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Abstract: The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer’s
disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele com-
pared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a
large imaging database—the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We automatically
segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with
known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI),
and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced
across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics
consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for
surface deformation analysis. Using Hotelling’s T2 test, we found significant morphological deformation
in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the nondemented (pooled
MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more
pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies
that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel
measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imag-
ing biomarker of early stage AD. Hum Brain Mapp 35:3903–3918, 2014. VC 2014 Wiley Periodicals, Inc.

Key words: Alzheimer’s disease; hippocampus; APOE e4; MRI; multivariate tensor-based
morphometry
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INTRODUCTION

The decline of cognitive skills to a functionally disabling
degree is a sign of the clinical onset of Alzheimer’s disease
(AD), but optimizing disease modification strategies
requires early intervention against appropriate therapeutic
targets that may vary with disease stage. Current thera-
peutic failures in patients with symptomatic memory loss
may reflect intervention that is too late, or else targets that
represent secondary effects less relevant to disease initia-
tion and early progression (Hyman, 2011). For therapy to
be successful, timing may be critical.

In presymptomatic subjects, determining whether AD is
present is challenging. The apolipoprotein E (APOE) e4
allele is the most prevalent risk factor for AD (Corder et al.,
1993; Saunders et al., 1993), and is present in roughly 20–
25% of North Americans and Europeans (Gerdes et al.,
1992). This discovery has made it possible to study large
numbers of genetically at-risk individuals before the onset
of symptomatic memory impairment and has led to the con-
cept of preclinical stage AD (Sperling et al., 2011), a concept

validated in autopsy studies of nondemented elderly sub-
jects with neuropathological evidence of AD at autopsy
(Bennett et al., 2009; Caselli et al., 2010; Dickson et al., 1992;
Gouras et al., 1997; Kok et al., 2009), magnetic resonance
imaging (MRI) studies of infants at differential genetic risk
(Dean et al., 2013; Knickmeyer et al., 2013), fluorodeoxyglu-
cose positron emission tomography (PET) studies of APOE
e4 carriers that have revealed AD-like patterns of reduced
CMRglucose (Reiman et al., 1996, 2005), amyloid ligand
binding studies using Pittsburgh Imaging Compound B that
show evidence of cerebral amyloidosis in APOE e4 carriers
(Reiman et al., 2009), cerebrospinal fluid levels of beta amy-
loid that begin to fall, suggesting the onset of AD, in the
early 50s in e4 carriers (Morris et al., 2010), and neuropsy-
chological studies showing the accelerated decline of mem-
ory scores in a gene-dose pattern in APOE e4 carriers
beginning between age 55 and 60 (Caselli et al., 2009) that is
further accelerated in APOE e4 homozygotes by cerebrovas-
cular risk factors (Caselli et al., 2011).

So far we lack a widely available, highly objective brain
imaging biomarker that can identify abnormal degrees of
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cerebral atrophy and accelerated rate of atrophy in preclini-
cal individuals at high risk of AD for whom early interven-
tion is needed. A biologically grounded approach is vital to
identify reliable biomarkers, consolidate all information,
reduce the sheer number of statistical tests, and improve
statistical power. In AD research, structural magnetic reso-
nance imaging (MRI)-based measures include whole-brain
(Chen et al., 2007; Fox et al., 1999; Stonnington et al., 2010),
entorhinal cortex (Cardenas et al., 2011), hippocampus (den
Heijer et al., 2010; Jack et al., 2003; Reiman et al., 1998;
Thompson et al., ; Wolz et al., 2010), and temporal lobe vol-
umes (Hua et al., 2010), as well as ventricular enlargement
(Jack et al., 2003; Thompson et al., ; Wang et al., 2011).
These correlate closely with differences and changes in cog-
nitive performance, supporting their validity as markers of
disease progression. Although many current studies exam-
ine cortical and substructural volumes (den Heijer et al.,
2010; Dewey et al., 2010; Holland et al., 2009; Jack et al.,
2003, 2004; Ridha et al., 2008; Vemuri et al., 2008a, 2008b;
Wolz et al., 2010), recent research (Apostolova et al., 2010b,
2010c; Chou et al., 2009; Costafreda et al., 2011; Ferrarini
et al., 2008; Madsen et al., 2010; Morra et al., 2009b; Qiu
et al., 2010; Styner et al., 2005; Thompson et al., ) has dem-
onstrated that surface-based subregional structure analysis
offers advantages over volume measures, in some respects.
For precise analysis of MRI patterns of hippocampal defor-
mation for preclinical AD research, a subregional analysis
would be beneficial.

Recently, we introduced surface multivariate tensor-
based morphometry (mTBM) system (Shi et al., 2013a,
2013b; Wang et al., 2010, 2011, 2012) and applied it to
study AD effects on hippocampal morphometry (Shi et al.,
2013a; Wang et al., 2011). Based on our experience assess-
ing APOE e4 effects in preclinical populations (Caselli
et al., 2009, 2010, 2011; Reiman et al., 1996, 2001, 2009;
Stein et al., 2012) and the relatively large sample size in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI;
Jack et al., 2008; Miller, 2009; Mueller et al., 2005a, 2005b)
dataset, we applied a novel hippocampal morphometry
method to a large cohort of MR images of individuals
with known genotype. Subregional variations in hippo-
campal surfaces in 725 subjects (167 AD, 354 MCI, and 204
controls) were examined for relationships with APOE e4
dose information, from APOE e4 noncarriers, people heter-
ozygous and homozygous for APOE e4 allele. We
hypothesized that the degree of hippocampal deformation
would relate to genetic risk groups for AD, including
adults who carry one or two copies of the APOE e4 allele,
a major AD susceptibility gene.

