

h2
a 5 additive heritability, h2

d 5 dominance heritability, and H25 total heritability (or heritability in the broad sense).

doi:10.1371/journal.pone.0114484.t007
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Fig. 4. Distribution of SNP additive and dominance effects from Definitions I-VI and QQ plots of SNP effects relative to Definition I. All graphs of this
figure are based on Trait 5 with h2

a 50.375–0.392 and h2
d 50.043–0.062 (Table 5). Definitions I-III in the upper green box assume equal SNP effects or

across-SNP standardization, and Definitions IV-VI in the lower green box assume equal SNP variance or within-SNP standardization. Diagonal graphs are
distributions of SNP additive effects (red curves) and SNP dominance effects (blue histograms). Off-diagonal graphs are QQ plots relative to Definition I, with
r 5 correlation coefficient in each graph. The lower off-diagonal graphs of QQ plots of SNP additive effects, and the upper off-diagonal graphs are the QQ
plots of SNP dominance effects.

doi:10.1371/journal.pone.0114484.g004
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and Definitions IV-VI under the assumption of ‘equal SNP variance’ or ‘within-

SNP standardization’ as the other group. Graphs in the upper green box showed

virtually identical additive and dominance effects from Definitions I-III. The

lower green box showed virtually identical additive effects from Definitions IV-VI,

and somewhat different dominance effects between Definition IV and Definitions

V-VI. Graphs in the gold box showed similar additive effects between Definitions

I-III and IV-VI although Definition VI led to substantially better estimates of

genomic inbreeding coefficients (Tables 4 and 5, Fig. 3), and graphs in the pink

box showed that the differences between Definitions I-III and IV-VI were mainly

in the highest and lowest dominance effects. The use of ‘expected SNP variance’

(Definitions I and IV) or ‘sample SNP variance’ (Definitions II and V) had similar

SNP additive and dominance effects (gold and pink boxes).

Conclusions

The traditional quantitative genetics model was shown to be a unifying model to

derive genomic additive and dominance relationships and genomic inbreeding

coefficients. Genomic additive and dominance relationships between individuals

on average agreed well with the pedigree relationship, but genomic relationships

were realized genetic relationships with individual genomic specificity and had

large variations not observed from pedigree relationships. Genomic relationships

assuming equal SNP variances had larger variations than assuming equal SNP

effects. Genomic inbreeding coefficients calculated from parental genomic

correlations had high correlations with pedigree inbreeding coefficients and could

be an effective genomic tool for predicting offspring inbreeding levels in breeding

plans.

Supporting Information

S1 Figure. Pedigree of the swine sample with 3534 individuals.

doi:10.1371/journal.pone.0114484.s001 (PDF)

S2 Figure. Diagonal elements of genomic additive and dominance relationships

and pedigree additive relationships of the swine sample with 3534 individuals.

Definition IVb of diagonal elements of additive relationships was that of Yang et

al. [4]. Pedigree inbreeding coefficient was calculated by Pedigraph 2.4 [21].

doi:10.1371/journal.pone.0114484.s002 (PNG)

S1 Table. Correlations between genomic additive and dominance relationships

under Definitions I-IV and pedigree additive relationship measured by

‘26(coancestry coefficient)’.

doi:10.1371/journal.pone.0114484.s003 (PDF)

S2 Table. Correlations of breeding values, dominance deviations and total genetic

values under different genomic relationship definitions.

doi:10.1371/journal.pone.0114484.s004 (PDF)
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S1 Text. Proofs and animal data.

doi:10.1371/journal.pone.0114484.s005 (PDF)
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