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Methotrexate-mediated inhibition of nuclear factor
iB activation by distinct pathways in T cells and
fibroblast-like synoviocytes
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Benjamin C. Wells3, Nancy J. Olsen4 and Thomas M. Aune1,2

Abstract

Objectives. Nuclear factor kB (NF-kB) is a critical activator of inflammatory processes and MTX is one of

the most commonly prescribed DMARDs for treatment of RA. We sought to determine whether MTX

inhibited NF-kB activity in RA and in lymphocytes and fibroblast-like synoviocytes (FLSs) and to define

underlying mechanisms of action.

Methods. An NF-kB luciferase reporter plasmid was used to measure NF-kB activation across experi-

mental stimuli. Flow cytometry was used to quantify changes in intracellular protein levels, measure levels

of reactive oxygen species and determine apoptosis. Quantitative RT-PCR was used to identify changes in

MTX target genes.

Results. In T cell lines, MTX (0.1 mM) inhibited activation of NF-kB via depletion of tetrahydrobiopterin

(BH4) and increased Jun-N-terminal kinase (JNK)-dependent p53 activity. Inhibitors of BH4 activity or

synthesis also inhibited NF-kB activation and, similar to MTX, increased JNK, p53, p21 and JUN activity.

Patients with RA expressed increased levels of phosphorylated or active RelA (p65) compared with con-

trols. Levels of phosphorylated RelA were reduced in patients receiving low-dose MTX therapy. In con-

trast, inhibition of NF-kB activation by MTX was not mediated via BH4 depletion and JNK activation in

FLSs, but rather was completely prevented by adenosine receptor antagonists.

Conclusion. Our findings support a model whereby distinct pathways are activated by MTX in T cells and

FLSs to inhibit NF-kB activation.

Key words: rheumatoid arthritis, methotrexate, Jun-N-terminal kinase, p53, nuclear factor-kappaB, T cell, fibro-
blast-like synoviocytes.

Introduction

RA is the most common serious autoimmune disease, af-

fecting 1% of the world’s population [1]. MTX is the

standard of care for the treatment of RA, but the precise

mechanism by which MTX exerts its anti-inflammatory ef-

fects remains incompletely understood. MTX was origin-

ally designed in the 1940s as a folic acid antagonist for the

treatment of malignancy. In cancer, folate antagonism via

competitive inhibition of dihydrofolate reductase (DHFR)

decreases de novo methyl donors tetrahydrofolate and

methyltetrahydrofolate, blocking purine and pyrimidine

biosynthesis and effectively halting DNA replication and

cell proliferation [2]. It was not until the late 1970s and

early 1980s that MTX became widely used in RA, but it

has since emerged as the basis by which all other thera-

pies for RA are judged [3, 4]. At the time, it was inferred

that the anti-inflammatory and immunomodulatory effects

of MTX stem from a similar biochemical pathway.

However, work spanning the last three decades has
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indicated that there is still much to learn about the func-

tional role of MTX in the management of RA.

MTX is polyglutamated once taken up by cells. MTX

polyglutamates are believed to represent its active form

and levels of MTX polyglutamates correlate with clinical

efficacy in patients with RA [5]. A prevailing theory has

been that anti-inflammatory effects of MTX stem from

inhibition of aminoimidazolecarboxamidoribonucleotide

(AICAR) transformylase, causing increased intracellular

AICAR levels. Increased AICAR levels inhibit adenosine

monophosphate deaminase and adenosine deaminase,

leading to accumulation and release of adenosine and

subsequent A2A and A3 adenosine receptor activation,

producing anti-inflammatory properties [6�12]. However,

since folate supplementation does not reverse the anti-

inflammatory effects of MTX in vivo, the mechanism by

which MTX exerts its vulnerary effects in RA may stem

from additional biochemical pathways [13]. DHFR also

catalyses reduction of dihydrobiopterin (BH2) to tetrahy-

drobiopterin (BH4), which is inhibited by MTX [14�17]. BH4

is a necessary cofactor of all nitric oxide synthases (NOSs)

and loss of BH4 uncouples NOS, leading to loss of NO

synthesis and an increase in the synthesis of reactive

oxygen species (ROS) such as H2O2. MTX-mediated

NOS uncoupling and ROS production activates Jun-

N-terminal kinase (JNK) and JNK-dependent induction of

p53 and p21 and increased sensitivity to apoptosis via

intrinsic and extrinsic pathways. Subjects with RA exhibit

reduced levels of JNK, p21 and p53 in peripheral blood

mononuclear cells (PBMCs) while subjects with RA receiv-

ing MTX possess normal levels of JNK, p21 and p53

in PBMCs, suggesting that MTX-mediated inhibition of

reduction of BH2 to BH4 also contributes to the thera-

peutic effects of MTX in RA, possibly by eliminating self-

reactive T cells [18, 19].

