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Disassortative mixing is ubiquitously found in technological and biological networks, while the
corresponding interpretation of its origin remains almost virgin. We here give evidence that pruning the
largest-degree nodes of a growing scale-free network has the effect of decreasing the degree correlation
coefficient in a controllable and tunable way, while keeping both the trait of a power-law degree distribution
and the main properties of network’s resilience and robustness under failures or attacks. The essence of these
observations can be attributed to the fact the deletion of large-degree nodes affects the delicate balance of
positive and negative contributions to degree correlation in growing scale-free networks, eventually leading
to the emergence of disassortativity. Moreover, these theoretical prediction will get further validation in the
empirical networks. We support our claims via numerical results and mathematical analysis, and we propose
a generative model for disassortative growing scale-free networks.

O
f the different ways in which a system made of many interacting units can be represented and analyzed,
the one afforded by complex networks is among the most elegant and general. In the last years, complex
networks1–5 have, indeed, provided a valuable representation of a wealth of natural and man-made

systems, in fields as diverse as, amongst others, genetics, proteomics and metabolomics2, the study of neurological
diseases6, transportation networks7 and theWorld Wide Web8. Specifically, it was found that the vast majority of
real-world networks commonly features some properties in the structure of connections between the constituent
elements: the so-called small-world property9, the scale-free (SF) character of the degree distribution (the degree
of a node being the number of connections established by that node with the rest of the network)10, degree
correlation and degree mixing11, and a modular and hierarchical organization12.

In particular, disassortative mixing is ubiquitously observed in biological and technological networks13, and
corresponds to a negative degree-degree correlation, i.e. to the tendency of high (low) degree nodes to connect to
nodes with low (high) degree. The large body of evidence of such a disassortative organization in real-world
networks inherently raises the issue of unveiling the underlying mechanisms regulating the emergence of a such
structural property, which, in turns, is known to considerably affect the organization of the network into collective
dynamics, such as synchronization14, cooperation behavior15,16 and opinion formation17,18.

In the present work, we show how disassortative mixing emerges in growing SF networks by a simple mech-
anism in which the graph’s nodes may die out during the growing process. As a reference, we consider the
Barabási-Albert (BA) model of preferential attachment which is well known to induce a power-law distribution of
node’s connection degree10. However, the degree correlation of BA model is weak (actually it should be zero in the
thermodynamic limit), and often ignored in the literatures4, so that simulations of dynamical processes on BA
networks agree substantially with the mean field predictions19,20. Here we show that modifying the BA model with
pruning just a tiny proportion of nodes leads to the emergence of substantial properties of negative degree-degree
correlation, while the other main topological properties of the network (such as the power-law degree distribution
and the size of the giant component) remains almost unaffected.

OPEN

SUBJECT AREAS:

STATISTICAL PHYSICS

COMPUTATIONAL SCIENCE

COMPLEX NETWORKS

Received
11 September 2014

Accepted
27 November 2014

Published
18 December 2014

Correspondence and
requests for materials

should be addressed to
S.-J.W. (wangshjun@

snnu.edu.cn); Z.W.
(zhenwang0@gmail.
com) or S.B. (stefano.

boccaletti@gmail.com)

SCIENTIFIC REPORTS | 4 : 7536 | DOI: 10.1038/srep07536 1

mailto:wangshjun@snnu.edu.cn
mailto:wangshjun@snnu.edu.cn
mailto:zhenwang0@gmail.com
mailto:zhenwang0@gmail.com
mailto:stefano.boccaletti@gmail.com
mailto:stefano.boccaletti@gmail.com


Results
Before exhibiting the formal results, it seems very instructive to
describe the detailed definition of degree-degree correlation coef-
ficient r, which is usually used to evaluate the mixing patterns of
networks4. Similar to ref 11, its expression is given by
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where M denotes the total number of links in the network, ji and ki

are the degrees of the vertices at both ends of the ith edge, and i 5 1,
2, …, M.