SUBJECTS AND METHODS

Subjects

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengin-
eering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organiza-
tions, as a $60 million, 5-year publicprivate partnership. The
primary goal of ADNI has been to test whether serial mag-
neticresonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Califor-
nia – San Francisco. ADNI is the result of efforts of many
coinvestigators from a broad range of academic institutions
and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been
followed by ADNI-GO and ADNI-2. To date these three
protocols have recruited over 1500 adults, ages 55 to 90, to
participate in the research, consisting of cognitively normal
older individuals, people with early or late MCI, and people
with early AD. The follow up duration of each group is
specified in the protocols for ADNI-1, ADNI-2 and ADNI-
GO. Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date
information, see www.adni-info.org.

At the time of downloading (September 2010), among
the 843 subjects in the baseline dataset, 738 subjects were
genotyped and classified as APOE e4 carriers or noncar-
riers. All subjects underwent thorough clinical and cogni-
tive assessment at the time of acquisition, including the
Mini-Mental State Examination (MMSE) score (Folstein
et al., 1975), Clinical Dementia Rating (Berg, 1988), and
Delayed Logical Memory Test (Wechsler, 1987).

In this study, all T1-weighted images from ADNI base-
line dataset were automatically segmented using FIRST
software1 to segment the hippocampus substructure. We
reconstructed hippocampal surfaces based on binary seg-
mentations (Shi et al., 2013a). As a quality control, we
manually checked all the constructed meshes and
excluded five AD, five MCI, and three healthy control sub-
jects with wrong surface topologies (Shi et al., 2013a). As a
result, a total of 725 ADNI baseline subjects with APOE
information, including 167 AD (age: 75.5 6 7.6 years), 354
MCI (age: 75.1 6 7.2 years), and 204 controls (age:
76.2 6 4.9 years) were studied using the new system for
this article. Table I gives detailed demographic data infor-
mation on the subjects.

1http://www.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
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In our study, following prior work (Morra et al., 2009a,
2009b; Shi et al., 2013a), we pooled both the subjects who
are heterozygous APOE e4 carriers (e3/e4) and homozy-
gous APOE e4 carriers (e4/e4) together to form the APOE
e4 carriers group and correlated presence of the APOE e4
allele with hippocampal morphometry, both (1) in the
entire sample and (2) in nondemented (pooled MCI and
controls) subjects. Throughout the article, we call these
two populations as the full ADNI cohort and nondemented
cohort, respectively.

Processing Pipeline

Figure 1 shows our overall sequence of processing. First,
given the three-dimensional (3D) MRI scans from the ADNI
baseline dataset, hippocampal substructures were seg-
mented with FIRST (Patenaude et al., 2011) and hippocam-
pal surfaces were automatically reconstructed based on the
segmentations (Han et al., 2003). Second, a conformal grid
was generated for each surface with the holomorphic 1-
form based surface conformal parameterization (Wang
et al., 2011). With this conformal grid, we computed the con-
formal representation of the surface (Gu and Vemuri, 2004),
i.e., the conformal factor and mean curvature, which repre-
sent the intrinsic and extrinsic features of the surface,
respectively. The “feature image” of a surface was com-
puted by combining the conformal factor and mean curva-
ture and linearly scaling the dynamic range into [0, 255].
Third, we registered the feature image of each surface in the
dataset to a common template with an inverse consistent
fluid registration algorithm (Shi et al., 2013a). With confor-
mal parameterization, we essentially converted a 3D surface
registration problem into a 2D image registration problem.
The flow induced in the parameter domain establishes high-

order correspondences between 3D surfaces. Finally, we
studied the differences between different diagnostic groups
with the mTBM statistics (Lepor�e et al., 2008; Wang et al.,
2010), which retain the full tensor information of the defor-
mation Jacobian matrix, together with the radial distance,
which retains information on the deformation along the sur-
face normal direction.

Hippocampus Segmentation and Surface

Reconstruction

All T1-weighted MR images were automatically seg-
mented using FIRST (Patenaude et al., 2011). FIRST is a
model-based subcortical structure segmentation and regis-
tration tool developed as part of the FSL library, which is
written mainly by members of the Analysis Group,
FMRIB, Oxford, UK. We ran the run_first_all routine with
default parameters tuned by FIRST as optimal for hippo-
campal segmentation. Among the results of the routine,
we took the three-phase image which contains the labels
of the left and right hippocampi as shown in Figure 1a.
Then the binary image for each side was obtained by a
simple thresholding process. Hippocampal surfaces were
constructed with a topology-preserving level set method
based on the binary segmentations (Han et al., 2003) and
triangular surface meshes were obtained based on the
marching cubes algorithm (Lorensen and Cline, 1987).
After mesh refinement (Shi et al., 2013a), we obtained
smooth surfaces that are suitable for generating conformal
grids as shown in Figure 1b. Finally each of the smoothed
meshes was aligned into the MNI standard space using a
global affine transformation with a nine-parameter (three
parameters for translation, three parameters for rotation,
and three parameters for scaling) matrix that was com-
puted by FIRST (Patenaude et al., 2011).

