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ABSTRACT Rate equations with quadratic nonlin-
earities appear in many fields, such as chemical kinetics,
population dynamics, transport theory, hydrodynamics,
etc. Such equations, which may arise from basic principles
or which may be phenomenological, are generally solved by
linearization and application of perturbation theory.
Here, a somewhat different strategy is emphasized. Alter-
native nonlinear models that can be solved exactly and
whose solutions have the qualitative character expected
from the original equations are first searched for. Then, the
original equations are treated as perturbations of those of
the solvable model. Hence, the function of the perturba-
tion theory is to improve numerical accuracy of solutions,
rather than to furnish the basic qualitative behavior of the
polutions of the equations.

Introduction and population growth equations

Many phenomena-physical, biological, and social-are
modeled by differential equations with quadratic nonlineari-
ties. A standard way of dealing with these is to linearize them,
solve the linearized equation, and occasionally treat the non-
linear terms as perturbations. Often, high-order perturbation
theory is necessary to yield the special qualitative features of
the problem that are due to the nonlinearity. The object of
this paper is to describe a perturbation method in which one
starts with a related solvable nonlinear model, and treats the
problem of interest as the perturbed version of the nonlinear
one. To motivate our scheme, I start with an examination of
two elementary population growth and competition models,
then generalize the ideas used to treat more complicated
systems.
We first examine the Verhulst equations for population

growth (1)
=- dn/dt = kn(O - n)/O. [1]

The population saturates at 0, and has the logistic time de-
velopment

n(t) = 0n(0)/{n(0) + [C - n(O)] exp (-kt)} [2]

which has the required saturation shape as given in Fig. 1.
An alternative to [1] is the Gompertz (2) equation, linear in
log(n/0),

, = -kn log (n/0) or [log (n/0)]a = -k log (n/C) [3]
so that

n(t) = C exp {eat log [n(0)/OfI

The next more complicated example to be considered comes
from the Lotka-Volterra prey-predator equations (3-5)

A, = kin, - Xflnn2, A2 = -k2n2 + X2n2ni [5]

where ni represents the population of the prey that would
grow exponentially in absence of predator, (n2 = 0). Note that
n2 would decay exponentially without prey. At equilibrium,
n2 = q2 = k1/X1 and n1 = q= k2/X2. If initially ni and n2 de-
viate from equilibrium, we define bf by ni = q1(1 + 5j), so that
to first order in the 6i:

Si = -k1b2 and 52 = k2bl or Si = -kik2l
The solution of these linear equations is

61(t) = { [k2312(0) + k1b22(0) ]/k2} 1'/2 cos (Wt + _0)
2(t) = { [k2512(O) + k1622(0) ]/k}1 /2 sin (ct + q)
o = (kRk2)'/2 and tan iq = (k /k2)1/2{61(0)/OA(0)}

[6]

[7]

[8]
[9]

Notice that for all initial conditions, the time variation of
61(t) and 62(t) is sinusoidal. There seems to be no simple
analytical solution of the full nonlinear Lotka-Volterra equa-
tions [7], but numerical solutions as plotted in Fig. 2 exhibit
a spiking tendency, which becomes stronger as the initial con-
ditions recede from the steady state. This spiking effect reflects
the nonlinear character of the basic rate equations.
Taking a cue from Gompertz's model (6), we can obtain the

spiking effect from a nonlinear model, which can be solved by
making a logarithmic transformation of the dependent vari-
ables. Notice that the Lotka-Volterra equations can be written
(with ki' = k -Xi))
nl/n, = ki' - Xi(n2 - 1); ti2/n2 = -k2' + X2(n1 - 1) [10]

These equations are a special case with a = 1 of the set

nl/n, = k' - (nOa - 1)/a;
n2/n2 = -k2'n2 + X2n2(na- 1)/a [11]

If { qj} is the set of steady-state solutions of [11], then

nl/n, = -X(n2a - q2a)/a; A2/n2 = X2(nia- qla)/I,. [12]

The a = 0 model is especially interesting since it yields the
equations

[4]
In Fig. 1, the curves that represent [2] and [4] are similar, the
basic difference being that [2] is symmetrical around the in-
flection point, while [4] is not.

el = -Xlv2, v2 = X2vl or Vl = -XlX2vI [13a]

with

v; = log (nj/qj) and nj = qj exp v;. [13b]
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FIG. 1. Curves indicating the difference in population growth
between the Gompertz model (a = 0) and the Verhulst model
(a = 1). The reference time is chosen so that at t = 0 both curves
are at half-saturation level.