Figure 1 reports on how the correlation coefficient r behaves as a
function of the fraction of removed nodes f in the three different
scenarios. One can easily see that when both the direct degree rank-
ing and the random ranking are used for sequentially removing the
nodes, the value of correlation coefficient r remains nearly
unchanged, as compared to that of the original SF network. At vari-
ance, if the nodes are deleted according to the inverse degree ranking
(from largest to smallest degrees), the value of r remarkably drops
(for more details see also Figure S1 in Supporting Information).
Eventually, at extremely small proportion of pruned nodes (f ,
0.02), the correlation coefficient becomes substantially negative
(,20.23). Importantly, when the average degree and size of the
BA networks are adjusted, similar observations are still obtained
(see Figure S2 in Supporting Information), which thus suggests
removing largest-degree nodes is robust in producing a disassortative
mixing pattern in BA networks. Moreover, when examining the
degree distribution of the pruned networks [Fig. 1(b)], one can
observe that the power-law trait of degree distribution remains
unchanged, the differences concentrating on the loss of largest-
degree nodes produced by their progressive removal. In Figure S3
of Supporting Information we clarify that such a trend is, actually,
proper of growing SF networks, as the scenario occurring for SF
networks generated by the configuration model21 is very different.
The observation is analogous to producing uncorrelated SF networks
based on configuration model22,23, which possesses different bias with
BA networks24.

Based on the aforementioned observations, an interesting ques-
tion naturally poses itself which we plan to address in the following.
Namely, if we remove the largest-degree nodes in the empirical

networks, how do the mixing patterns change? To answer this ques-
tion, we repeat similar operations of Fig. 1 on World Wide Web
(WWW) and Internet8,25,26, which, as typically technological net-
works, are famous for the property of power-law degree distribution.
Figure 2 features the degree-degree correlation coefficient r in
dependence on the fraction of removed nodes f for three different
strategies. Though both networks initially possess disassortative mix-
ing patterns, they still unveil qualitatively identical results as Fig. 1(a).
It can be observed that removing nodes according to the direct degree
ranking and the random ranking has negligible influence on mixing
patterns of networks, but the case of inverse degree ranking makes
the value of degree-degree correlation coefficient r quickly drop
(even if extremely limited nodes are deleted). This empirical finding
well validates the theoretical prediction. Combining these achieve-
ments, it is thus proved that pruning largest-degree nodes can be
regarded as one universally effective method of producing a disas-
sortative mixing pattern in growing SF networks. Here, it is also of
particular interest to mention that pruning the largest-degree nodes
enhances networks’ randomness and make networks shift towards
ones with maximum entropy, which is similar to the observation of
directed networks27,28. In what follows, we will provide more expla-
nations for this type of anticorrelated behavior.

Furthermore, SF networks are usually vulnerable to attacks target-
ing the largest-degree nodes29. It is then instructive to monitor the
impact of pruning such nodes on the giant connected component of
the network. Figure 3(a) reports the size of the giant cluster S, nor-
malized by the network size, and the mean size of other isolated
clusters Æsæ, versus the fraction of removed nodes f. With the incre-
ment of f, the giant cluster size S suffers just a very slight decline,
while the mean size of isolated clusters remains close to 1.0. Besides,
another typical property of complex networks is the clustering coef-
ficient C9,30, which is used to measure the whole connection of net-
works. Figure 3(b) shows the variance of clustering coefficient C in
dependence on the fraction of removed nodes f for three strategies. It
is clear that pruning the largest-degree nodes obviously decreases the
cluster coefficient C, which means that the fraction of connected
triples of nodes decline. These results thus indicate that the disas-
sortative SF networks, resulting from the deletion of largest-degree
nodes, still consist of a unique giant cluster with size S^N , yet
slightly low clustering coefficient.

In order to gather a deeper understanding of the mechanisms lead-
ing to the enhancement of degree correlation, we turn our attention to
the average degree of the next neighbors of each network’s node.
Namely, we call kn

i kn
i

� �� �
the degree of the nth neighbor of node i

(the mean degree of the neighbors of node i). For degree uncorrelated

Figure 1 | (a) The relation between degree correlation coefficient r and the

fraction of removed nodes f. Deleting the largest-degree nodes dramatically

decreases the degree correlation. (b) The degree distribution of the

networks obtained by removing the largest-degree nodes at f 5 0, 0.005,

and 0.01. The size of original SF networks is N 5 104, and the average

degree Ækæ 5 4. In all panels, data are ensemble averages over 104

independent realizations.