TABLE I. Demographic information of studied subjects in ADNI baseline dataset

ApoE genotype Number of subjects Gender (M/F) Education Age MMSE at baseline

AD e2/e2 0 — — — —
e2/e3 4 1/3 15.00 6 2.24 74.25 6 8.26 22.00 6 1.58
e2/e4 4 0/4 15.75 6 1.79 79.25 6 5.12 24.75 6 2.17
e3/e3 52 27/25 15.15 6 2.05 76.96 6 8.58 23.23 6 2.05
e3/e4 73 44/29 14.62 6 3.16 75.93 6 6.43 23.42 6 2.00
e4/e4 34 20/14 14.71 6 2.67 71.92 6 7.17 23.44 6 1.83

Control e2/e2 1 1/0 16 70 30
e2/e3 24 12/12 15.83 6 3.14 76.13 6 5.68 28.83 6 1.14
e2/e4 2 2/0 13.00 6 1.00 76.50 6 5.50 27.50 6 2.50
e3/e3 125 69/56 16.20 6 2.71 76.29 6 4.83 29.18 6 0.89
e3/e4 48 25/23 16.13 6 2.73 76.50 6 4.48 29.25 6 0.83
e4/e4 4 2/2 16.75 6 1.92 73.75 6 3.34 29.00 6 0.71

MCI e2/e2 0 — — — —
e2/e3 15 7/8 15.93 6 2.86 76.67 6 7.44 27.60 6 1.50
e2/e4 10 7/3 16.50 6 2.33 74.20 6 8.58 28.00 6 1.26
e3/e3 145 95/50 15.81 6 2.94 76.20 6 7.71 27.23 6 1.77
e3/e4 141 91/50 15.61 6 3.06 74.82 6 6.63 26.94 6 1.76
e4/e4 43 25/18 15.81 6 2.57 71.81 6 5.91 26.84 6 1.95
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Conformal Grid Generation

To facilitate hippocampal shape analysis, we generated
a conformal grid on each surface and used it as a canoni-

cal space for the following surface registration and multi-
variate statistical analysis. To generate a planar surface
conformal parameterization for a closed hippocampal sur-
face, we applied an automatic algorithm, topological

Figure 1.

A chart showing the key steps in our system. MR images were auto-

matically segmented by FIRST to extract the hippocampal substruc-

ture (a). After the hippocampal surfaces were constructed from

FIRST segmentations (b), we computed their conformal parameter-

izations with holomorphic 1-forms (c and d). Then feature images

were generated by combining the local conformal factor and mean

curvature that were computed from the conformal parameteriza-

tions. After the inverse consistent fluid registration was done in the

feature image domain, we deformed the surfaces using the obtained

displacements (e). The new statistics consisting of radial distance

and multivariate TBM were computed at each point on the resultant

matching surface (f). Then the Hotelling T2 test was applied to study

genetic influence of APOE e4 allele (g). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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optimization, to introduce two cuts on a hippocampal sur-
face to convert it into a genus zero surface with two open
boundaries (Shi et al., 2013a). The locations of the two cuts
are at the front and back of the hippocampal surface, rep-
resenting its anterior junction with the amygdala, and its
posterior limit as it turns into the white matter of the for-
nix. They are biologically valid and consistent landmarks
across subjects. Given the hippocampal tube-like shape,
these landmark curves are automatically determined by
checking the extreme points when searching along the first
principle direction of geometric moments of surface (Elad
et al., 2004; Wang et al., 2011; Zhang and Lu, 2004). For
quality control purposes, we have manually checked the
consistency of all landmark curves. Then the exact 1-form
basis was computed with the open boundary surface
(Wang et al., 2010). Later we computed the basis for all
closed but nonexact 1-forms. The harmonic 1-form basis is
the union of the exact 1-form basis and the closed but non-
exact 1-form basis. By solving a linear system with the
harmonic 1-form basis, we obtained the conjugate of the
exact 1-form basis. The exact 1-form basis and its conju-
gate 1-form form the holomorphic 1-form basis, which
induces a conformal grid on the hippocampal surface. Fig-
ure 1c,d shows two example hippocampal surfaces with
their conformal grids. In both pictures, the overlaid check-
erboard texture is used to demonstrate the angle preserv-
ing property, i.e., the right angles on the planar
checkerboard texture are well preserved after they are
overlaid on hippocampal surfaces.

The conformal parameterization of a surface contains a
number of geometric features about the surface. In our sys-
tem, we computed the local conformal factor and mean cur-
vature, which uniquely determine a closed surface in 3D, up
to a rigid motion (Gu et al., 2004). Conformal factor is the
area ratio of an infinitesimal region around a point on the
surface and an infinitesimal region around the same point
on the planar parameter domain. It represents the intrinsic
features of a surface. By contrast, the mean curvature repre-
sents the extrinsic features of a surface. Both measurements,
the conformal factor and mean curvature, are local features
which are defined on each surface vertex. Since the confor-
mal factor and mean curvature encode both intrinsic struc-
ture and 3D embedding information, we call them the
surface conformal representation. In our framework, conformal
representation is adopted as surface features for automated
surface registration. As shown in Figure 1e, we summed up
the conformal factor and mean curvature and linearly scaled
the dynamic range of the summation into [0, 255] to form
the feature image of the surface.

