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Role of Shiga/Vero toxins in pathogenesis

Fumiko Obata” and Tom Obrig
University of Maryland School of Medicine

Abstract

Shiga toxin (Stx) is the primary cause of severe host responses including renal and central nervous
system (CNS) disease in Shiga toxin-producing E. coli (STEC) infections. The interaction of Stx
with different eukaryotic cell types is described. Host responses to Stx and bacterial
lipopolysaccharide (LPS) are compared as related to the features of the STEC-associated
Hemolytic Uremic Syndrome (HUS). Data derived from animal models of HUS and CNS disease,
invivo, and eukaryotic cells, in vitro, are evaluated in relation to HUS disease of humans.

|. Activities of Stx and LPS in renal disease

1. Shiga toxin actions

It is generally accepted that all actions of Shiga toxin (Stx) depend on its interaction with the
receptor, globotriaosylceramide (Gb3) on eukaryotic cells. While alternative receptors for
Stx have been postulated, no definitive data have been forthcoming in support. Stx holotoxin
is internalized by receptor-mediated endocytosis, retrograde transported via the Golgi
apparatus and processed through in the endoplasmic reticulum, and released into the
cytoplasm where it enzymatically inactivates ribosomes and inhibits protein synthesis (Fig.
1). However, it is important to note that in addition to Stx holotoxin, the B-subunit alone can
interact with Gbg in a physiologically meaningful manner where it activates signal
transduction pathways in target cells (Fig. 1)[1]. An additional, but unexplained anomaly is
the interaction of Stx with eukaryotic cells in a Gbs-independent manner that leads to
induction of cytokines by these cells [2]. As shown in Figure 1, intracellular responses to Stx
are diverse, including inhibition of protein synthesis, activation of cellular stress responses,
and induction of cytokines and chemokines. It is likely that these different schemes take
place in cell-specific activities during Shiga toxin E. coli (STEC) infections in humans
culminating in typical hemolytic uremic syndrome (HUS) disease. As depicted, it is clear
that in some cases Stx can result in activation of p38 MAP kinase as well as apoptotic and
necrotic cell death (Fig. 1). The topic of HUS renal disease has been reviewed recently [3-
5].

2. Cell types responsive to Stx

The high number of Stx-sensitive cell types makes more difficult identification of more
important events responsible for HUS. Renal microvascular endothelial cells are generally
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accepted to be the primary target of Stxs in HUS. Data in support of this concept comes
from many sources, most notably autopsy kidney pathology samples showing swollen and
detached endothelial cells accompanied by thrombi [6]. Such human renal microvascular
endothelial cells were also shown to be very sensitive to Stxs, in vitro [7]. However, other
cells which comprise the human renal glomerulus are also sensitive to Stx including
podocytes and mesangial cells [8, 9]. In addition, extraglomerular epithelial cell types of the
human kidney have been postulated to be targets of Stx, including proximal tubule and
collecting duct cells [8, 10, 11]. Cell types in the blood circulation which may be key to
development of HUS and which are sensitive to Stx include platelets, neutrophils, and
monocytes [12-16].

In summary, most, if not all, of the cell types mentioned may well have a role in STEC
related kidney disease and typical HUS. The relative importance and role of these cell types
in STEC HUS remains to be determined. For example, it is not clear which of the renal cell
types are actually responsible for renal failure in STEC HUS, although apoptosis of tubules
appears to be a common feature [8, 17]. The relative contributions in HUS disease of renal
microvascular coagulation and thrombosis (i.e. endothelial cells), imbalance of fluid and
electrolytes (i.e. nephron tubules), and altered filtration barrier function (i.e. endothelial and
podocyte cells) has yet to be elucidated for typical HUS. If in vitro cell culture studies are
pertinent to HUS in patients, the sensitivity (LDsg) of human renal cells to Stx2 (endothelial,
0.1 pM > podocyte, 0.5 pM > proximal tubule, 10 pM) suggests the renal filtration barrier
is at considerable risk [8].