The solution of the equations for { vi} are

Vi1 = KX2 1/2 Cos W (t + 6); v2 = KX 1/ sin w(t + 5) [14]

where the amplitude parameter K and the phase a are defined
by

KC2 = X2Vo2(0) + XIV22(O)

tan coO = Xol/2v2(0)/X21/Ovl(O)

[15a]

[15b]

The spiking character results (6, 7) from substitution of [14]
into [13]:

ni =-q, exp { KX1/2 cos CO(t + 6)};

n2= q2 exp { KXi-'/2 sin w(t + 6)} [16]

K, which is measured by the deviations of the initial popula-
tions from their steady-state values, gives the degree of spiking
of [16]. If K is large, the exponential amplifies the cosine and
sine functions more upward when they are positive than it does
downward when those functions are negative. As K -A co, the

sky is the limit for the exponential of positive values of cosine
and sine, but the exponential of the negative values cannot fall
below zero.

There are two qualitative differences between the curves in
Fig. 3, which are plots of [16], and the numerical solutions of
the Lotka-Volterra set shown in Fig. 2. ni and n2 of [16] are

always out of phase by one-fourth of the period of these func-
tions, while the Lotka-Volterra solutions are out of phase by
an amount that diminishes slowly from one-fourth of the pe-

riod as the initial populations are chosen to be increasingly dis-
tant from the steady-state values. Also, the functions [16] are

symmetrical around their peaks, while numerical solutions of
Lotka-Volterra equations have a slight dissymmetry.

If one takes the original Lotka-Volterra model more seri-
ously than our solvable model, it can be considered as a first
approximation to the Lotka-Volterra model, and then per-

turbation theory can be applied to find corrections. To this
end write [7] as

d log (nl/ql)/dt = ki [1 - (n2/q2)]

d log (n2/q2)/dt = -k2[1 - (ni/q1)]

Then note that since

[17a]

x = exp (log x) = 1 + log x + 1/2(Iog x)2 + . .., [18]

FIG. 2. Time variation of several two-species populations
according to the Lotka-Volterra model. The initial conditions are

indicated. The values of the parameters k0 and k2 for the four

cases plotted are (1), (k1,k2) = (1,1); (2), (1,2); (3), (1,2); and

(4), (2,1).

Eqs. [171 become (with vj defined by [13b]),

61 = -k1v2(1 + 1/2V2 + .

e2 = k2v1(1-+ 1/2vI + ...) [19]

Hence, this is equivalent to the a = 0 model equation [12]
when second- and higher-order terms in vf are neglected. These
equations can also be written as second-order equations in vo

and v2:

Vf + W2V1 = FI(t) -1/2V12 - 1/2kldv22/dt + . [20a]

V2 + W2V2 = F2(t) _ -1/22v22 1/2k2dv 2/dt + . . [20b]

These equations are equivalent to

v;(t) = Vj(O) cos wt + c-1vj'(0) sin cot

rt
+ C' Fj((r) sin w(t - T)dT [21]

Hence, upon substitution of the right-hand side of [20] into
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FIG. 3. Time variation of several two-species populations
according to the "solvable" a = 0 model. The initial conditions
are indicated. The values of the parameters a, and a2 for the
cases plotted are (1) (k1,k2) = (1,1); (2), (1,2); (3), (1,2); and
(4), (2,1).
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[21] and an integration by parts, we find that

vi(t) = (#c/k2'/1) cos co(t + 5) - 1/2 { V,2(7r) sin w(t - r)

+ klco'v22(T) cos c(t- T)}dr [22a]

v2(t) = (i/k1/' ) sin co(t + 6) - 1/2W I{v22(r) sin co (t - T)

- k2-lcov2(T) cos co(t - T)}d [22b]

K2 = V12(0) + (k1/k2)V22(0);

tan cod = (k1/k2)l/2V2(0)/v1(0) [22c I
If we iterate these equations once (which is equivalent to

first-order perturbation theory), we find that

(k2 /i/K)VI(t) = cos W(t + 5) + (K/4){k2 /(1 - cos ct)
+ k'-'/2 sin cot} + (K/12){k2- /2 cos 2(t + 6)

co + 2k -'/2 sin 2(t + 5)cow- cos ct - 2 sin cot} [23a]