Hippocampal Surface Registrations

Similar to other tensor-based morphometry (TBM) work
(e.g., Chung, 2012; Davatzikos et al., 1996; Hua et al.,
2011), we need to register each individual hippocampal
surface to a common template surface for morphometric
analysis. With the conformal parameterization and confor-
mal representation, we convert the 3D surface registration

problem into a 2D image registration problem. The well-
studied image fluid registration algorithm (Bro-Nielsen
and Gramkow, 1996; D’Agostino et al., 2003) can be easily
applied to induce a deformation flow in the parameter
domain, which in turn enforces a high-order correspon-
dence in 3D. We introduced a correction term in the tradi-
tional Navier–Stokes equation to compensate for the
parameterization area distortion. With conformal parame-
terization, the correction term was simply the conformal
factor and the surface fluid registration can be easily
developed by extending the Navier–Stokes equation to
drive flows on general surfaces, regardless of the underly-
ing parameterizations. We call this method surface fluid
registration (Shi et al., 2013a).

Furthermore, most image registration algorithms in the
literature are not symmetric, i.e., the correspondences
established between the two images depend on which
image is assigned as the deforming image and which is
the nondeforming target image. An asymmetric algorithm
can be problematic as they tend to penalize the expansion
of image regions more than shrinkage (Rey et al., 2002).
Thus, in our system, we further extended the surface fluid
registration method into an inverse consistent framework
(Leow et al., 2005). The obtained surface registration is dif-
feomorphic. An example is as shown in Figure 1e. For
details of our inverse consistent surface fluid registration
method, we refer to (Shi et al., 2013a).

Surface Multivariate Morphometry Statistics

Our multivariate morphometry statistical analysis con-
sists of mTBM (Lepor�e et al., 2008; Wang et al., 2009) and
radial distance analysis (Pizer et al., 1999; Thompson et al.,).
This combines complementary information from mTBM,
which measures deformation within surfaces, and radial dis-
tance, which measures hippocampal size in terms of the sur-
face normal direction.

The mTBM statistics have been carefully studied in brain
structure morphology analyses and they can demonstrate
improved signal detection power relative to more standard
Jacobian matrix statistics (Shi et al., 2013a, 2013b; Wang
et al., 2011, 2012, 2013). As mTBM retains the full informa-
tion in the deformation tensor fields, it is very sensitive to
deformations such as rotation, dilation, and shear along the
surface tangent direction, which is perpendicular to the sur-
face normal. Given the hippocampal tube-like shape, its
atrophy and enlargement directly affect the distance from
each surface point to its medial core (analogous to the center
line in a tube). We call this distance the radial distance of a
hippocampal surface. Radial distance mainly describes mor-
phometric changes along the surface normal direction and
has been applied in many subcortical studies (Bansal et al.,
2000; Gerig et al., 2001; Morra et al., 2009b; Pizer et al., 1999;
Thompson et al., ). Thus, these two statistics are comple-
mentary to each other. In this article, we adopted the multi-
variate statistics proposed in (Wang et al., 2011) to study
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shape differences between groups with different diagnosis,
APOE e4 dose, and healthy controls.

As in our prior work (Wang et al., 2011), the mTBM was
computed as a 3 3 1 vector consisting of the “Log-
Euclidean metric” (Arsigny et al., 2006), computed as the
matrix logarithm of the deformation tensor. Given a hip-
pocampal surface with the conformal parameterization as
described in Conformal Grid Generation section, the radial
distance was computed as the distance from each paramet-
ric surface point to the center of 3D positions of the iso-u
curves in the parameter domain (Wang et al., 2011), as
shown by the red curves in Figure 1f. We formed the new
multivariate surface morphometry statistic as a 4 3 1 vec-
tor consisting of the mTBM and radial distance.

Statistical Group Difference

To assess group differences with multivariate statistics,
we applied Hotelling’s T2 test (Cao and Worsley, 1999;
Hotelling, 1931; Kim et al., 2012; Thirion et al., 2000) on
sets of values in the log-Euclidean space of the deforma-
tion tensors. For each surface vertex, given two groups of
n 3 4-dimensional vectors, Si;i51; 2; . . . ; p;Tj;j51; 2; . . . ; q;,
we used the Mahalanobis distance M to measure the
group mean difference,

M5
NSNT

NS1NT
ð�S2�TÞ TR21ð�S2�TÞ:

where NS and NT are the numbers of subjects in the two
groups, �S and �T are the means of the two groups and R is
the combined covariance matrix of the two groups (Lepor�e
et al., 2008; Wang et al., 2010, 2011).

Specifically, for each hippocampal surface point, we ran a
permutation test with 10,000 random assignments of subjects
to different groups to estimate the statistical significance of

the areas with group difference in surface morphometry. We
also used a predefined statistical threshold of P 5 0.05 at each
surface point to estimate the overall significance of the group
difference maps by nonparametric permutation testing
(Holmes et al., 1996; Nichols and Holmes, 2002). In each case,
the covariate (group membership) was permuted 10,000 times
and a null distribution was developed for the area of the aver-
age surface with group difference statistics above the prede-
fined threshold in the significance map. The overall significance
of the map is defined as the probability of finding, by chance
alone, a statistical map with at least as large a surface area
beating the predefined statistical threshold of P 5 0.05. This
omnibus P value is commonly referred to as the overall signif-
icance of the map (or the features in the map), corrected for
multiple comparisons. It basically quantifies the level of sur-
prise in seeing a map with this amount of the surface exceed-
ing a predefined threshold, under the null hypothesis of no
systematic group differences. The permutation test on the
overall rejection areas is used to evaluate the significance of
overall experimental results and correct the overall significant
P values for multiple comparisons. Figure 1g shows an exam-
ple of the significance p-map with uncorrected P values,
which is used to visualize the surface regions with significant
differences between groups.