3. Inflammatory cells, chemokines, and renal thrombosis

A primary feature in the renal pathology of STEC HUS is microvascular coagulation and
thrombosis. In humans and in a murine model of HUS, the Interaction of Stx and LPS with
circulating cells and resident renal cells appears to have a causal role in microvascular
thrombosis [18, 19]. In a series of studies in the Stx/LPS murine model of HUS, a pathway
leading to fibrin deposition was revealed (Fig. 2). LPS-activation of cells such as endothelial
and renal tubule cells elicited chemokines (MCP-1, MIP-1alpha, RANTES) known as
chemoattractants for monocyte/macrophage cells and co-activators of platelets. In this
response, Stx enhances the effects of, but does not replace LPS. The response was associated
with renal fibrin deposition [12, 20]. In the murine model, simultaneous neutralization of
these three chemokines inhibited LPS/Stx-induced monocyte accumulation and fibrin
deposition in the kidneys [20]. Further, administration of adenosine A2a receptor (A2aR)
agonists to Stx/LPS mice also reduced monocyte and fibrin accumulation in the kidneys. As
shown (Fig. 3), A2aR agonists act as anti-inflammatory agents in monocytes, platelets, and
endothelial cells [21]. Taken together these studies indicate that both LPS and Stx are
required for maximal renal fibrin deposition and that platelets may be required. Because
mice deficient in MCP-1 have sharply reduced platelet deposition after exposure to Stx/LPS,
we have suggested that this chemokine serves as a co-activator of platelets in typical HUS
(Keepers, unpublished data). The primary activators of platelet activation are thrombin or
adenosine diphosphate (ADP). Our renal gene array analysis of the LPS response in mice
indicated that LPS strongly elicited fibrinogen mRNA, the precursor of fibrin (Obrig,
unpublished data). In addition, it is noteworthy that selective elimination of monocytes from
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mice prior to the above studies had no effect on the ability of Stx/LPS to elicit renal fibrin
deposition suggesting the chemokines are being generated from other cell types such as
renal tubules [20]. Important conclusions from the murine HUS model are that LPS, not Stx,
is the initial primary elicitor of renal coagulation and thrombosis, but Stx, not LPS, is the
lethal agent of STEC.

In the murine Stx/LPS model of HUS, monocyte migration into the kidneys was restricted to
the extra-glomerular space in contrast to polymorphonuclear leukocytes (PMN) which in
addition migrated into the glomeruli. The latter may be important in humans because
neutrophilia has been implicated as a primary risk factor for HUS disease and increased
neutrophil migration into the kidneys was a key observation in HUS renal biopsies [22, 23].
In the murine model of HUS, the neutrophil chemotactic factors CXCL1 (KC) and CXCL2
(MIP-2) were induced in the kidneys by LPS [15]. The induction was at the transcriptional
level and was enhanced by Stx2. Administration of neutralizing antibodies for these
neutrophil chemotactic factors prevented the movement of neutrophils into the kidneys. It
was also demonstrated that VCAM-1 was induced in the kidneys simultaneously with
CXCL-1 and CXCL-2 in response to Stx2/LPS in mice (Fig. 5). VCAM-1 is known to assist
movement of neutrophils across the endothelium and appeared to exhibit this function for
neutrophils in the Stx2/LPS murine model of HUS. However, the relative importance of
renal neutrophils in Stx-induced renal failure has yet to be determined in mice and humans.

4. Renal gene array analysis of murine responses to Stx2 and LPS

Much information is now available regarding the biological effects of Stx2 and LPS on
kidneys in the murine HUS model. The following is a synopsis of the more pertinent gene
microarray data obtained from temporal studies of the murine renal responses to Stx2, LPS,
or Stx2/LPS [19]. Based on the total of both up- and down-regulated genes, five-times more
renal genes responded to LPS than to Stx2 over the 72h time course. Response to LPS was
mostly early, while Stx2 responses occurred later in the 72h time course. These results are
more meaningful when viewed in the larger picture of HUS disease where renal failure
occurs later in the time course in both mice and humans. It should be emphasized that Stx2,
rather than LPS, is the lethal factor in the murine HUS model. The gene array data revealed
different roles for LPS and Stx2 in the renal physiological responses. LPS responses were
mostly inflammatory, stress related, or cell defensive in nature. In contrast, Stx2 responses
were related to cell repair and involved cell proliferation and differentiation or cell cycle
control genes. An interesting finding was that renal genes down-regulated by Stx2 included
membrane transporters which appeared to signal a protective survival mode and slowing of
cell metabolism.

