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Maria K. Kaukonen1,2, András M. Komáromy3,4, Hannes Lohi1,2*

1. Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of
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Abstract

Progressive retinal degenerations are among the most common causes of

blindness both in human and in dogs. Canine progressive retinal atrophy (PRA)

resembles human retinitis pigmentosa (RP) and is typically characterized by a

progressive loss of rod photoreceptors followed by a loss of cone function. The

disease gradually progress from the loss of night and day vision to a complete

blindness. We have recently described a unique form of retinopathy characterized

by the multifocal gray/brown discoloration and thinning of the retina in the Swedish

Vallhund (SV) breed. We aimed to identify the genetic cause by performing a

genome wide association analysis in a cohort of 18 affected and 10 healthy control

dogs using Illumina’s canine 22k SNP array. We mapped the disease to canine

chromosome 17 (p57.761025) and found a 6.1 Mb shared homozygous region in

the affected dogs. A combined analysis of the GWAS and replication data with

additional 60 dogs confirmed the association (p54.361028, OR511.2 for

homozygosity). A targeted resequencing of the entire associated region in four

cases and four controls with opposite risk haplotypes identified several variants in

the coding region of functional candidate genes, such as a known retinopathy gene,

MERTK. However, none of the identified coding variants followed a compelling

case- or breed-specific segregation pattern. The expression analyses of four

candidate genes in the region, MERTK, NPHP1, ANAPC1 and KRCC1, revealed

specific upregulation of MERTK in the retina of the affected dogs. Collectively,

these results indicate that the retinopathy is associated with overexpression of

MERTK, however further investigation is needed to discover the regulatory

mutation for the better understanding of the disease pathogenesis. Our study
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establishes a novel gain-of-function model for the MERTK biology and provides a

therapy model for retinopathy MERTK inhibitors. Meanwhile, a marker-based

genetic counseling can be developed to revise breeding programs.

Introduction

Dogs suffer from hundreds of hereditary disorders according to the Online

Mendelian Inheritance in Animal database (OMIA, http://omia.angis.org.au/

home/) and many of them represent clinically and physiologically relevant models

for human conditions. Examples include several retinal conditions, such as canine

multifocal retinopathies (cmr) [1–2] and Leber congenital amaurosis (canine

LCA) [3]. Progressive retinal degenerations form a heterogeneous group of

disorders that affect different retinal cells such as photoreceptors or retinal

pigment epithelium (RPE), resulting in the impairment or complete loss of vision

(RetNet; http://www.sph.uth.tmc.edu/Retnet/). Retinitis pigmentosa (RP) is one

of the most common incurable blindness worldwide [4]. In RP, the degenerative

process typically starts from rod photoreceptors and expands to cone cells leading

to a progressive loss of both night- and day light vision before complete blindness

[5].

Canine progressive retinal degenerations resemble human RP and are

commonly referred as progressive retinal atrophies (PRA). PRA affects many

breeds with remarkable variation in the etiology, progression and onset. Careful

characterization of these conditions across breeds is not only important for the

health of the dogs but could also provide valuable information about the genetics,

retinal biology, molecular pathogenesis of RPs and possible environmental factors

complementing existing human studies. Furthermore, gene discoveries would

establish large animal models for retinal gene therapies [6–7]. Today, over dozen

PRA genes have been described in dogs [1], [3], [8–23], and many remain still to

be found.

We have recently characterized a unique type of retinal degeneration in the

Swedish Vallhund (SV) breed [24]. (S1 Figure). The phenotype of this disease

differs from most known forms of PRA with a multifocal rather than diffuse

degeneration of the retina. Furthermore, age of onset and rate of progression vary

considerably even in the littermates. Clinical signs progress in three stages ranging

from diffuse multifocal red/brown discoloration of the tapetal fundus without

associated visual deficits (Stage 1), to geographic retinal thinning/degeneration

with mild to moderate signs of night-blindness (Stage 2), to more diffuse retinal

thinning/degeneration affecting most of the tapetal fundus and associated with

night-vision loss and severely impaired day-vision (Stage 3) [24]. This disease

affects both the RPE and rod and cone photoreceptors with an excessive

accumulation of autofluorescent material within the RPE [24]. Since the known
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canine PRA genes did not associate with the disease [24], we embarked a study

here to identify the genetic cause.