Excess TNF-a production plays a central role in RA

pathogenesis, as evidenced by the efficacy of therapies

that selectively reduce TNF-a levels in vivo. Activation of

the transcription factor nuclear factor kB (NF-kB) is a

major cellular response to TNF-receptor signalling

[20�22]. MTX is also thought to reduce inflammation by

lowering levels of TNF-a and/or NF-kB activity [23].

However, mechanistically it is not apparent if and how

any of the pathways activated by concentrations of MTX

achieved in vivo by standard low-dose therapy might in-

hibit NF-kB activity. Further, it is unclear if different cells

involved in RA pathogenesis, e.g. T lymphocytes and

fibroblast-like synoviocytes (FLSs), respond to MTX by

activating a single common pathway or multiple path-

ways. Since these pathways are similarly activated in

both primary cells and cell lines, to address these ques-

tions we determined whether low concentrations of MTX

inhibited NF-kB activation in tissue culture models in both

Jurkat T lymphocytes and FLSs and in vivo in subjects

with RA. To do so we employed an NF-kB reporter con-

struct in cell-based assays and measured phosphoryl-

ation of RelA (p65) as an indicator of NF-kB activity

in vivo. Our studies in Jurkat T cells demonstrate that

MTX inhibits NF-kB activation via MTX-dependent

depletion of BH4, increased ROS synthesis and JNK and

p53 activation. Further, we find that a BH4 antagonist or

inhibition of BH4 synthesis also stimulates JNK phosphor-

ylation and induces p53, leading to decreased NF-kB ac-

tivation. In vivo, RA PBMCs exhibit elevated levels of

phosphorylated p65 (P-p65) relative to control PBMCs.

Levels of P-p65 are near those of control PBMCs in

PBMCs from RA subjects taking MTX. In contrast to

these results, in FLSs MTX fails to induce ROS synthesis,

JNK activation and downstream effects, apparently be-

cause FLSs express extremely low levels of NOS en-

zymes. However, MTX also inhibits NF-kB in FLSs,

which appears to be dependent upon adenosine release

and activation of A2A and A3 adenosine receptors. Our

data are consistent with the notion that two independent

pathways activated by MTX target two distinct cell lin-

eages to produce anti-inflammatory effects in RA.

Methods

Drugs and reagents

MTX, (6R)-5,6,7,8-BH4, caffeine, theophylline, BI-

78D3, 2,4-diamino-6-hydroxypyrimidine (DAHP) and 3-

[4,5-dimethylthiazol-2-yl]-2,5-dipehyltetrazolium bromide

(MTT) were from Sigma-Aldrich (St Louis, MO, USA).

4-amino-7,8-dihydro-L-biopterin (4-ABH4) was from

Schircks Laboratories (Jona, Switzerland). L-JNKi1 was

from Enzo Life Sciences (Farmingdale, NY, USA). Recom-

binant human TNF-a was from Becton Dickinson

(BD) Biosciences (Bedford, MA, USA). The following

primary antibodies were used: monoclonal rabbit anti-

phospho-NF-kB p65 (Ser536) (93H1) (3033; Cell Signalling

Technologies, Danvers, MA, USA), polyclonal anti-phos-

pho-JNK pT183/pY185 (558268; BD), polyclonal rabbit

anti-p53 (NB200-171; Novus Biologicals, Littleton, CO,

USA), polyclonal rabbit anti-p21 (ab7960; Abcam, Cam-

bridge, UK), monoclonal mouse TRAILR1 (ab18362;

Abcam) and monoclonal rabbit anti-PUMA (ab33906;