Figure 2 | (a) Degree-degree correlation coefficient r in dependence on

the fraction of removed nodes f for WorldWideWeb (WWW) (a) and

Internet (b). It is clear that pruning a very small fraction of largest-degree

nodes could heavily decrease the value of r, which is in agreement with the

prediction in Fig. 1.
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networks, kn
i

� �
is equal to the average degree of the network, namely,

kn
i

� �
~ kh i. However, for a SF network grown by the BA model, the

mean nearest-neighbors degree kn
i

� �
displays a fully non trivial beha-

vior as a function of ki (see Fig. 4(a)). In particular, the average
nearest-neighbors degree of large-degree nodes is well above the aver-
age degree of the network (red horizontal line in Fig. 4(a)), which
means that large-degree nodes tend to connect with large-degree
nodes rather than medium-degree (or small-degree) nodes. On its
turn, this implies that large-degree nodes tend to contribute to an
overall positive degree correlation, i.e., assortative mixing. On the
other hand, also most of the small-degree nodes display a value of

kn
i

� �
that is above that of Ækæ, indicating that small-degree nodes are

able to form connections with large-degree nodes, thus contributing to
a sort of negative degree correlation, i.e., disassortative mixing. The
delicate interplay between these two opposite tendencies is therefore
responsible for the extremely week degree correlation of the overall
network. The situation changes drastically for the network resulting
from removing the largest-degree nodes [see Fig. 4(b)]. Now, the
average nearest-neighbors degree of large-degree nodes oscillates
around the average degree of networks, which implies that the initially
positive degree correlation tendencies for these nodes is drastically
reduced. As for the set of small-degree nodes, though the average
degree of their nearest neighbors reduces a bit, yet they still unveil
markedly negative degree correlation, and, as a result, the whole net-
work displays a disassortative mixing pattern.

We move now to give a proper analytical ground to our numerical
observations. Using the continuum theory10, one can formally derive
the degree distribution P kn

l

� �
of the nearest neighbors of the largest-

degree nodes. In BA networks, the time evolution of the degree ki is
governed by the equation

dki

dt
~m

ki

2mt
: ð2Þ

With initial condition ki(ti) 5 m (being ti is the time at which the
node i enters into the network), the solution of the above equation is

ki tð Þ~m
t
ti

� 	b

, ð3Þ

where b 5 1/2. Thus the degree ki of node i evolves following a power
law determined by the ratio t/ti.

Now, in order to derive the expression for P kn
l

� �
, we observe that,

at the time at which node i is added to the network, the probability it
forms a link with a node having degree kl(ti) is

Pi klð Þ~m
kl tið Þ
2mti

, ð4Þ

Thus, according to Eq. (3), we get

kl tið Þ~m
ti
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: ð5Þ

The subsequent evolution of the degree of node i is given by

kn
l i,tð Þ~ki tð ÞPi klð Þ~
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Then, the probability that node i (as neighbor of one of the largest-
degree nodes in the network) has a degree kn

l i,tð Þ smaller than k is

P kn
l i,tð Þvk
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~P tiw
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 !
, or, equivalently

Figure 3 | (a) Size of the giant connected component S (normalized to the network size), mean size of isolated clusters Æsæ, and (b) clustering coefficient C,

as functions of the fraction of removed nodes f. Here, it is worth mentioning that we focus on the case of pruning the largest-degree nodes in (a),

yet provide a brief comparison of three strategies in (b). Same stipulations as in the Caption of Fig. 1.

Figure 4 | Mean nearest-neighbors degree kn
i

� �
vs. the degree ki of the ith

node for (a) BA networks and (b) the resulting disassortative networks
when a fraction f 5 0.02 of largest-degree nodes are removed. The

horizontal red line indicates the average degree Ækæ 5 4 of original BA

networks. All results are obtained for networks with N 5 103.
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Finally, the distribution P kn
l

� �
can be obtained as
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The analytical expression for the distribution P kn
l

� �
is a power low

function, with decaying exponent equal to 2, which is in remarkable
agreement with the numerical results obtained by us for a finite size
BA network, as shown in Fig. 5. As the decay of P kn

l

� �
is more

moderate than that of the degree distribution, this indicates that
the neighborhoods of the largest-degree nodes in the network are
mainly formed by other highly connected nodes.

The distribution P kn
l

� �
can be further used to derive the contri-

bution to the correlation coefficient given by special network’s nodes.
The degree-degree correlation function is r~jk{�j�k, where j and k
represent the degree of both ends of one randomly selected edge, and
the bar indicates an average over the edges. We also denote

E~�j�k~
X

kkqk

h i2
, where qk~

kP kð ÞP
kkP kð Þ is the degree distribution

of the ends of a randomly selected edge. Using P(k) 5 2m2k2c with c
5 3, we obtain E 5 m2(ln kl)2. The contribution to r from the node i
(Ri, r 5 Si Ri), can be written as
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where kn
i is the degree of the nearest neighbors of node i and M

represents the number of edges (2M 5 Si ki). For the largest-degree
nodes in the network, the neighbors’ mean degree can be derived
using the distribution P km

l

� �
. Correspondingly, one obtains

Rl~
mkl ln kl

2M
kl{m ln klð Þ: ð10Þ

From Eq. (10), it is easy to realize that the contribution to r of the
largest-degree nodes R(kl) is positive, and therefore, once such nodes
are pruned, the decline of the overall degree-degree correlation
becomes a natural consequence.