The renal genes most up-regulated by Stx2 or LPS are depicted in Fig. 4. As expected from
the inflammatory responses described above, LPS induced a number of chemokine genes
which code for chemotactic factors for monocytes and neutrophils. These tend to be
‘immediate’ response genes which attract monocytes and neutrophils into the kidneys and
set the stage for a broad inflammatory response in the kidneys. Such LPS ‘immediate’
response genes are mentioned in the literature in descriptions of typical HUS, i.e. MCP-1,
MIP-2alpha, and the murine IL-8 mimic, KC. It was also observed that IP-10 (CXCL10)
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was induced by LPS as well as by Stx2, albeit in early and late parts of the HUS disease
time course, respectively. Related to renal coagulation and thrombaosis in HUS, LPS induced
a set of fibrinogen genes ‘late’ in the time course of the murine model of HUS concomitant
with the appearance of fibrin deposition and coagulation in the renal microvasculature of
HUS (Fig. 4). These data agree with our observation that LPS is responsible, in part, for
fibrin deposition in the Stx2/LPS murine model of HUS [19]. Amyloid protein which has
been reported to be a Stx-sensitizing factor in HUS is induced at the mRNA level by LPS in
mice as shown in Fig. 4 as a renal ‘late’ gene product [24]. More recently, complement has
been identified as a factor that may contributes to renal failure in atypical HUS.

Products of some of the genes shown in Fig. 4 have been examined by investigators as
potential biomarkers for diagnostic purposes. For example, IP-10 has been identified as a
urine biomarker for other kidney diseases such as lupus nephritis [25, 26]. Lipocalin 2
(NGAL), an LPS-induced “early’ gene (Fig. 4) is a common urine biomarker for numerous
renal diseases including STEC-HUS [27].

is the murine model of HUS for translation to the human disease?

A large volume of data exists for mouse models of Stx-HUS [28]. The two common
experimental approaches for these murine models are either oral infection with STEC or
injection with purified Stx plus or minus LPS [17, 19, 29, 30]. In virtually all cases these are
lethality models within 4 to 12 days after exposure to the agents and are accompanied by
renal damage. Where examined these murine models usually exhibit the three hallmarks of
HUS; thrombocytopenia, hemolytic anemia, and renal failure. However, every animal model
has its limitations, and for the murine models of HUS, the renal microvascular endothelial
cells do not express Gbz and are resistant to Stx action. This is important if one believes that
the primary target of Stx is the renal microvascular endothelium. Indeed, human renal
endothelial cells, in vitro, are very sensitive to Stx, and the pathology of human kidneys in
HUS describes swollen and detached glomerular endothelial cells. But, it is surprising why
such human glomerular endothelium is not killed by Stx in HUS kidneys. This suggests
either a more indirect action of Stx in human HUS or dominant survival activities are
activated within the endothelium after exposure to Stx. An alternative explanation is that the
primary target of Stx in human kidneys is not the endothelium, but rather glomerular
podocytes and extra-glomerular tubules along the nephron. Support for this exists for HUS
in mice and humans where urine specific gravity changes, chemokines are increased in the
urine, and biomarkers of damaged podocytes and tubule cells are detected.

Mouse models have been helpful in separating the actions of Stx and LPS in HUS. In
general, and as described above, LPS is the primary inducer of cytokines and chemokines
where Stx enhances the activity of LPS. The complexity of inflammation in HUS is critical,
but really has yet to be fully delineated in murine models and in human HUS. The murine
model mirrors typical HUS of humans as resting platelets are resistant to Stx and require
pre-activation with LPS [19]. However, it is most important to reiterate that Stx, not LPS is
responsible for the renal failure in typical HUS. In conclusion, the murine responses to Stx
and LPS include most of the features of STEC-HUS in humans.
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[l. Activities of Stx in CNS disease

1. CNS symptoms of animal models

In either an oral inoculation of Shiga toxin-producing E. coli (STEC) model or purified
Shiga toxin (Stx) injection animal model, the most common and most frequently reported
central nervous system (CNS) impairment is paralysis of extremities. Most frequently, the
hind legs are affected first followed by the fore-legs. Other symptoms include anorexia,
lethargy, ataxic gait, recumbency (the affected animals lose strength required to hold their
body in an upright position), convulsions, seizure, coma and death.

STEC oral administration animal models are summarized in Table 1. The oral inoculation
models of STEC that describes CNS symptoms are limited to pig and mouse. Pigs develop
“edema disease” with Stx2e-producing E. coli and present CNS symptoms (Table 3).
Experimentally, edema disease-like state is reproducible with Stx2-producing E. coli that
has been isolated from human patients. CNS symptoms are only seen in Stx2-(both Stx2 and
Stx2e) producers, but not in non-Stx2 producers. This indicates a strong association of Stx2
to CNS impairment.