Materials and Methods

Study cohort

Blood samples from SVs across various countries were collected to the canine

DNA bank at the University of Helsinki, Finland with owner’s consent and under

the permission of animal ethical committee of County Administrative Board of

Southern Finland (ESAVI/6054/04.10.03/2012). Altogether 436 samples were

collected, including 93 cases and 76 controls. All affected dogs were examined by

certified veterinary ophthalmologists at least once in Finland, Sweden or USA and

diagnosed with SV retinopathy. All the control dogs used in the genome-wide

association analysis were over 7 years of age at the time of eye examination by

veterinary ophthalmologists and none of them were diagnosed with any retinal

abnormalities. Genomic DNA was extracted from EDTA blood samples using

Chemagic Magnetic Separation Module I (MSM I) (Chemagen Biopolymer-

Technologie AG, Baeswieler, Germany) according to the manufacturer’s

instructions.

Retinal samples from four affected SVs and a PRA-free Australian Cattle Dog

and a Belgian Shepherd became available due to euthaniziation for unrelated

causes, and were collected post mortem with owners’ consents. RNA was extracted

using RNeasy Mini Kit (Qiagen) according to manufacturer’s instructions.

A pedigree (S2 Figure) modified from related manuscript, Cooper et al. [24]

(S1 Figure) was constructed around the affected dogs using Genopro software

and the genealogical data available in public canine registries such as the Finnish

Kennel Club’s Koiranet, the Swedish Kennel Club’s Hunddata databases or as

informed by the owners.

Genome wide association study

To map the retinopathy locus in SVs a genome-wide association mapping was

performed with 18 cases and 10 controls using Illumina Canine SNP20 BeadChip

array (San Diego, CA, USA). Genotyping was performed at the FIMM Technology

Center. The genotyping data was analyzed using PLINK 1.07 analysis software

[25]. A total of 22,362 markers were initially included for the analysis. No

individual were removed for low genotyping success of 95%. Missingness test of

95% removed 87 SNPs and the average genotyping rate per individual remained at

99.9%. A total of 8,078 SNPs had minor allele frequency of less than 5% and were

removed. None of the SNPs deviated from Hardy-Weinberg equilibrium based of

HWE test of P,50.0001. After frequency and genotyping pruning, 13,699 SNPs

remained in the analysis.

To compare the affected dogs and healthy control dogs an allelic case-control

association test was performed and significance values from this analysis were
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used to generate a whole-genome association plot using R-program [26]. Identity-

by-state (IBS) clustering and CMH meta-analysis (PLINK) were used to adjust for

population stratification. Genome-wide corrected empirical p-values were

determined applying 50,000 permutations to the data. Besided PLINK the data

was analyzed using R-implemented GenABEL software [27] (data not shown).

Replication study

A replication study for the best associated SNPs at CFA17 (BICF2G630207991)

was performed in additional 34 cases and 26 controls. We performed a standard

PCR, including 1.2 U Biotools DNA Polymerase (Biotools, Madrid, Spain),

1.5 mM MgCl2 (Biotools, Madrid, Spain), 200 mM dNTPs (Finnzymes, Espoo,

Finland), 16 Biotools PCR buffer (Biotools, Madrid, Spain), 0.83 mM forward

GCTGCTTCCTTTTTGCTCAT and reverse GGTGCTACGTTTGACAGCAA pri-

mers (Sigma Aldrich, St. Louis, USA) and 10 ng template genomic DNA. Reaction

mixtures were subjected to a thermal cycling program of 95 C̊ for 10 min, 35

cycles of 95 C̊ for 30 s, 30 s 58 C̊, 72 C̊ for 60 s and a final elongation stage of

72 C̊ for 10 min. ExoSap (USB Corporation, Ohio, USA) purified fragments were

sequenced at the FIMM Technology Center using ABI 3730xl DNA analyzer

(Applied Biosystems, Foster City, California, USA). Sequence analysis was

performed using Variant Reporter software (Applied Biosystems, Foster City,

California, USA).