Abcam). Fluorescein isothiocyanate-conjugated goat anti-

rabbit Ig (554020; BD) was used as secondary antibody. For

studies with human PBMCs, the following cell surface mar-

kers were used from BD Biosciences: Pacific Blue mouse

anti-human CD4 (558116), Alexa Fluor 700 mouse anti-

human CD8 (557945), APC mouse anti-human CD19

(555415) and PE mouse anti-human CD14 (562691). The

NF-kB-luciferase reporter (NF-kB-luc) construct containing

five kB elements was a gift from Dr Dean W. Ballard (Van-

derbilt University, Nashville, TN, USA). JNK-1 and JNK-2

dominant negative (DN) mutants were from the laboratory

of Dr Roger J. Davis (University of Massachusetts Medical

School, Worcester, MA, USA). The p53-DN construct was

from the laboratory of Dr William Kaelin, Jr (Harvard Medical

School, Boston, MA, USA). Plasmids were obtained from

the Addgene repository (Cambridge, MA, USA).

Cell culture

Cells were cultured in RPMI 1640 medium (1 mg/ml folic

acid) supplemented with fetal bovine serum (FBS) at 10%

(v/v; Jurkat, human PBMCs) or 20% (v/v; FLSs), 1% (v/v)
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penicillin/streptomycin and 1% (v/v) L-glutamine at 37�C in

a humidified atmosphere of 5% CO2. Jurkat T cells were

obtained from the American Type Culture Collection

(ATCC, Manassas, VA, USA). FLSs from patients with

RA were a generous gift from Dr James W. Thomas

(Vanderbilt University). FLSs were isolated from patients

with RA undergoing joint replacement surgery.

Experiments were performed using established methodol-

ogies found in previous studies [24, 25]. Isolated PBMCs

were activated with plate-bound anti-CD3 (10 mg/ml;

OKT3 Clone; ATCC) in complete RPMI 1640 medium sup-

plemented with soluble anti-CD28 (1 mg/ml; BD

Biosciences) for 72 h.

Transient transfections and luciferase measurements

Jurkat T cells were transfected using diethylaminoethyl

(DEAE)�dextran. Cells were incubated for 10 min at

room temperature with 1mg of NF-kB-luc construct per

1.0�106 cells in a solution of 0.5 mg/ml DEAE�dextran

in Tris-buffered saline. Cells were resuspended in com-

plete RPMI 1640 culture medium with 100 mM chloroquine

diphosphate and incubated at 37�C for 1 h. Immediately

following chloroquine treatment, cells were washed and

resuspended in complete culture medium and incubated

overnight prior to further experimental treatment. FLS and

PBMC cultures were transfected using Lipofectamine-

2000 (Life Technologies, Grand Island, NY, USA) accord-

ing to the manufacturer’s protocol. Plasmid amounts were

equalized across transfections. Luciferase was measured

using Steady-Glo (E2510; Promega, Madison, WI, USA)

according to the manufacturer’s protocol on a TD-20/20

Luminometer (Turner Designs, Sunnyvale, CA, USA).

RNA isolation, cDNA synthesis and real-time PCR

Total RNA was isolated using Tri-Reagent (Molecular

Research Center, Cincinnati, OH, USA), purified with the

RNeasy MinElute Cleanup Kit (Qiagen, Germantown, MD,

USA) and quantified using a Nano Drop 1000 spectropho-

tometer (Thermo Fisher Scientific, Waltham, MA, USA).

cDNA was reverse transcribed from 5 mg of total RNA

using the SuperScript III First-Strand Synthesis Kit (Life

Technologies) using oligo(dT) as the primer and purified

using the Qiagen QiaQuick PCR purification kit. Real-time

qPCR (ABI-7300 Real Time PCR System; Applied

Biosystems, Carlsbad, CA, USA) was performed in dupli-

cate using TaqMan gene expression assays in volumes of

25 ml with 50 ng of cDNA and TaqMan Gene Expression

Master Mix (Applied Biosystems). Fold change expression

levels were determined by the ��CT method comparing

expression of test genes with that of GAPDH.

Flow cytometry

Cells were suspended in PBS with 10% FBS and 0.1%

sodium azide. For intracellular protein determinations,

cells were fixed with BD Cytofix Buffer, permeabilized

using BD Phospho Perm/Wash Buffer (BD Biosciences)

and labelled with primary antibodies overnight at 4�C.

The following morning, cells were washed and incubated

with an FITC-labelled secondary antibody and cell surface

marker (where noted) at 4�C for 1 h as described previ-

ously [18, 19]. Cells were analysed using a three-laser BD

LSRII flow cytometer at the Vanderbilt Medical Center

Flow Cytometry Core facility (Nashville, TN, USA).