Lipopolysaccharide (LPS) is an outer membrane component of Gram negative bacteria and a
strong inflammation inducer. The involvement of LPS in STEC-associated CNS symptoms
was tested by using LPS non-responder mouse C3H/HeJ [29]. C3H/HeJ did present CNS
symptoms when given Stx2-producer E. coli, but did not when Stx-non-producer was
inoculated. This again suggests a strong involvement of Stx in CNS symptoms. The
difference between LPS-responder mouse (C3H/HeN) and C3H/HeJ in CNS symptoms was
that C3H/HeN showed a progressive time course of CNS symptoms whereas C3H/HeJ
showed ‘biphasic’ response in that they developed milder CNS symptoms and recovered
once, but then progressed to a severe form of CNS impairment. This suggests that even
though Stx2 may be the central cause of CNS symptoms, addition of LPS response may
contribute to the progress of the disease.

To further study the action of Stx2 in CNS disease, different animals were tested with
purified Stx2. Stx2 injection animal models with CNS complications are summarized in
Table 2. Also, LPS involvement or contribution to Stx2-associated CNS disease was tested
in some reports. The reproducible results of hind leg paralysis and high frequency of
convulsions and seizures with purified Stx confirms the central role of the toxin in STEC-
associated CNS disease. Human STEC patients present various CNS symptoms that range
from eye involvement (diplopia, hallucinations and cortical blindness), behavioral changes
(hyperactivity, distractibility, irritability and altered sensorium), posturing/coordination
difficulties (poor fine-motor coordination, hemiplegia, ataxia and clumsiness) and severe
symptoms as seizures, dysregulation of breathing, alteration in consciousness such as coma.
Within these varieties of symptoms, ataxia or hemiparesis resembles Stx-associated animal
CNS symptoms. Also, it is notable in human patients, seizures are a frequent observation.
This resemblance between patients and animal models of STEC/Stx suggest to us there is a
great possibility that analyzing these animal models may give us some clues to define the
mechanisms of CNS impairment in Stx-associated disease.
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2. CNS histopathology of animal models

In animal models with STEC oral inoculation which describe CNS symptoms, most exhibit
defective capillaries (pig: [31-34], mouse: [35, 36]). Those capillary lesions are mostly
related to endothelial cell weakening that appears as hemorrhage, with leaked red blood cells
in parenchyma. Non-capillary components in the parenchyma such as neurons and myelin
defects were seen in some mouse STEC models [35, 37, 38], but not others [36]. In purified
Stx2 injection models, similar lesions involving capillary/endothelial cells were found in pig
[39, 40], rabbit [41-43] and mouse [44, 45]. In contrast, other models did not have these
lesions, but rather lesions related to neuronal degeneration (baboon: [46], rabbit: [43, 47,
48], rat: [49, 50], mouse: [51]) or myelin degeneration (baboon: [46], rabbit: [52], rat: [49]).
Also, some reports showed normal appearance of neurons (rabbit: [47]striatal neurons,
mouse: [53] lumbar spinal cord neurons). As all models exhibit similar CNS symptoms such
as hind leg paralysis, the difference in histopathological lesions may be due to involvement
of different parts of CNS, different time points in the disease, or species specific
sensitivities. The mechanism of inducing CNS symptoms may be weakening of endothelial
cells/capillary composition caused neurotoxicity, or direct effect of Stx in neuronal toxicity.
The observation of lamellipodia-like processes of glial origin interrupting synaptic
connections at the lumbar spinal cord interneuron to motor neuron may explain the resulting
hind leg paralysis (mouse: [53]). A similar observation is reported in a rat model of striatum
neurons [51].

3. CNS molecular physiology of animal models

Molecular marker analysis in STEC or Stx animal models suggests possible mechanisms for
Stx-associated CNS impairment.