Targeted capture and re-sequencing

The associated region of 6.1 Mb on CFA17 (37.53–43.64 Mb, CanFam2.0) was

resequenced in four affected SVs, four healthy SVs and 16 dogs from two other

breeds, Dandie Dinmont Terrier and Staffordshire Bull Terrier. The SV samples

were selected based on the opposite haplotypes in cases and controls (Fig. 1B).

The region was captured using custom designed probes (according to the build

2.1 of the canine genome reference sequence) and Roche Nimblegen solution

based capture method followed by paired-end sequencing using the Illumina

HiSeq2000.

The data analysis included quality control, alignment, variant calling and

annotation of the variants. Quality control was performed using FASTX toolkit

(http://hannonlab.cshl.edu/fastx_toolkit/index.html) to remove the low quality

bases called by the sequencing machine. Base call accuracy of 99% i.e. bases with

Phred scores ,Q20, were trimmed to reduce false positives during variant calling.

The quality passed paired-end reads were aligned to the build 3.1 of the canine

genome reference sequence with Burrows-Wheeler (BWA) aligner tool with

default parameters [28]. After mapping, the reads that mapped to the targeted

region were extracted followed by the removal of potential PCR duplicate reads

using Samtools 0.1.18 [29]. Local realignment around potential indel sites and

base quality scores recalibration were implemented using GATK [30] and fix

mate-pair information using Samtools [29] to improve the quality of the sequence
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Fig. 1. Results of the genome-wide association study. Genome-wide association analysis identifies the retinopathy locus in the SV breed. A) Manhattan
plot with tentative association on CFA17 (praw57.761025), replication analysis supported the association (prepl52.761025) and was confirmed by
combined analysis (p54.361028). CFA39 represent the X chromosome. B) A close-up of the associated region on CFA17, which spans from 38.16 Mb to
43.64 Mb. C) The associated region harbors over hundred genes, including a known PRA gene, MERTK.

doi:10.1371/journal.pone.0114552.g001
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data before variant calling. The sequence alignments were then directed to the

variant calling programs GATK [30] and Samtools [29] to identify the SNPs and

short indels present within the samples. Pindel program was further used to

identify indels and structural variants [31]. Finally, the identified variants were

annotated against NCBI and UCSC databases to find out the variants present in

the coding and non-coding regions. The annotation was performed using SnpEff

[32] and in-house custom R-scripts. The dbSNP131 database was utilized to

identify known polymorphic variants. To identify the case-specific variant, the

data was filtered against the controls and 16 other dogs from two breeds under a

recessive model using our in-house R-scripts. To study the CNVs and repeat

elements (SINE, LINE), a heatmap analysis was performed by comparing

normalized read depths in each position between cases and controls.

Validation of candidate causative variants

The tentative disease causing variants identified by resequencing, were genotyped

in a large sample cohort of SVs (Table 1) and from eight unaffected dogs from

two other breeds for the breed specificity. The identified variants were categorized

based on type and position: non-synonymous first, followed by variants in the

non-coding RNAs, UTR regions, and conserved intergenic and intronic regions,

respectively (Table 1). The primers for the validated markers are available upon

request. The association of each variant with the disease was calculated by PLINK

[25].

Expression analyses

Retinal RNA samples were studied to screen MERTK transcript for mutations and

to quantitate transcript levels of four retinal candidate genes, MERTK, NPHP1,

ANAPC1 and KRCC1 between the affected (n54) and unaffected (n52) dogs. The

MERTK mRNA sequence (XM_005630437.1) was amplified using Biotools

(Biotools, Madrid, Spain)) polymerase and PCR protocol described in the

replication section with annealing temperature of 60 C̊. Amplicons were Sanger

sequenced for mutations.

To quantitate transcript levels, a real time PCR was performed using Applied

Biosystems’7500 Fast Real-Time PCR machine and Universal SYBR Green Master

(Roche). RT-PCR was carried out on equal amounts of retinal RNA in each

sample by using the High Capasity RNA-to-cDNA kit (Applied Biosystems). RT-

PCR was carried out in 0.25 mM of forward and reverse primes in a total reaction

volume of 20 ml. The primers used for mRNA amplification and real time PCR are

available upon request. A housekeeping gene, GAPDH was used as a normal-

ization control, and triplicate samples were used for all reactions. The efficiency of

the reaction was calculated from a seven-point dilution series. No significant

differences were detected in the efficiencies between the housekeeping and target

reactions, and the comparative DDCt-method could be used to determine relative

expression differences. Statistical significance of the expression differences was
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calculated by using the Student’s t-test on normalized mean cycle threshold (Ct) -

values. PASW Statistics 18 software SPSS (IBM) was used to perform the statistical

tests.