Supplemental analysis was performed using FlowJo

(TreeStar, Ashland, OR, USA).

Study populations

The study group consisted of control subjects with no

current chronic or acute infection and no family history

of autoimmune disease and patients meeting the ACR/

European League Against Rheumatism (EULAR) classifi-

cation criteria for RA. Table 1 summarizes the demo-

graphic and clinical characteristics of the subject

populations. PBMCs were isolated using sodium heparin

cell preparation tubes (BD Biosciences) according to the

supplied protocol. The study was approved by the

Vanderbilt University Medical Center and Penn State

Milton S. Hershey Medical Center Institutional Review

Boards. Written informed consent was obtained at the

time of blood draw.

Statistical analysis

Data are expressed as the mean (S.D.) of three or more

independent experiments. Significance was determined

by Student’s t-test using GraphPad Prism software

(GraphPad Software, La Jolla, CA, USA). P-values <0.05

were considered significant.

Results

MTX reduces NF-kB activity in Jurkat cells

To determine the effects of MTX on NF-kB activation, an

NF-kB reporter construct was transfected into Jurkat T

cells. Transfected cells were treated for 48 h with 0.1 mM

MTX and stimulated with either phorbol 12-myristate 13-

acetate (PMA, 50 nM) and ionomycin (1 mM) or 5 ng of

TNF-a for 24 h. We found that MTX markedly reduced

stimulation of NF-kB activity in response to either PMA/

ionomycin or TNF-a (Fig. 1A). MTX-mediated inhibition of

NF-kB activation by TNF-a was significantly reversed by

supplementation of cultures with BH4, the free radical

scavenger N-acetyl cysteine (NAc), JNK inhibitors, BI-

78D3 or L-JNKi1 or by transient transfection of JNK1-,

JNK2- or p53-DN expression vectors (Fig. 1B). JNK inhibi-

tors BI-78D3 and pepJIP1 (L-JNKi1) target the JNK-JNK-

interacting protein 1 (JIP1) binding site and prevent JNK

phosphorylation [26, 27]. Consistent with our previous stu-

dies, we concluded that MTX-mediated inhibition of NF-

kB activation by TNF-a resulted from MTX-dependent

BH4 depletion, leading to increased ROS production,

JNK activation and JNK-dependent induction of p53,

which is the final mediator of inhibition of NF-kB

activation.

We also tested the ability of folic and folinic acid to re-

verse MTX-mediated inhibition of NF-kB activation by

TNF-a. Supplementation of cultures with either folic acid

or folinic acid blocked inhibition of NF-kB activation by

MTX (Fig. 1C). BH2 and folate are converted to BH4
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through a salvage pathway regulated by DHFR expression

[28, 29]. Blockade of DHFR by MTX depletes tetrahydro-

folate levels and decreases cellular amounts of BH4.

Supplementation of MTX-treated cultures with folic acid

and/or folinic acid increases intracellular BH4 bioavailabil-

ity [17]. MTX also has been shown to stimulate the release

of adenosine and activate adenosine receptors. Therefore

we examined the ability of two non-selective adenosine

receptor antagonists, caffeine and theophylline, to reverse

the effects of MTX. Treatment of cells with MTX and either

caffeine or theophylline alone at pharmacological concen-

trations did not reverse MTX-mediated inhibition of NF-kB

activation (Fig. 1D). However, incubation of cells with MTX

and the combination of caffeine and theophylline signifi-

cantly reduced the inhibitory effects of MTX. We interpret

these results to suggest that the release of adenosine and

adenosine receptor activation also contributed to MTX-

mediated inhibition of NF-kB activation.

TABLE 1 Demographic characteristics of the RA patients and healthy controls and clinical charac-

teristics of the RA patients

Controls
(n = 29)

RA, MTX treatment
(n = 8)

RA, no MTX treatment
(n = 8)

Age, mean (S.D.), years 38 (11) 49 (11) 52 (15)

Female 100 88 100
Ethnicity

Caucasian 93 75 88

African American 0 0 12

Hispanic 7 25 0
Asian 0 0 0

Clinical characteristics

Disease duration, mean (S.D.), years — 12 (4) 11 (7)
Active diseasea — 63 88

Early RA (disease duration <1 year) — 13 25

Treatment

HCQ — 50 38
Steroids — 38 63

TNF inhibitors — 25 13

Except where indicated otherwise, values are given as a percentage. aDefined as the presence of at least
three of the following: morning stiffness >45 min, >3 swollen joints, >6 tender joints and ESR >28 mm/h.