(kj'1/K)V2(t) = sin co(t + 6) - (K/4){k /1 (1 - cos wt)
- k2-'/2 sin cot} + (K/12){-k-'/2 cos 2(t + 6)co
± 2k2'1' sin 2(t + 5)w + t82 COS at -il sin cot} [23b]

with
= k2 /2 COS 25co + 2k -/' sin 26X;

12 = k-1/2 COS 25w- 2k2-'/2 sin 26w [24]

The perturbation parameters Kk -1/2 are related to the devia-
tion of the initial conditions from equilibrium. One can iterate
again to obtain vi(t) correct to second order in these param-
eters. Since the vi(t) are to be inserted into the exponential
expression [13b], these first- and second-order perturbation
solutions of the Lotka-Volterra equations have the qualita-
tive features of the nonlinear model, features that would not
be so apparent if one merely. applied perturbation theory to
[7] starting with the linearized equations [8] as the unper-
turbed equations.
Volterra many-species model

We now extend the ideas discussed above to many variable
rate equations by first considering the Volterra generalization
of [7] for m species

m
dnj/dt = kjnj + 3'InjE ajknk j = 1,2,...,m [1]

k = 1

where P3- /11-i represents the exchange rate between species;
i.e., the ratio of j's lost (or gained) to k's gained (or lost) per
unit time. If { q1} represents the set of nonvanishing steady-
state solutions of [1], then

p3d log (nj/qj)/dt = -E ajkq,4 1 - (nk/qk)} [2]
k

Upon application of [18], we find

jj = E ajkqk(Vk + 1/2Vk2 *.) [3]

In the Volterra theory, one chooses ajk to be antisymmetri-
cal, ajk =-aki. We restrict ourself to this case and generalize
in the next section. Then let

Uk~ (askqs)11'vk,Ik = (pkqk) '/2 [4]
bjk = afk (qjqk/lgjk) /, bjk = -bkj[

so that
m

aj = E bjkuk (1 + 1/2'VkUk)
k = 1

[6]

Utilizing ideas used in the two-species case, we introduce
model equations

#jd log (nj/qj)/dt = -2ajkqk{ 1 - (nk/qk) } /a
which, in the case a = 0, lead to

Ojj = 2ajkqkvk with v = log n/q;

or, using the definitions [4] and [5],

U1 = E bjkUk
k

The solution of this linear set is (5)

uj(t) = E AjAkl* uk(O)exp tXI
k I

[7]

[8]

[9]

[10]

the A i's being elements of the characteristic vectors of B,
[11]E btkAkl = XiAsi with E Ali*Azj = at}

k I

When B is antisymmetric, the characteristic values { Xi} are
purely complex and appear in pairs ±4iwia. Hence, v>(t) can be
written in the form

[12]v>(t) = E fj, Cos cI(t + b1),
1=1

the {fjl} depending on { Aj} and { v(0)} . The nj then have the
form

[13]nj(t) = qj exp E fji cos wi(t + bit)
1=1

for our a = 0 model. An important feature of this model is that
mode "mixing" or combination occurs in it. This is a special
feature of nonlinear problems. Since, when the exponential
[13] is expanded, we obtain terms proportional to

2 cos coz(t + 5ji) cos com(t + Sjm) = cos[(co + com)t

+ (Cloil + combjm)] + cOs [(c1 - cOm)t + (4li l - onS im)],

various sum and difference frequencies appear in the expansion
of nj.

If one is not satisfied with our a = 0 model and wishes to
continue with the Volterra model, then, as was done in the two-
species case, [12] can be substituted into the nonlinear term in
[3] and first-order perturbation theory can be applied. Since
this will be done in detail in the next section for more general
rate equations, I will not carry out the required calculations
here.
The Volterra model is more general than it might seem from

the context of competing species for which it was first intro-
duced. One can imagine situations in which the rate at which
one of a number of coupled variables increases is proportional
to the magnitude of that variable, and to another quantity
that depends on the influence of other variables. Then one

would write (7)
dNi/dt = NjGj(N1,N2,...,Nr). i = 1,2,...,m [14]

We postulate that the { Gi} do not depend explicitly on the
time and that a set of positive steady-state populations
(Qb.. . nQm) exist such that