RESULTS

Effects of APOE e4 Genotype

To explore whether the presence of the APOE e4 allele
was associated with greater hippocampal atrophy, we con-
ducted two experiments to study the effects of APOE e4
genotype on hippocampal morphometry in two populations:

Figure 2.

Illustration of local shape differences (P values) between the

APOE e4 noncarriers (e3/e3, N 5 322) and carriers (e3/e4 and

e4/e4, N 5 343) in the full ADNI cohort. Nonblue colors show

vertices with statistical differences, at the nomial 0.05 level, uncor-

rected. The overall significance after multiple comparisons with

permutation test is P < 0.0002. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 3.

Illustration of local shape differences (P values; a) between the

APOE e4 noncarriers (e3/e3, N 5 270) and carriers (e3/e4 and

e4/e4, N 5 236) in the nondemented cohort (MCI and con-

trols). Nonblue colors show vertices with statistical differences,

at the nomial 0.05 level, uncorrected. The overall significance

after multiple comparisons with permutation test is P < 0.0027.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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1. APOE e4 carriers versus noncarriers in the full ADNI
cohort;

2. APOE e4 carriers versus noncarriers in the nonde-
mented cohort.

The experiments aimed to determine if the APOE e4 allele
was associated with hippocampal atrophy in all subjects or
in subjects who have not yet developed AD. By contrast
with (Shi et al., 2013a), the study in this article is more rig-
orous as the APOE e4 noncarriers are those subjects who
are homozygous noncarriers (e3/e3). Subjects with one e2
allele, i.e., e2/e3 and e2/e4 were excluded due to the possi-
ble protective effect of e2 allele for AD (Morra et al., 2009b).

In the 725 subjects of known APOE e4 genotype, there
were 322 noncarriers (all homozygous for APOE e3) and
343 APOE e4 carriers. The nondemented cohort consisted
of 506 subjects who were either MCI or control subjects,
including 270 e4 noncarriers and 236 e4 carriers. Figure 2
shows the statistical p-map for the full ADNI cohort (N 5

665; 322 noncarriers and 343 carriers). Nonblue colors show
vertices with statistical differences at the nominal 0.05 level,
uncorrected for multiple comparisons. As shown in Figure
2, the APOE e4 carriers differed significantly from the non-
carriers (P < 0.0002). Figure 3 shows the p-map for the non-
demented cohort (N 5 506; 270 noncarriers and 236
carriers). After correcting for multiple comparisons, the dif-
ference remained highly significant (P < 0.0027).

APOE e4 Dose Effects: Difference Comparison

Between Heterozygous and Homozygous APOE

e4 Carriers

To explore whether APOE e4 allele dose affects hippo-
campal surface morphometry and how this atrophy is

related to normal aging, we studied hippocampal mor-
phometry between persons homozygous for the APOE e4
allele and those heterozygous for this allele. We studied
group differences between heterozygous and homozygous
APOE e4 subjects in the full ADNI cohort, and in the non-
demented APOE e4 carrier cohort in ADNI baseline
dataset.

Among the APOE e4 carriers, 81 subjects were homozy-
gous (e4/e4) and 262 were heterozygous (e3/e4) for APOE
e4 allele. Figure 4 shows the statistical p-map for all APOE
e4 subjects. The e4 heterozygotes differed significantly
from the e4 homozygotes (P < 0.0129 after multiple com-
parisons correction with the permutation test). Excluding
those APOE e4 carriers in the AD group, the nondemented
APOE e4 carrier group consisted of 189 e4 heterozygotes
and 47 homozygotes. Figure 5 shows the statistical p-map
for nondemented APOE e4 carriers. However, after cor-
recting for multiple comparisons, the effect was not signifi-
cant (P 5 0.142). (There may be some subthreshold
difference for the right hippocampus, but a larger sample
size would be needed to detect it, if present.)

APOE e4 Dose Effects: Difference Comparison

Between APOE e4 Noncarriers and Carriers

With Different APOE e4 Dose

To further study the APOE e4 dose effects, we divided
the subjects into three groups, APOE e4 homozygotes, het-
erozygotes, and noncarriers. We performed group differ-
ence analysis between two groups and compared the
statistical power. We hypothesized that morphometric dif-
ferences would be greater in APOE e4 homozygotes than

Figure 4.

Illustration of local shape differences (P values) between the heterozy-

gous APOE e4 carriers (e3/e4, N 5 262) and the homozygous APOE

e4 carriers (e4/e4, N 5 81) in the full ADNI cohort. Nonblue colors

show vertices with statistical differences, at the nomial 0.05 level,

uncorrected. The overall significance after multiple comparisons with

permutation test is P < 0.0129. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 5.

Illustration of local shape differences (P values) between the het-

erozygous APOE e4 carriers (e3/e4, N 5 189) and the homozy-

gous APOE e4 carriers (e4/e4, N 5 47) in the nondemented

cohort. Nonblue colors show vertices with statistical differen-

ces, at the nomial 0.05 level, uncorrected. The overall signifi-

cance after multiple comparisons with permutation test is P <
0.142. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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heterozygotes, who would in turn show greater deform-
ities compared to e4 noncarriers.