Results

We have recently identified a novel type of retinal degeneration in SVs with a

likely recessive mode of inheritance [24] and aimed to map the disease locus here

by expanding the SV study cohort across different countries in Europe and the

US. We performed a GWAS in a cohort of 18 cases and 10 controls using

Illumina’s canine 22k SNP array. Genotyping data was analyzed by a linear

regression (PLINK) and mixed model approaches (GenAbel, data not shown). No

significant population structure was identified by genome wide IBS clustering

(l51.1). We identified a tentative locus on CFA17 (praw57.761025,

pgenome50.13) with the most highly associated SNP, BICF2G630207991 (Fig. 1A).

To confirm the association, we genotyped the best associated SNP on CFA17 in

additional 34 cases and 26 controls (prepl52.761025). The combined analysis

(GWAS and replication) supported the association (pcom54.361028) (Fig. 1A).

According to the combined analysis, 82% (41/50) of the cases and 30.5% (11/

36) of controls were homozygous for the risk allele at CFA17 given the

(OR511.2). Eleven unaffected dogs that were homozygous for the risk allele were

all eye examined healthy after 6 years of age, however, it is possible that the dogs

become affected later as the age of onset and disease progression varies even in the

littermates [24]. Reduced penetrance of the disease may be linked to the large

phenotypic variation or possible genetic or environmental modifiers [24].

Candidate gene analysis

The associated region has a homozygous risk haplotype in the cases (17/18),

spanning a 6.1 Mb region from 37.5 Mb to 43.60 Mb (Fig. 1B). One of the cases

clearly carries a different haplotype from the rest of the cases and could be a

phenocopies due to other reasons (Fig. 1B). The region contains 102 genes of

which anaphase promoting complex subunit 1 (ANAPC1) [33], c-mer proto-

oncogene tyrosine kinase (MERTK) [34–41] and nephronophthisis 1 (NPHP1) [42–

43] have been previously associated with retinal disease or retinal function

(Fig. 1C). These genes were selected for exonic mutation screening, revealing

three non-synonymous coding variants p.A369P (g.36405419) in MERTK,

p.H86R (g.3512824) in NPHP1 and p.V734I (g.36279583) in the ANAPC1

(Table 1).

The pathogenicity of the coding variants was predicted based on the

bioinformatics prediction softwares Polyphen2.0 [44] and SIFT [45], which

evaluate the evolutionary conservation of the residues across species. The MERTK

p.A369P and the ANAPC1 p.V734I variants were predicted to be benign while

NPHP1 variant as likely pathogenic. However, when we genotyped all three
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coding variants in 33 eye examined unaffected SVs (Table 1) and eight dogs from

two other unaffected breeds, Whippet and Finnish Lapphund, we found all of

them in unaffected SVs and in the two other breed with a moderate frequency,

suggesting them as polymorphisms rather than causative.

Targeted resequencing

To identify the causative mutation, we performed a targeted resequencing of the

entire 6.1 Mb associated locus in eight SVs and 16 other dogs from Dandie

Dinmont Terrier and Staffordshire Bull Terrier breeds. We reached an average

98.8% sequence coverage across the locus in each dog and found altogether 86,160

single nucleotide variants (SNVs) and 2,294 indels (S1 Table). After filtering the

variants under the recessive model altogether 408 SNVs and 70 indels were shared

between the SV cases (S1 Table). The canine reference sequence (CanFam3.1) was

used to annotate the identified variants. Although 102 genes have been annotated

in the capture region, targeted resequencing revealed only one additional new case

specific coding variant, p.L97R, in the lysine-rich coiled-coil 1 (KRCC1) gene

(XP_005630523.1). Further analysis of this variant in 51 additional affected and 33

unaffected SVs and in two other unaffected breeds, Whippet and Finnish

Lapphund, did not support segregation and indicated that is found in other non-

affected breeds (Table 1).