The apoptotic nature of Stx-associated lesions has been described. TUNEL stain detects
fragmented DNA and therefore is often used as an apoptotic assay. Capillaries (pig:[33],
rabbit:[54] [43]), neurons (mouse:[55], rabbit: [43]), and glial cells (rabbit:[43]) have been
detected as TUNEL positive. Activated caspase-3 targeted IHC has been used for another
marker of apoptotic cells. Neurons (mouse: [56]) and capillaries (rabbit: [54]) have been
detected positive. Another pro-apoptotic marker, bax, was found increased in rat neurons
[57]. Along with EM observation (rat: [49]), some neurons and capillary cells (endothelial
cells and/or pericytes) undergo apoptosis, but some appear as necrotic (rabbit: [33]). Careful
and detailed information of which area of CNS and what types of cells in that area present
apoptotic features may help elucidate these conflicting results.

AQP4 is mostly expressed in astrocyte foot processes that have a direct contact to capillaries
in the CNS. The reduction of AQP4 suggests that there is alteration in astrocytic foot
process, which is important to strengthen the BBB. AQP4 expression decreased in Stx2
injected rat [50] and STEC infected mouse [56], while astrocytic activation marker glial
fibrillary acidic protein (GFAP) increased. This suggests Stx-associated astrocyte activation
that may participate in weakening the BBB.
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An increase in TNFa in STEC inoculated mouse [37] and Stx2 injected rabbit [43] brain
along with serum TNFa increase in STEC inoculated rabbit [55], suggests Stx-associated
inflammation in the CNS.

Ca?* imaging and electrophysiological study are useful tool to assess direct physiological
action of Stx in fresh brain slices. Our group showed Stx2-associated neuronal glutamate
release in mouse brain slice (cerebral cortex) indirectly by recording intracellular Ca2* in
astrocyte [53]. Recently, it is shown that Stx2 induces depolarization of neurons in the
thalamic area of female rat [58].

4. Receptor Gbz expression in animal central and peripheral nervous systems (CNS, PNS)

Shiga toxin receptor localization in the animal nervous system has been described for
different species. There are three ways to localize Shiga toxin receptor. Firstly, is to perform
anti-Stx immunodetection in tissues of STEC infected or Stx injected animals (rabbit: [42,
47, 52], rat: [49, 59], mouse: [35, 36]). Secondly, is to incubate a naive tissue section with
Stx followed by anit-Stx immunodetection (pig [60]). Thirdly, is to recognize
globotriaosylceramide (Gb3) as a Stx receptor with anti-Gbsz immunodetection in tissues.
Detecting anti-Gbs immunoreaction in the naive tissue gives us basal expression level and
cell types that would be influenced by Stx initially in the course of disease. These include
neurons in the mouse spinal cord [53] and other regions of CNS [61]. In the Stx-
administered tissue, it may or may not indicate the spontaneous Stx receptor expression but
certainly indicate cell types responsive to Stx. The cell types that are positive in either of the
analyses above often include small vessel endothelial cells (rabbit: [42, 43, 47, 52, 62, 63],
mouse: [45, 64]), neurons (rat: [49, 57, 59], mouse: [35, 45, 53, 61]) and glial cells (rat:[49,
57, 59], mouse: [45, 61]). Miyatake and colleagues compared the peripheral nervous system
(dorsal root ganglion) of different species with the same method and found that human and
rabbit expressed Stx receptor in endothelial cells and neurons, whereas rat and mouse
expression was restricted to neurons [62, 63]. Our group reported that throughout the mouse
CNS, the only non-neuronal cell type to exhibit anti-Gbz immunoreactivity was the third
ventricle ependymal cell [61]. Studies have suggested, in the naive state, human and rabbit
express Stx receptor in their vessels as well as neurons and rodents appear to express Gbhs
mainly in neurons. However, it was shown that Stx receptors in the rat CNS are induced by
Stx administration [57]. Among different species, the receptor expression patterns in
different regions of CNS, the cell types and the amount expressed may be different,
however, all models present with common CNS impairment such as hind leg paralysis. This
may be interpreted as expression of Stx receptor in endothelial cells is not necessary for
toxin to be able to internalize into the CNS parenchyma to have an effect.

In 2006, Okuda et al reported [64] adgalt knockout mouse that lacks Gbg synthase (alpha
1,4-galactosyltransferase) and therefore produces no Ghs. In this mouse, originally Gbs
positive vessels lost their anti-Gbs immunoreactivity, and became Stx resistant. Gbs
synthase probe has been applied for an in situ hybridization in the mouse [56] and rat [58]
CNS. While metabolic pathway enzymes such as Ghs synthase, a glycosyltransferase, adds
the terminal galactose to complete Gbg, other glycosyltransferases in the pathway are unique
in each step of glycolipid synthesis, and there are catabolic pathway enzymes as well (see
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Fig. 6). All these enzymes participate in determining the amount of Gbg in the cell.
Measuring these Gbs-associated enzymes may give us more insight into Shiga toxin receptor
regulation.