Figures 6 and 7 show how APOE e4 noncarriers differ in
hippocampal shape from APOE e4 heterozygotes and
homozygotes in the full ADNI cohort and the nondemented
cohort, respectively. Figure 6 shows the statistical p-map for
the full ADNI cohort. Nonblue colors show vertices with
statistical differences, at the nominal 0.05 level, uncorrected.
As shown in Figure 6a, the APOE e4 heterozygotes differed
from e4 noncarriers (P < 0.0031). Figure 6b shows the statis-
tical p-map for the full ADNI cohort and demonstrates that
the APOE e4 homozygotes differed from e4 noncarriers (P
< 0.0001). Figure 6b also shows more extensive statistically
significant areas of difference than those in Figure 6a, for
both the left and right hippocampal surfaces.

After excluding AD subjects from these three groups,
we repeated the group difference analysis among APOE
e4 noncarriers (e3/e3, N 5 270), e4 heterozygotes (e3/e4,
N 5 189), and e4 homozygotes (e4/e4, N 5 47). Figure 7a
shows the statistical p-map for the nondemented cohort [N

5 459; 270 noncarriers (e3/e3) and 189 APOE e4 heterozy-
gous carriers (e3/e4)]. The APOE e4 heterozygotes differed
from the e4 noncarriers (P < 0.017). Figure 7b shows the
p-map for the nondemented cohort [N 5 317; 270 noncar-
riers (e3/e3) and 47 APOE e4 homozygous carriers (e4/
e4)] and showed that the APOE e4 homozygotes differed
from the e4 noncarriers (P < 0.006). Similar to Figure 6,
the homozygous vs. noncarrier comparison showed more
extensive areas of difference in the uncorrected p-maps.

In Figure 8, the cumulative distribution functions of the
P values observed for the contrast of APOE e4 carriers ver-
sus noncarriers are plotted against the corresponding
P value that would be expected, under the null hypothesis
of no group difference, for the four experiments shown in
Figures 6 and 7. For null distributions, the cumulative dis-
tribution of P values is expected to fall approximately along
the dotted line. Large deviations from that curve are associ-
ated with significant signal, and greater effect sizes repre-
sented by larger deviations. The theory of false discovery
rates (Benjamini and Hochberg, 1995) gives formulae for
thresholds that tend to control false positives at a known

Figure 7.

Illustration of local shape differences (P values) between the

APOE e4 noncarriers (e3/e3, N 5 270) and heterozygous car-

riers (e3/e4, N 5 189; a), between the APOE e4 noncarriers

(e3/e3, N 5 270) and homozygous carriers (e4/e4, N 5 47; b),

in the nondemented cohort. Nonblue colors show vertices with

statistical differences, at the nomial 0.05 level, uncorrected. The

overall significances after multiple comparisons with permutation

test are P < 0.017 for (a) and P < 0.006 for (b). [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 6.

Illustration of local shape differences (P values) between the

APOE e4 noncarriers (e3/e3, N 5322) and heterozygous car-

riers (e3/e4, N 5 262; a), between the APOE e4 noncarriers

(e3/e3, N 5 322) and homozygous carriers (e4/e4, N 5 81; b),

in the full ADNI cohort. Nonblue colors show vertices with sta-

tistical differences, at the nomial 0.05 level, uncorrected. The

overall significances after multiple comparisons with permutation

test are P < 0.0031 for (a) and P < 0.0001 for (b). [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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rate. This protocol was adopted in several of our prior
articles (Shi et al., 2013a, 2013b; Wang et al., 2010, 2011,
2013) as an empirical standard to compare effects in group
difference analysis. We note that the deviation of the statis-
tics from the null distribution generally increases from het-
erozygotes vs. noncarriers to homozygotes vs. noncarriers in
both the full ADNI cohort and nondemented cohort studies.

As such, although more rigorous statistical tests are cer-
tainly necessary, from the p-maps and CDF plots, we can
observe the trend that in all groups, APOE e4 homozy-
gotes appear to differ more from noncarriers than do e4
heterozygotes, suggesting a clear APOE e4 dose effect.

DISCUSSION

Prior studies of APOE e4 carriers (Caselli et al., 2009,
2010, 2011; Reiman, 2007) have helped to define and char-
acterize preclinical AD with possible implications for pri-
mary AD prevention research. Essential to this effort are
sensitive biomarkers that can track disease progression in
the absence of symptoms. Imaging endophenotypes are

promising, but further refinement of their relevance in
early stage disease is needed (Frisoni et al., 2010). MRI
hippocampal morphometry may help move disease detec-
tion earlier and evaluate the effectiveness of promising
disease-slowing and prevention therapies in a shorter time
and a more cost-effective way. Much recent research has
used brain imaging to study how APOE e4 allele affects
hippocampal morphometry in patients and cognitively
normal people (Farrer et al., 1997; Lehtovirta et al., 1995;
Lemaitre et al., 2005; Morra et al., 2009a, 2009b; Mueller
and Weiner, 2009; Pievani et al., 2011; Qiu et al., 2009;
Reiman et al., 1996; Shi et al., 2013a).