Gj(Q1,Q2,. .),Qm) = 0 i = 1,2,. ..,m [151

2534 Mathematics: Montroll
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If the functions Gi have a Taylor expansion about steady-state
populations, then

Gi(Nij...,Yn) = ,(Nj - Q)Aj

+ E (Nj - Qj) (Nk - Qk)A/k + *.. [16]
jk

Ad = (bGj/8Nj),,, and A/k ()2Gi/?NjANk)s. [17]

( )s represents the appropriate quantity in the steady state.
Hence,

d log Nildt =EAt>(Njy- Qu)

+ Ij A /jk(Nj - Qj)(Nk - Qk) + * [18]
ik

If second-order terms are neglected, the resulting equations are
similar to Volterra's, except that the atj's are not necessarily
antisymmetrical. Hence, the Volterra model is a first approxi-
mation to situations in which the growth rate of a variable is
proportional to its instantaneous value when the population is
small and in which a steady-state value exists when there are
interactions with other variables.

General rate equations with quadratic nonlinearities

We generalize the above ideas by considering the quadratic
rate equations

Xi = Za/xj + E a/kxjxk i = 1,2,. . .,m [1]
j i/

Frequently the right-hand side of [1] begins an expansion,
perhaps in deviations from a steady state, whose ternary and
higher-order rate constants are seldom known explicitly.
Hence, it would hardly seem worthwhile to seek solutions of
[1] that were correct to higher order than quadratic. That is,
one should be satisfied with solving the linear equation ob-
tained by neglecting the quadratic term [1] and then applying
first-order perturbation theory to the quadratic term in [1].

If this point of view were taken seriously, certain basic non-
linear effects such as saturation and spiking and higher-order
mode mixing would not become so apparent. The program
outlined below, motivated by our study of the Volterra model,
provides a solution of [1 ] that yields the desired nonlinear ef-
fects and that is quantitatively correct to the order of the
quadratic terms in [1].
We first neglect the quadratic terms in [1] and rewrite the

linear equations in matrix form x = Ax. Suppose that A (with
characteristic values { Xj} ) can be diagonalized by T. Then if y
= T-'x, the components of y satisfy yf = keyi. With the same
transformation, [1] becomes

Yi = Aidy + E r/kyjyk [2]
jk

with the new rate constants r/k depending on the a/ and ai/k.
We rewrite [2] as

d log yi/dt = Xi + E rpJkyjyk/ly [3]
jk

If a set of steady-state values of I ye}, say I qua}, exist, then

d log (yl/qi)/dt =E r /k (qjqk/q0) { k - 1 [4]
ikc

We note that if (y/q) is close to 1,

(y/q) = exp [log(y/q)] = 1 + log (y/q)
+ 1/2[10g (y/q)]I + . .. [5]

Hence, if we let yj = qj exp vj, substitute this expression into
[4], and neglect terms of order v2 or higher, we find

[6a]of = -flVj + EaZlvi
i

EZ (qjqkl/q) rpjk as = E (qjq/qk)(p/ik + rmk) [6b]
ik k

Since [6] is linear, it can be solved by standard methods.
Had we retained second-order terms in deriving [6], we

would have found

i= f-JVJ + E aivj + E r/k (V1 + Vk)2
ii/c

-_ V(vU + Vk - '/2vj)} + [7]

In matrix form, with F(t) representing the quadratic terms of
[7],

V = -AV+ Ff V(t)} [8]
Let us suppose that the matrix A can be diagonalized by S.

Then

SV = -SAS-ISV + SF4 V(t)} [9]

Hence, if we define U = SV and B = SAS-1, and assume
that the characteristic values of B (and, of course, S) are Xj,

U1 = -Xju + [SFI V(t)}]I [10]

from which we deduce that

u(t) = U1(0) exp (- tXj)
At

+ f [TF{V(Tr)}]jexp{-Xj(t- r)}ddr [.11]

Since F(t) is a function of V that is related to the uj through
V = S-1U, this equation can be iterated to yield an expression
to uj(t) that has a first-order perturbation correction. If the
elements of S and S-1 are, respectively, {Sjjt and { Sj,(-1)1,
then