The mean disease activity score for RA subjects is 4.7 (S.D. 0.2) with no MTX and 4.9 (S.D. 0.4) with MTX.

FIG. 1 Inhibition of NF-kB activation by MTX

(A�D) Jurkat (JKT) cells containing an NF-kB-luciferase reporter were cultured with 0.1 mM MTX for 48 h and stimulated

with (A) PMA (50 nM) and ionomycin (1 mM) 6 h or (A�D) TNF-a (5 ng) 24 h prior to luciferase measurements. (B) MTX-

treated JKT cells were cultured with or without BH4, N-acetyl-L-cysteine (NAC) or JNK inhibitors BI-78D3 or L-JNKi1.

JNK1-DN, JNK2-DN, p53-DN or empty vector plasmids with a green fluorescent protein (GFP) plasmid were transiently

transfected into JKT cells. (C and D) MTX-treated JKT cells were treated with (C) folic or folinic acid or (D) adenosine

receptor antagonists caffeine and/or theophylline. Values are mean (S.D.). (A) *P < 0.05 vs PMA/ionomycin- or TNF-a-

treated cultures. (B�D) *P< 0.05 vs cultures stimulated with MTX alone. Iono: ionomycin; PMA: phorbol 12-myristate 13-

acetate; Theo: theophylline; NF-kB: nuclear factor kB; JNK: Jun-N-terminal kinase.
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Induction of TP53, CDKN1A and JUN by the 4-amino
analogue of BH4

Given our findings that MTX inhibits NF-kB through block-

ade of BH4 biosynthesis, we investigated whether pterin-

site inhibitors of NOS also inhibited NF-kB activation. One

such inhibitor is 4-aminotetrahydrobiopterin (4-ABH4).

Jurkat cells treated for 48 h with 4-ABH4 show increased

TP53, CDKN1A and JUN expression levels and corres-

ponding increases in phosphorylated JNK, p53 and p21

protein (Fig. 2A and B), closely mirroring the stimulatory

activity of MTX. We also determined whether 4-ABH4

inhibited TNF-dependent NF-kB activation in T cells. We

found that 4-ABH4 decreased TNF-induced NF-kB activity

to a level similar to MTX (Fig. 2C). As an additional experi-

mental comparator, we used diamino-hydroxypyrimidine

(DAHP), which inhibits guanosine triphosphate (GTP)

cyclohydrase 1, the rate-limiting enzyme in BH4 synthesis

[30], and found that DAHP also significantly reduced

NF-kB activation. Thus both a BH4 antagonist and an

inhibitor of BH4 synthesis stimulated a pathway in T

cells similar to that stimulated by MTX, leading to inhib-

ition of activation of NF-kB by TNF-a.

Inhibition of NF-kB activity by MTX in activated T cells

In Jurkat cells, MTX decreases TNF-a-dependent activa-

tion of NF-kB. This effect is reversed by supplementing

cultures with BH4 or inhibiting activation of JNK using spe-

cific JNK inhibitors (Fig. 1B). We further examined these

effects in activated human T cells (see Methods). T cells

were treated with MTX in the presence or absence of BH4

(Fig. 3A) or the JNK inhibitor BI-78D3 (Fig. 3B). In T cells

we found that MTX reduced TNF-a-dependent activation

of NF-kB. In contrast to the Jurkat cell experiments, the

effects of MTX on NF-kB were more pronounced in acti-

vated T cells, with inhibition averaging >70%. Mirroring

the Jurkat cell findings, the inhibitory effects of MTX

on NF-kB activation were abrogated by the addition

of BH4 or BI-78D3 to the MTX-treated PBMC cultures

(Fig. 3A and B). Thus, in both the Jurkat T cell line

and primary human T cells, we conclude that MTX

FIG. 2 Increased expression of p-JNK, p53 and p21 and inhibition of NF-kB activation by a BH4 antagonist or an inhibitor

of BH4 synthesis

(A�C) Jurkat cells were treated with the BH4 antagonist 4-ABH4 (200 mM) for 48 h and (A) transcript levels of TP53,

CDKN1A and JUN were measured by quantitative PCR. Results are expressed as fold induction relative to GAPDH.