Our study has two main findings. First, as one of the larg-
est hippocampal morphometry studies to date, involving
725 baseline ADNI subjects, we found that, for the nonde-
mented subjects, the APOE e4 genotype is associated with
greater hippocampal deformation. Second, our novel hippo-
campal surface morphometry method (Shi et al., 2013a,
2013b), which involves conformal mapping, inverse consist-
ent surface fluid registration and multivariate statistical
analysis, automatically processed all ADNI baseline imag-
ing data and was as or more sensitive to APOE e4 effects
than some previously reported methods (e.g., Morra et al.,
2009a, 2009b), that have used the ADNI dataset.

Our work is related to the shape modeling of hippocam-
pal surfaces. The Large Deformation Diffeomorphic Metric
Mapping (LDDMM; Joshi and Miller, 2000) has been used
to deform labeled anatomical templates of the hippocam-
pus onto new images, using a combination of manual
landmarking of points on the hippocampus and 3D fluid
image registration (Csernansky et al., 2000; Haller et al.,
1996; Wang et al., 2007). In the LDDMM method, the sur-
face of the hippocampus is parcellated a priori using a
neuroanatomical template into three zones to approximate
the locations of underlying subfields, and LDDMM is used
to generate the hippocampal surfaces of all subjects and to
register the surface zones across subjects. Another impor-
tant shape modeling approach models the hippocampal
surface using spherical harmonic functions (Gutman et al.,
2009; Shen et al., 2009; Styner et al., 2004), and uses the
coefficients of the harmonic expansion to infer shape dif-
ferences between patient groups and controls. Other meth-
ods (Van Leemput et al., 2009; Wang et al., 2003, 2006;
Yassa et al., 2010; Yushkevich et al., 2010) segment hippo-
campus into different regions and analyze the volume and
shape changes in these subfields. These methods compute
volumetric image registration between template and indi-
vidual subject and translate and visualize the deformation
on surfaces. In hippocampal subfield shape analysis work
(Apostolova et al., 2010a; Cho et al., 2011; Morra et al.,
2009a; Qiu et al., 2009; Shi et al., 2013a; Thompson et al., ),
the morphometry comparison was performed by register-
ing hippocampal surfaces with geometric feature analysis.
This type of methods affords the benefits of high resolu-
tion information from the hippocampal surface representa-
tion and efficient numerical solutions to register and
analyze surface deformation across subjects.

Figure 8.

Illustration of cumulative distribution functions of the P values

observed for the contrast of APOE e4 carriers versus noncar-

riers, plotted against the corresponding P value that would be

expected under null hypothesis of no group difference, for the

four experiments shown in Figures 6 and 7. We note that the

deviation of the statistics from the null distribution generally

increases from heterozygotes vs. noncarriers to homozygotes

vs. noncarriers in both the full ADNI cohort and nondemented

cohort studies, suggesting that the APOE e4 allele dose may be

associated with more accelerated atrophy of hippocampus.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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In our APOE e4 carrier vs. noncarriers experiments,
comparisons with both the nondemented and the full
ADNI cohorts yielded significant differences that were
apparently more pronounced on the left hippocampal sur-
face. A prior study (Morra et al., 2009b), which conducted
similar experiments with a smaller number of images in
ADNI baseline dataset (N 5 490) was only able to achieve
significance for the left hippocampal surfaces on the full
ADNI cohort but did not detect significant differences in
the nondemented cohort. That aside, our finding of more
significant areas on the left than on the right side, agree
with (Morra et al., 2009b), despite differences in our image
segmentation methods, surface parameterization and regis-
tration algorithms, and statistics. Our results also agree
with another APOE e4 study with manually segmented
hippocampal surfaces (Pievani et al., 2011).

To our knowledge, this is the first study to use a surface-
based approach to study APOE e4 gene dose effects on the
hippocampal morphometry differences among subjects
with two copies, one copy and no copies of the APOE e4
allele. Although most current approaches use cortical and
substructural volume measures (den Heijer et al., 2010;
Dewey et al., 2010; Holland et al., 2009; Jack et al., 2003,
2004; Ridha et al., 2008; Vemuri et al., 2008a, 2008b; Wolz
et al., 2010), recent research (Apostolova et al., 2010b, 2010c;
Chou et al., 2009; Costafreda et al., 2011; Ferrarini et al.,
2008; Luders et al., 2012; Madsen et al., 2010; Morra et al.,
2009b; Qiu et al., 2010; Styner et al., 2005; Thompson et al., ;
Yang et al., 2012) has demonstrated that surface-based sub-
regional structure analysis can offer some advantages over
volume measures. Our work identified significant differen-
ces in hippocampal shape between subjects heterozygous
and homozygous for APOE e4 allele in the full ADNI study
but did not detect such a difference on the nondemented
cohort. When comparing these two groups with homozy-
gous noncarriers (e3/e3), we detected significant differences
in all four experiments. Furthermore, our empirical exami-
nation of the effect size clearly suggested that the homozy-
gous APOE e4 carriers showed greater atrophy than
heterozygous APOE e4 carriers in both full ADNI and non-
demented cohorts.