5. Discussion about how Shiga toxin enters CNS of animals

Purified Stx peripheral injection (intraperitoneal/i.p. or i.v.) is able to induce CNS
impairment similar to STEC oral infection suggesting that there is a direct effect of Stx on
CNS parenchymal cells. The rat model of intraventricular purified Stx2 injection in which
purified Stx2 is inoculated directly into CNS parenchyma also induces similar CNS
symptoms such as lethargy, hind leg weakness or paralysis [57]. These results suggest that
Stx released from STEC would internalize into the blood and then transfer to CNS
parenchyma and assert its toxicity.

The route and CNS region of Stx permeabilization is of great interest in order to explain
which part of the CNS is most likely influenced by Stx. Stx injected via i.v. has been
detected in cerebrospinal fluid (CSF) (rabbit: [47, 65]). This suggests there is translocation
of Stx from blood to CSF. A reduction of AQP1 in choroid plexus in rat with Stx (i.p.)
suggests that there is weakening of the blood-CSF barrier in this location that may allow Stx
to enter CSF from the blood. The ependymal cells lining at the third ventricle are a border
between CSF and CNS parenchyma. Our group showed in mouse CNS that ependymal cells
at the third ventricle are expressing Gbs in a naive state [61]. The tracer horse radish
peroxidase (HRP) that is injected intrathecally (i.t.) into CSF crossed and entered ependymal
cells and parenchyma (rabbit: [52]), and also magnetic resonance imaging showed the third
ventricle area with a bright signal that is an indication of leakiness into the fluid in this area.
Taken together, it is reasonable to think that Stx utilizes blood-CSF barrier penetration as
one of the routes into CNS parenchyma. On the other hand, Stx injected via i.p. was detected
in the perivascular area in rat [49], and blood-brain barrier (BBB) weakening was suggested
by the reduction of AQP4 (rat: [50], mouse: [56]), and also by tracer HRP (i.v.) detection in
parenchyma (mouse: [35]). These results suggest that Stx can also use the BBB crossing
route to enter the CNS. An important fact to note is that purified Stx by itself, without any
other bacterial component, can enter CNS and assert its toxicity regardless of differences in
receptor expressing cell types among different species.
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Figure 1.
Schema: Shiga toxin interaction with eukaryotic cells.
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Figure 2. Proposed pathways of Stx and L PS actionsin mice
Data derived from a Stx/LPS murine model of HUS indicate that LPS is the primary elicitor

of fibrin deposition in kidneys. This pathway requires chemokines and platelets, but is not
responsible for renal failure. Stx is responsible for renal failure in this murine model in a
process which involves non-endothelial renal cell types.
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Data derived from a Stx/LPS murine model of HUS suggest adenosine A2a receptor agonist,

i.e. adenosine, effectively blocks the actions of LPS (enhanced by Stx2) at the level of

different renal cell types to prevent platelet activation and coagulation.
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Figure 4. Renal gene activation in the Stx/L PS murine model
Shown are the 10 most up-regulated genes in the temporal response of mice to either LPS or

Stx2. Gene microarrays were employed to analyze kidney gene activation over a 72h
response of C57BL/6 mice to 300 ug/kg LPS or 100 ng/kg Stx2.
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Figure 5. Neutrophil-endothelial cell interactionsin HUS
In the Stx2/LPS murine model of HUS, analysis of renal gene activation and neutrophil

infiltration into kidneys demonstrates a concomitant increase in PMNs and VCAM-1
expression, suggesting a mechanism of PMN-endothelial association.
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Figure 6. Metabolic and catabolic pathway enzymesfor Gbg synthesis
A part of Gbg synthesis pathway is shown. From lactosylceramide (LacCer) to Gbs, alpha 1,

4-galactosyltransferase (EC 2.4.1.228) adds a galactose to LacCer to produce Ghs. Likewise,
UDP-GalNAc: beta 1,3-galactosaminyltransferase (EC 2.4.1.79) works on Gbs to make Gby.
In the catabolic pathway, beta-hexosaminidase (EC 3.2.1.52) degrades Gb,4 to Gbs, and

alpha-galactosidase (EC 3.2.1.22) makes LacCer from Gbs.
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