(B) Levels of p-JNK, p53 and p21 protein were determined by flow cytometry. A representative flow diagram shows

background fluorescence (grey) and results obtained with untreated (solid line) or 4-ABH4-treated (dashed line) Jurkat

cells. (C) MTX-, 4-ABH4- or DAHP-treated Jurkat cells were stimulated with TNF-a for 24 h prior to luciferase meas-

urements. Results are expressed as percentage inhibition of TNF-a-stimulated NF-kB activity in relative light units. Values

are mean (S.D.). *P< 0.05 vs untreated cells. NF-kB: nuclear factor kB; JNK: Jun-N-terminal kinase; DAHP: 2,4-diamino-

6-hydroxypyrimidine; BH4: tetrahydrobiopterin.

FIG. 3 MTX inhibits NF-kB in activated T cells via deple-

tion of BH4 and increased JNK activation

(A and B) Activated T cells were treated with 0.1 mM MTX

for 24 h with or without the addition of (A) BH4 or (B) JNK

inhibitor BI-78D3. Values are mean (S.D.). *P< 0.05 vs

unstimulated cultures or cultures treated with MTX. NF-

kB: nuclear factor kB; JNK: Jun-N-terminal kinase; BH4:

tetrahydrobiopterin.
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reduced NF-kB luciferase activity via loss of BH4 and ac-

tivation of JNK.

MTX corrects elevated P-p65 levels in RA subjects
in vivo

Since MTX reduced activation of NF-kB by TNF-a in T

cells, we sought to examine the basal level of NF-kB ac-

tivation in subjects with RA. For these studies we obtained

PBMCs from healthy control subjects and patients fulfill-

ing the ACR/EULAR criteria for RA. Subjects with RA were

divided into those receiving or not receiving MTX therapy.

PBMCs were isolated, washed, fixed, permeabilized and

incubated with a primary antibody specific for P-p65.

Gating on the CD4+ T cells, we found in control subjects

that the mean fluorescence intensity was only slightly

above background (Fig. 4A and B). In contrast, we de-

tected increased P-p65 levels in RA subjects not receiving

low-dose MTX as therapy. RA patients receiving once-

weekly MTX exhibited decreased P-p65 levels, similar to

controls. We further examined additional PBMC popula-

tions, including CD8+ T cells, CD19+ B cells and CD14+

monocytes. While RA subjects not receiving MTX did not

exhibit increased levels of P-p65 in these cell subsets, the

cohort of RA subjects receiving MTX therapy exhibited

decreased levels of P-p65 in each of the cell types exam-

ined (Fig. 4B). We conclude from these studies that RA

subjects not receiving MTX exhibit chronic activation of

NF-kB in CD4+ T cells compared with controls. Chronic

activation of NF-kB in the CD4+ T cell compartment was

markedly reduced in RA subjects on stable MTX therapy

to near control values. Further, MTX lowers P-p65 levels in

multiple cell types in vivo.

MTX-mediated inhibition of NF-kB activation in FLSs

Both lymphocytes and FLSs are key effector cells in RA

pathogenesis. Therefore we determined if MTX also in-

hibited TNF-a-mediated NF-kB activation low-passage

FLSs. FLSs were transfected with the NF-kB luciferase

reporter construct using lipofectamine and treated with

0.1 mM MTX for 48 h. As in T cells, MTX inhibited

TNF-a-dependent activation of NF-kB by �50% (Fig.

5A). However, in contrast to T cells, JNK inhibition did

not attenuate inhibition of NF-kB activation by MTX. In T

cells, MTX induces cell cycle checkpoints and increases

sensitivity to apoptosis via a JNK-dependent pathway [18,

19]. To examine these responses in FLSs, we measured

apoptosis by annexin V labelling. FLSs were treated with

MTX for 48 h and exposed to either anti-Fas or H2O2 for an

additional 24 h as extrinsic or intrinsic mediators of apop-

tosis, respectively. In contrast to T cells, FLSs did not

exhibit increased levels of apoptosis after treatment with

MTX followed by either anti-Fas or H2O2 (Fig. 5B).

Further, treatment of FLSs with MTX or 4-ABH4 did not re-

duce cell numbers as measured by the MTT assay (Fig.