Consistent with prior studies of APOE e4 effects on hip-
pocampal surfaces (e.g., Morra et al., 2009b; Pievani et al.,
2011), both heterozygous and homozygous APOE e4
patients show greater deformities for the left than the right
hippocampus. By contrast with comparisons of APOE e4
carriers vs. noncarriers, differences between the heterozy-
gous and homozygous APOE e4 groups were greater on
the right side than on the left. Some prior research on hip-
pocampal volume (Farrer et al., 1997; Lemaitre et al., 2005)
also found that when comparing the heterozygous and
homozygous APOE e4 groups, the right hippocampus
may have more pronounced atrophy than the left side.
However, contradictorily, when comparing these two
groups with noncarriers, some other works (Farrer et al.,
1997; Lemaitre et al., 2005) found greater atrophy on the
right side. The inconsistency may be due to the algorithms

used, as with surface-based method and the new statistics
we introduced, more local subtle changes may be cap-
tured, which may be missed by the global volume-based
method. More systematic validation and comparison stud-
ies are warranted.

Another important goal is to study differences between
APOE e4 noncarriers and carriers within the cognitively
normal group, i.e., healthy control subjects. As there were
only two control subjects homozygous for the APOE e4
allele, tests of dose effects were underpowered in healthy
control group. Thus we only compared APOE e4 carriers
vs. noncarriers within the control group. Our experiments
[N 5 177, 125 noncarriers (e3/e3) vs. 52 APOE e4 carriers
(e3/e4 or e4/e4)] identified greater deformities on the left
hippocampus than the right side but no statistically signifi-
cant differences were detected after multiple comparisons
correction (P 5 0.34). This is perhaps due to the low num-
ber of healthy control individuals with the APOE e4 geno-
type (Table I). The association between APOE e4 and
hippocampal atrophy may be detectable in a much larger
sample.

In our work, we applied a nonparametric, multivariate
permutation testing on Hotelling’s T2 statistics. Due to the
Hotelling’s T2 test, comparisons of different genotype
groups were only conducted pairwisely. However, the
multivariate analysis of variance (MANOVA; Smith et al.,
1962) may be also applicable to analyze our multivariate
statistics. MANOVA is a generalized form of univariate
analysis of variance. It is used when there are two or more
dependent variables. MANOVA has been successfully
applied to human brain mapping research (e.g., Bartley
et al., 1997; Poline et al., 1996). It may be particularly use-
ful for us to check the hippocampal morphometry differ-
ences among subjects with two copies, one copy and no
copies of the APOE e4 allele. We plan to study MANOVA
in our ongoing AD prevention research.

The current work focuses on describing structural differ-
ences at the group level and establishing the correlation
between morphometry changes and genetic variance. The
current work mainly explores the difference among multi-
variate statistics without considering the trends of the metric
changes. Investigating the trend for multi-variables as a
whole (in the context of multivariate type analysis) might be
difficult, but it would be useful for us to explore this “trend
analysis” on individual statistics. For example, a medically
interesting question could be that, among these three groups
(noncarriers, heterozygotes and homozygotes of e4), which
individual statistics is more monotonic. In our prior work
(Shi et al., 2013b), we used TBM to visualize the metric
trend for prematurity study but it may not be able to
directly explain the outcome achieved with mTBM features.
We plan to explore more along this direction in our future
work. The answers to these questions will make our results
more intuitive to be understood and eventually help our
methods to be adopted quickly by the medical community.

This study has two limitations. First, as the participants
are elderly, the ADNI subjects may not be the best
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representative of patient populations in clinical trials. Our
ongoing work that studies the Arizona APOE cohort
(Caselli et al., 2009) which consists of cognitively normal
subjects with a wider age span may validate or extend our
current ADNI findings. We have obtained another cohort
dataset from Australian Imaging, Biomarkers and Lifestyle
Study of ageing (AIBL, 2013; Ellis et al., 2009). In addition,
our ongoing research on Enhancing Neuro Imaging Genet-
ics through Meta-Analysis (Thompson et al., in press) may
potentially provide new and rich datasets for cross-
validation. Replication attempts will be made to corrobo-
rate our current biomedical discoveries. Second, because of
the extremely low number of APOE e2 carriers in ADNI
dataset (Table I), we excluded them from our APOE e4
studies but did not perform any additional studies to
show that APOE e2 might be protective.

CONCLUSIONS

We recently developed our MRI-based computer-
assisted hippocampal surface morphometry system that
uses conformal maps to induce well-organized grids on
surfaces. This simplifies a number of downstream compu-
tations of derivatives and metrics. In addition, the surface
metric tensor, computable from the conformal grid, has a
multivariate structure that contains a great deal of infor-
mation on local surface geometry. Its components follow a
log-Euclidean law that affects their possible range of val-
ues and their statistical distributions. The resulting set of
surface tensor methods encodes a great deal of informa-
tion that would otherwise be inaccessible, or overlooked.

We applied our system to study hippocampal shape dif-
ferences between subjects in the ADNI dataset with two
copies, one copy, and no copies of the APOE e4 allele, a
common susceptibility gene for late-onset AD. We found
significant differences between APOE e4 carriers and non-
carriers in both full ADNI and nondemented cohorts, with
more deformation of the left hippocampus than the right.
Within the full ADNI cohort, the e4 homozygotes demon-
strated more deformities than the e4 heterozygotes. Our
work supports prior reports that the APOE e4 genotype is
associated with accelerated brain atrophy along with dis-
ease progression, and that these differences can be
mapped to morphological changes in subsections of the
hippocampal surface. Future studies will test this frame-
work in cognitively normal subjects for the detection of
preclinical AD.
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