[12]vi(t) = a, Sij(-)uj(t)
i

and the first-order perturbation solution of [2] follows from
[12].
One of the missing features of our perturbation theory is

that under initial conditions far from steady state, the normal
mode frequencies may depend on the initial conditions. I have
not incorporated this into this analysis.
The scheme presented in this section would not be uniformly

applicable to all equations of type 1 under all possible initial
conditions. My discussion should be considered as a strategy
that might be tried in exploring [1]. It is an example of the
general strategy of seeking a "solvable" set of nonlinear equa-
tions whose solutions can be expected to have qualitative
features similar to those of a set of interest. The set of interest
can then be considered as a perturbed version of the solvable
set. A number of other solvable rate equations are given in refs.
7 and 8. We conclude our discussion with a solvable class of
nonlinear rate equations not mentioned in those references.

Coupled Rate Equations 2535
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Faltung or resultant-type rate equations

The solvable nonlinear models considered above were solved
by transformations in the dependent variables. This section
considers another class of solvable rate equations that might
be used as first approximations to certain nonlinear rate equa-
tions.
Let F(k,t) - F(k) be a driving force and U(k,t) U(k) a

function satisfying

t(k) = S,(k - k')dk'

+ fJ S(k - k' - k)U(k')U(k")dk'dki + F(k) [1]

A special example of this equation is the Smoluchowski co-
agulation equation (also used by Shumann in the theory of fog
formation):

d('t)= k x(k - k',t)x(k',t)dk' - 2kN(t)x(k,t) [2]
dt _ c

This corresponds to the rate at which the number of particles
x(k,t) of mass k at time t increases due to collision of particles
of mass (k - k') with those of mass k. The second term on the
right is a loss term, due to collision of particles of mass with
those of any other size, N(t) being the total number of par-
ticles. Eq. [2] is a special case of [1] with F .0, Si(k - k')
= kN(t)b(k - k') and S2(k) = 6(k). The linear form with
SI(k) = Da"(k) leads to a diffusion-type equation.
Eq. [1] can be reduced to an ordinary differential equation

by introduction of Fourier transforms

u(0,t) ) X (U(kt)
f(0,t) - dk et /F(kt)
sj(0,t)) XSj(k,t)

termined, so that from [6] v would become known. A specific
case of interest might be one with sa independent of time and
f(0,t) = g(0) cos 2wt. This is typical of a periodic driving force.
Eq. [7] then has the Mathieu form (with z = wt)

d2w/dz2 + (a + 16q cos 2z)w = 0

where

a = '/2w2s,(1 - '/281) and 16q = w2s2q (0).

Then the solution of [7] could be expressed in Mathieu func-
tions (9).
To investigate a system response to a pulse, one might

choose f(0,t) = 1(1 + 1)7y2 sech27yt, which has a peak at t = 0.
The solutions of [7] are elementary (10) for some values of l and
in terms of hypergeometric functions (11) for arbitrary 1.
The explicit form of [7] in this case is

W + ['/281(l - a,) + s2l(1 + 1)72 sech2yt]w = 0.

In order to establish some idea of the form of the solution,
suppose that F(kt) =- 0. Then f(0,t) = 0 in [4] and the trans-
formation v = 1/p yields

-dp/dt = SIP + 82 [8]
which is solvable even when s, and 82 are both functions of
time. After solution and Fourier inversion, one finds that (7)

U(k t) = 1 ' u(0,0) exp (-ikO)do
2r Jo 1(0,t) -u(,O)J(Ot) [9]

where

u(0,0) = eik9U(k,O)dk, I(0,t) = exp -f 8l(0, )d7

[3] (tFt
J(0,t) = 82(OXt)exp- I@,drdt .

O ~~~~~~~~~t'
[10]

Upon application of the Fourier faltung theorem, we find (with
u(O,t) =- u, etc.)

U = f + 81U +a2U2 [4]
which is of the Riccati type. Hence, if we define v by u =
82-1 (log v), and if S2 is chosen to be independent of time (even
though S and F may depend explicitly on t), one finds that

V- 81v + 82fv = 0. [5]

If w is defined by
at

v = w exp 1/2 fa(eT)d [6]

then w satisfies an equation that resembles the Schrodinger
equation

W + [-'/4s 28+ 1/,a, + 82f(0,t)]w = 0. [7]
If si(0,t) and f(0,t) are chosen to be functions of t for which [7]
has a solution in terms of classical special functions, then our
problem is reduced to quadratures. In this case w would be de-
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