5C). Levels of ROS or pro-apoptotic proteins as assessed

by flow cytometry were also not increased in FLSs by

either MTX or 4A-BH4 (Fig. 5D and E). Finally, we per-

formed mRNA measurements of low-passage or activated

FLSs and found that MTX or 4-ABH4 did not increase

transcript levels of TP53, CDKN1A or JUN, which is in

marked contrast to the effects seen in T cells reported

previously (Fig. 5F, left panel) [19]. One possible explan-

ation for the failure of MTX to activate these ROS-/JNK-

dependent pathways in FLSs as is seen in both Jurkat and

primary T cells is if FLSs had significantly lower levels of

NOS enzymes compared with T cells. To test this possi-

bility, we compared NOS2 and NOS3 transcript levels

among Jurkat T cells, primary activated T cells from

healthy donors and FLSs. We found that Jurkat T cells

and primary T cells expressed much higher NOS2 and

NOS3 transcripts compared with FLSs (Fig. 5F, right

panel). Therefore failure to activate these ROS-/JNK-de-

pendent pathways in FLSs is probably due to low levels of

NOS enzymes in FLSs, thus preventing sufficient NOS-

dependent ROS synthesis to activate JNK-dependent

pathways.

Given these findings, we sought alternative explan-

ations for decreased NF-kB activation in MTX-treated

FLSs. Therefore we examined the effects of adenosine

receptor antagonists caffeine and/or theophylline at

FIG. 4 Levels of P-p65 in PBMCs from control subjects or subjects with RA receiving or not receiving MTX therapy in vivo

(A and B) P-p65 protein concentrations in healthy control subjects (CTRL) and RA patients receiving MTX (RA + MTX) and

not receiving MTX (RA �MTX). PBMCs were fixed, permeabilized and stained for CD4, CD8, CD19 and CD14 cell surface

markers and intracellular levels of P-p65 were determined by flow cytometry. (A) A representative flow diagram with

gating on CD4+ T cells is shown along with (B) quantification of relative P-p65 fluorescence across the indicated cell

populations. Values are mean (S.D.). *P< 0.05. PBMCs: peripheral blood mononuclear cells.
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pharmacological concentrations. We found that the com-

bination of caffeine and theophylline markedly abrogated

inhibition of NF-kB activation by MTX (Fig. 5G). Thus, in

contrast to T cells, MTX appears to mediate inhibition of

NF-kB activation in FLSs by stimulating adenosine

release.

FIG. 5 Reversal of MTX-mediated inhibition of NF-kB activation by adenosine receptor antagonists in FLSs

(A�G) FLSs were treated with the indicated concentrations of MTX or 4-ABH4 for 48 h. (A) FLSs were transfected with

an NF-kB luciferase reporter construct and treated with MTX ± BI-78D3. (B) FLSs were cultured with MTX followed by

culture with anti-Fas antibody or H2O2 for an additional 6 h. The percentage of annexin V�positive cells was determined

by flow cytometry. (C) FLS proliferation evaluated by MTT assay. (D) Synthesis of ROS was determined by labelling

FLSs with 5-(and 6)-chloromethyl-2’,7’-dichlorohydrofluorescein diacetate (CM-H2DCFDA) and flow cytometry. (E) Levels

of JNK, p-JNK, p53, p21, PUMA and TRAILR1 in MTX- and 4A-BH4-treated FLSs were determined by flow cytometry and

are reported as the fold increase compared with untreated FLSs. (F) Transcript measurements: (left panel) TP53,

CDKN1A and JUN in MTX- or 4-ABH4-treated low-passage FLSs or activated FLSs stimulated with IL-1b (2 ng/ml), TNF-a
(50 ng/ml) and LPS (1 mg/ml) for 24 h; (right panel) NOS2 or NOS3 mRNA levels for the indicated cell type. (G) FLSs

transiently transfected with an NF-kB luciferase reporter were treated with MTX ± adenosine receptor antagonists caf-

feine and/or theophylline for 48 h and stimulated with TNF-a 24 h prior to luciferase measurements. Values are mean (S.D.).