Since the identified coding variants did not segregate with the disease, we next

selected 30 non-coding variants across conserved (UCSC conservation scores)

[46] regions of the top candidate genes for further analyses in additional samples

(Table 1). However, none of these variants segregated either with the disease.

Possible presence of case-specific CNVs and repeats such as, SINEs and LINEs

were studied by a read depth-based heatmap analysis between the cases and

controls. No case-specific differences were found in the read depths across the

associated region (data not shown).

Collectively, these genomic analyses did not reveal a causative mutation but

identify the strongest association with the SNP (BICF2G630207991) in the intron

of the MERTK gene. This marker was therefore further tested in 400 SVs from our

DNA bank revealing a very high carrier frequency (59.9%) and a significant risk

for homozygosity (p56.3610227, OR518.5 with 95%CI510.3–33.2).

MERTK transcript analysis

Because our genomic analyses did not reveal the causative mutation, we decided

to sequence the MERTK mRNA for possible abnormal splicing or other events

from the retinal samples, including the neuro-retina and RPE of two affected SVs

and an unaffected dog available. Sequencing revealed the p.A369P variant found

in the genomic analyses in the affected dogs but did not reveal any additional

variants or abnormal splicing events.
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Expression analysis of the retinal candidate genes

We obtained retinal tissue samples from four retinopathy affected SVs and two

control dogs and used them to quantitate transcript levels of the four retinal

candidate genes, MERTK, NPHP1, ANAPC1 and KRCC1 in the critical region.

Real-time PCR revealed a 6.5-fold upregulation of the MERTK gene in the affected

dogs while no difference was found in the NPHP1, ANAPC1 or KRCC1 genes

(Fig. 2). This result suggests that a regulatory mutation outside the coding region

results in the overexpression of MERTK, which then leads to retinopathy in the

affected dogs.

Fig. 2. Retinal upregulation of MERTK in the affected SVs. The retinal mRNA levels of MERTK, NPHP1,
ANAPC1 and KRCC1 genes were compared between affected (n54) and unaffected dogs (n52). A specific
overexpression of MERTK was found in the affected SVs. The relative mRNA expression levels are
represented as a fold change. Error bars denote the standard error of normalized Ct-values. *p#0.0001 (two-
tailed t-test p-value).

doi:10.1371/journal.pone.0114552.g002
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Discussion

We have previously identified a unique form of PRA in the SV breed and show

here genetic and functional evidence that the disease is associated with a known

human RP gene, MERTK. The SV breed is small worldwide, which is reflected

with extensive linkage disequilibrium of the associated region. The region harbors

over 100 genes, including some that have been associated with retinal function or

retinal degeneration in human and rodent models, such as ANAPC1, MERTK and

NPHP1. Although we found several coding and regulatory variants in these retinal

candidate genes, none of them followed appropriate segregation pattern and were

present in other unaffected breeds, excluding them as candidates for the disease.

However, while the causative variant remains to be found, positional and

functional evidence support the role of MERTK in the SV retinopathy.

First, our genetic data identified the best association within the MERTK gene,

and this was 100 times stronger than in any other regions of the gene-rich locus.

This result strongly suggests that the cause of the disease lies in the identified

region within or nearby MERTK. Second, from the three retinal genes in the

critical region, MERTK appears as the most likely candidate based on its function

and clinical significance in the retinal degeneration in human and rat [35], [39],

[41], [47]. The MERTK protein is a member of the TAM receptor tyrosine kinase

and is expressed in the retinal pigment epithelium (RPE) plasma membrane [48].

It participates in apoptotic cell clearance and cytoskeleton regulation with anti-

inflammatory properties [49]. Human recessive MERTK mutations have been

associated with several phenotypes including RP, rod cone dystrophy and early

onset, childhood blindness [34], [36–38], [47], [50–57]. Progressive loss of

photoreceptor cells in MERTK-deficient Royal College of Surgeon (RCS) rats was

suggested to result from the lack of the cooperation between the photoreceptor

and the RPE cells [35].