All this set of evidences allows us to propose a generative model for
scale-free networks with tunable and controllable levels of disassor-
tativity. Namely, we modify the standard preferential attachment
mechanism, and incorporate the possibility that, for technological
and biological networks, the coalescence of each new node into the
graph could imply a risk for the already existing structure of
connections.

The latter can be realized in the following way. When a new link is
formed during the preferential attachment growth, a random node of
the existing network with degree larger than a given threshold kth is
removed with a fixed probability p (in the following we assume p 5

0.1). Fig. 6 reports how the correlation coefficient r for the resulting
network depends on kth. Notice that the pruning process here gradu-
ally reduces the correlation coefficient and results in the generation
of a disassortative mixing pattern associated with a scale-free degree
distribution, as shown in the inset of Fig. 6.

It is worth emphasizing that, at variance with the classical methods
where correlation patterns are imprinted by rewiring processes on
top of an already formed structure of connections11, here the pro-
posed generative model leads to a tunable and controllable level of
disassortative mixing, that however emerges spontaneously during
the growth of the graph structure.

Discussion
In summary, we have studied the effect of pruning nodes on the
degree correlation in growing scale-free networks. We gave evidence
that removing largest-degree nodes remarkably reduces the degree-
degree correlation (i.e., it imprints a disassortative mixing pattern)
yet keeping a power-law character in the degree distribution, irre-
spective of whether the removal events take place during or after the
growth of the network structure. Moreover, these theoretical obser-
vation can get further validation with empirical networks. Our results
thus suggest that the negative correlation observed ubiquitously in
technological and biological real-world networks can be the effect of

Figure 5 | P kn
l

� �
(see text for definition) and the degree distribution P(k)

vs. the degree k. The straight line is drawn accordingly to the analytical

predictions of Eq. (8). All results are obtained on BA networks with N 5

103, Ækæ 5 4.

Figure 6 | The generative model for disassortative scale-free networks.
The vertical axis reports the degree correlation coefficient r, and the

horizontal axis reports the degree threshold kth above which nodes are

removed with probability p 5 0.1 during the upgrowth process of

networks. The inset reports the degree distributions for different threshold

values. All results are obtained on networks with N 5 104 and Ækæ 5 4.
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spontaneous emergence, due to the possibility that largest-degree
nodes are liable to dye out during the growing process of the net-
work’s structure.

Methods
Our first step is building a SF network in accordance with the Barabási-Albert algo-
rithm10. Initially, we consider m0 . m fully connected nodes. Time is discrete, and at
each step a new node is added, and forms m new links with existing nodes. The
probability that a new node at time t establishes a connection with the existing ith node
is given by ki(t)/[Sj kj(t)], where ki(t) is the number of connections the ith node forms,
at time t, with the rest of the graph. After the network is grown, we start removing
sequentially a fraction f of nodes from it. When a node is removed, all its incident links
are also removed. As for the sequence of nodes that are being removed, we propose
three different strategies: (i) following the inverse degree sequence, i.e. starting from
the largest-degree nodes, (ii) following the direct degree sequence, i.e. starting from
the smallest-degree nodes, and (iii) following a completely random sequence. As for
the degree-degree correlation coefficient r11, its definition has been given in Results.
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22. Catanzaro, M., Boguñá, M. & Pastor-Satorras, R. Generation of uncorrelated
random scale-free networks. Phys. Rev. E 71, 027103 (2005).

23. del Genio, C. I., Kim, H., Toroczkai, Z. & Bassler, K. E. Efficient and exact
sampling of simple graphs with given arbitrary degree sequence. PLoS ONE 5,
e10012 (2010).

24. Klein-Hennig, H. & Hartmann, A. K. Bias in generation of random graphs. Phys.
Rev. E 85, 026101 (2012).

25. Chen, Q. et al. The origin of power laws in Internet topologies revisited. In
Proceedings of the 21st Annual Joint Conference of the IEEE Computer and
Communications Societies: IEEE Computer Society, London. IEEE Computer
Soc. Press (2002).

26. Adamic, L. A. & Huberman, B. A. Power-Law Distribution of the World Wide
Web. Science 287, 2115 (2000).

27. Johnson, S., Torres, J. J., Marro, J. & Muñoz, M. A. The entropic origin of
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