(A�F) *P< 0.05 vs untreated FLSs. (G) *P< 0.05 vs MTX-treated FLSs. FLS: fibroblast-like synoviocyte; NF-kB: nuclear

factor kB; JNK: Jun-N-terminal kinase; BH4: tetrahydrobiopterin.
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Discussion

Our current studies coupled with previous studies indicate

that MTX-mediated inhibition of DHFR initiates two par-

allel anti-inflammatory pathways: (i) inhibition of BH2 re-

duction to BH4 leading to iNOS uncoupling, ROS

production, JNK activation and downstream effects and

(ii) AICAR-dependent adenosine release and activation of

adenosine receptors. Both pathways ultimately lead to in-

hibition of stimulus-dependent activation of NF-kB, which

most likely is a major contributor to the activity of MTX in

RA. Interestingly, these two pathways seem to be acti-

vated in a cell-type-specific manner. The BH2/BH4 path-

way seems to predominate in lymphocytes, while the

adenosine receptor activation pathway is the predominant

pathway in FLSs (see supplementary Fig. S1, available at

Rheumatology Online). A major difference between the two

cell lineages is that FLSs express extremely low levels of

NOS enzymes compared with T cells, which could explain

the failure to activate the BH2/BH4 pathway in FLSs.

A BH4 antagonist or inhibition of BH4 synthesis also

stimulates ROS production, JNK activation and down-

stream effector pathways similarly to MTX. In activated

T cells, inhibition of BH4 synthesis also decreases produc-

tion of the pro-inflammatory Th1-associated cytokine

IFN-g and increases production of the anti-inflammatory

Th2 cytokine IL-4 [30, 31]. MTX induces a similar shift and

reduces expression of pro-inflammatory cytokines IL-1,

IL-2, IL-6 and IFN-g and increases expression of anti-

inflammatory cytokines such as IL-4 and IL-10 in subjects

with RA [32]. Thus we would argue that inhibition of BH4

synthesis by MTX might explain the pro-inflammatory to

anti-inflammatory shift found in RA.

Of particular interest is the association between MTX,

p53 and NF-kB. While NF-kB is well established as a

transcription factor that promotes cell proliferation and

inflammation and p53 is well established as a transcrip-

tion factor that inhibits cell proliferation and induces apop-

tosis, it is becoming increasingly apparent that p53 also

inhibits inflammation [33�37]. RA is characterized by

both p53 deficiency and elevated NF-kB activity. MTX

both in vivo and in cell culture reverses these defects,

and inhibition of NF-kB by MTX is dependent on p53

induction in cell culture [35, 38�44]. Whether or not p53

deficiency and elevated NF-kB activity in RA are mechan-

istically linked is not known. Thus p53 deficiency may con-

tribute to elevated NF-kB activity in RA. The opposite is

also possible, elevated NF-kB activity in RA may contribute

to depressed p53 activity in RA. In this regard, longitudinal

studies in RA that examine responses to MTX, TNF-a
inhibitors and their combination would be informative.

Importantly, MTX also inhibits NF-kB activity in FLSs.

MTX inhibits production of inflammatory mediators such

as metalloproteinases and IL-6, and expression of these

proteins is known to require activation of NF-kB [45]. In

contrast to T cells, inhibition of NF-kB activity in FLSs is

independent of p53 induction but appears dependent

upon adenosine release and activation of adenosine

receptors. Thus these results are consistent with a

model whereby MTX derives its anti-inflammatory effects,

at least in part, from its ability to inhibit activity of the

pro-inflammatory transcription factor NF-kB. Therefore

distinct cell-type-specific pathways are utilized to achieve

this beneficial outcome in RA.

Apart from RA, connections between p53 and NF-kB

have been experimentally demonstrated in cancer

models and in mouse endotoxaemia. Overexpression of

wild-type p53 in human colon cancer cells reduces

endogenous levels of NF-kB activity and restores the abil-

ity of these cells to undergo apoptosis [34]. Further, gluco-

corticoids, which inhibit inflammation, block NF-kB

activity through a p53-dependent process. Mortality

from LPS-induced endotoxaemia, a process critically

dependent upon NF-kB activity, is markedly increased in

mice that lack p53. The conclusion from these studies,

closely mirroring our own work, is that p53 mediates

repression of NF-kB [46].

Rheumatology key messages

. MTX inhibits NF-kB activity in T cells via BH4 de-
pletion and activation of JNK and p53.

. MTX inhibits NF-kB activity in fibroblast-like syno-
viocytes via release of adenosine and adenosine
receptor activation.

. MTX normalizes elevated NF-kB activity in RA
in vivo.
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