The analysis of the MERTK transcript isolated from the affected retinas

indicated an intact transcript sequence without additional coding sequence or

splicing abnormalities. However, an unexpected 6.5-fold up-regulation of the

MERTK transcript was found in the affected retina. This was specific to MERTK,

since no changes were found in the transcript levels of the other three candidate

genes, NPHP1, ANAPC1 and KRCC1 in the same retinal tissues (Fig. 2).

Potential explanations of the increased transcription of MERTK might include

i) the presence of a regulatory mutation in the MERTK gene, ii) a massive

infiltration of MERTK positive inflammatory cells into the RPE [49], iii) normal

variation in the MERTK expression due to circadian rhythm of the RPE

phagocytosis peaking at the daily onset of light [58] or iv) the presence of a

regulatory variation outside MERTK affecting its ligands or MERTK-induced

cellular physiology [59]. The hypotheses ii and iii appear unlikely, since our

routine histopathology was not indicative of invasion of inflammatory cells in the

affected retina [24], and the retinal samples for the transcript quantification were

harvested several hours after the phagocytosis peak when MERTK should not be

active and elevated. Our genetic data points to a cause within MERTK not outside.

A Novel Canine Retinopathy Associated with MERTK

PLOS ONE | DOI:10.1371/journal.pone.0114552 December 17, 2014 12 / 19



The presence of a MERTK-specific regulatory mutation is more likely and our

future efforts will focus on the MERTK gene and surrounding regions, including

the promoter region, upstream enhancers and possible UTR miRNA binding sites.

Overexpression of MERTK has been associated with the variants in the 3UTR

miRNA binding sites [60].

Previous MERTK-related retinal degenerations have been associated with

recessive loss-of-function mutations [34], [36–38], [47], [50–57]. The question

how overexpression of MERTK may lead to the multifocal retinopathy in the

affected SVs remains unknown, although several possible hypotheses can be

speculated based on the diversity of the MERTK functions in various models.

First, MERTK can activate several intracellular canonical signaling pathways,

including phosphoinositide 3 kinase, PI3K/AKT, pathway including phospholi-

pase C, ERK1/2, Ras, and MAP kinase and JAK/STAT pathway [61], which could

lead to increased or abnormal apoptosis in the local regions of the RPE.

Second, overexpression of MERTK has been shown to induce efferocytosis in

cancer cell lines [59]. Similarly, overactive MERTK in the RPE could increase the

efferocytosis of the POS, lead to an accumulation of photoreceptor debris in the

RPE and subsequent degeneration of photoreceptors in the affected dogs. Human

MERTK patients show deposit of autofluorescence consisting of photoreceptor

outer segment (POS) membranes and their by-products, including accumulating

lipofuscin in the outer retina [41], [51]. Similarly in RCS rats, an abnormal

accumulation of outer segment debris between photoreceptor outer segment layer

and the RPE occurs, prior to photoreceptor cell death [62–64]. In the RCS rats,

RPE cells fail to engulf POS, which causes the accumulation of POS debris in the

subretinal space [65]. The SV retinopathy affects both the RPE and rod and cone

photoreceptors with an excessive accumulation of autofluorescent lipofuscin-like

material within the RPE [24].

Third, the MERTK receptor has a soluble form, sMer [66] with an antagonistic

role to full-length MERTK. sMer can bind to Gas6 and inhibit Gas6-mediated

MERTK activation [66], which in turn could result in the impaired phagocytosis

and retinopathy. sMer is posttranslationally generated from the MERTK receptor

by the ADAM17 cleavage [66] and its expression patterns in the affected retina

and RPE should be studied at the protein level.

Fourth, MERTK overexpression has been shown to result in an altered

localization of the MERTK protein in the nuclear compartment [67]. In the RPE,

this model could lead to a net loss-of-function effect of the MERTK activity as

seen in the recessive RP cases.

Finally, MERTK is expressed in macrophages that participate in the

phagocytosis [68]. Constitutive overexpression of MERTK in the macrophages

could result in the enhanced local efferocytosis in the RPE, which in turn, would

further promote MERTK activity and undesired apoptosis and loss of

photoreceptors.

Upon confirmation of the MERTK overexpression with subsequent down-

stream mechanisms, existing MERTK inhibitors [69] may provide a therapeutic

option for the retinopathy dogs. MERTK overexpression is characteristic to several
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cancers and inhibition in those models has been found efficient [69–70]. A clinical

trial with MERTK inhibitors remains as an exciting possibility not only to treat

canine patients but also to better understand the related disease mechanisms and

MERTK biology in the eye.

The uniqueness of the SV retinopathy is based on the retinal disease phenotype,

the variation in age of onset and in the rate of disease progression. This suggests

that genetic and/or environmental disease modifiers likely contribute to the

disease phenotype. Our GWAS data with a modest samples size revealed a single

locus with a possible reduced penetrance. The vast majority of the affected dogs

are homozygous for the risk haplotype, however, the phenotypic variability in SVs

may be related to the particular type of regulatory mutation causing the

upregulation of MERTK in combination with possible environmental factors.

Three additional coding variants were found in other genes. A predicted

pathological variant, p.H86R, was identified in the NPHP1 gene, which encodes

for nephronophthisis 1. NPHP1 is widely expressed in many tissues and localized to

the photoreceptor-connecting cilia at the junction of the inner segment and outer

segment [71]. The gene has been implicated in an autosomal recessive, juvenile

nephronophthisis 1 [72] with infrequent retinal degeneration [73]. Nphp1-

deficient mice present an early-onset rapidly progressing degeneration of the outer

and inner segments and nuclei, losing the photoreceptors within the first 8

months of life [74]. Although the p.H86R variant was predicted to be

pathological, its homozygous presence in other unaffected SVs and breeds exclude

its causative role.

The third coding variant (p.V734I) was identified in the ANAPC1 gene. This

gene has been implicated in the normal eye development in Drosophila. The

shattered (shtd) mutation in the fly leads to a failure in G1 arrest during the

mitosis, causing a defective arrangement of photoreceptor cells and other

developmental problems in the eye [75]. Again the identified variant in our SVs

was not case- or breed-specific ruling it out as the cause of the disease.

The fourth non-synonymous coding variant in the associated region, p.L97R,

was found in the KRCC1 gene, which encodes a lysine-rich coiled-coin protein 1,

with an unknown function. However, the KRCC1 variant was also present in other

unaffected dogs and did not segregate with the disease.

Similarly, a large number of potential regulatory variants were found in the

conserved regions across the associated region but validation experiments for 30

of them did not support an appropriate segregation pattern. We may have missed

the causative mutation in MERTK due to technical reasons despite high quality

resequencing data. Targeted capture is not efficient in repetitive regions, which are

often lost already at the target design. Another challenge relates to possible larger

structural variants such as CNVs, which are not easy to pinpoint in the

resequencing data. It is possible that some coding variants have been missed in

our analysis, however, the annotations around MERTK locus were identical in

both species and it is unlikely that coding variants were missed in the critical

region. We will consider resequencing of the whole genomes of SVs to avoid

capture-related obstacles.
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In conclusion, we have mapped the cause of retinopathy in SVs and show the

involvement of the up-regulated MERTK gene in the affected dogs. Our study

establishes a novel gain-of-function model for the MERTK physiology in the

retina. Future studies will include the search for the regulatory mutation and

study of overexpression-related disease mechanisms with a possibility for a

therapeutic option with MERTK inhibitors. Meanwhile, a genetic marker test can

be developed for breeding purposes to help the future SV population to reduce the

high-risk allele frequency in the breed.

Supporting Information

S1 Figure. A pedigree from a related manuscript, Cooper et al., indicates

clinically studied dogs [24].

doi:10.1371/journal.pone.0114552.s001 (TIF)

S2 Figure. Pedigree indicates the dogs that were used in the GWAS study

(marked yellow). Disease segregation suggests an autosomal recessive mode of

inheritance.

doi:10.1371/journal.pone.0114552.s002 (TIF)

S1 Table. Summary of the targeted resequencing data. The 6.1 Mb associated

region was captured and resequenced in four cases and four control SVs with

opposite risk haplotypes to identify the causative mutation.

doi:10.1371/journal.pone.0114552.s003 (XLSX)
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