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Abstract
Background: The automatic interpretation of electrocardiography

(ECG) data can provide continuous analysis of heart activity, al-

lowing the effective use of wireless devices such as the Holter mon-

itor. Materials and Methods: We propose an intelligent heartbeat

monitoring system to detect the possibility of arrhythmia in real time.

We detected heartbeats and extracted features such as the QRS

complex and P wave from ECG signals using the Pan–Tompkins al-

gorithm, and the heartbeats were then classified into 16 types using a

decision tree. Results: We tested the sensitivity, specificity, and ac-

curacy of our system against data from the MIT-BIH Arrhythmia

Database. Our system achieved an average accuracy of 97% in

heartbeat detection and an average heartbeat classification accuracy

of above 96%, which is comparable with the best competing schemes.

Conclusions: This work provides a guide to the systematic design of

an intelligent classification system for decision support in Holter ECG

monitoring.

Key words: heartbeat detection, heartbeat classification, decision

tree, electrocardiography monitoring

Introduction

T
he symptoms of arrhythmia are diverse, ranging from minor

chest palpitations, chest pain, and fainting (syncope) to

sudden heart attack, depending on the type and severity of

heart disease.1 Thus, even patients showing mild symptoms

of arrhythmia should be diagnosed as early as possible.2 Many pa-

tients are unaware of their symptoms and consider it inconvenient to

visit a hospital. Moreover, even those who seek diagnosis may show

normal cardiac behavior during their visit. For these reasons, there

has been a growing demand for remote electrocardiography (ECG)

monitoring systems capable of functioning continuously at any lo-

cation.3 Fortunately, the recently developed Holter monitoring de-

vice can be integrated with modern smartphones to serve precisely

this function.4 It allows patients to continue their normal routines

while long-term ECG information is collected.5

In this article, we propose an intelligent ECG monitoring system to

detect the possibility of arrhythmia in real time by analyzing

heartbeats in terms of the standard ‘‘PQRST’’ wave features. Figure 1

illustrates the system architecture and the operational scenario of the

proposed system for intelligent ECG telemetry. A wearable ECG

sensor continuously measures the activity of a patient’s heart. The

resulting digital stream is transmitted wirelessly to a mobile device

(e.g., a smartphone) using a short-range wireless communication

technology such as Bluetooth� (Bluetooth SIG, Kirkland, WA) or

Zigbee� (Zigbee Alliance, San Ramon, CA).6 The mobile device for-

wards the data to a decision support system, which saves and ana-

lyzes the signal, using long-range wireless technologies such as IEEE

802.11 or long-term evolution (LTE). The results of this analysis are

conveyed to medical staff, located at a remote monitoring station or

carrying a mobile device, to support diagnosis in real time. If

heartbeat features that require immediate attention are detected, the

staff are notified immediately. They may advise a hospital visit, by

sending a message back to the patient through the decision support

system, or take immediate action.

A patient’s long-term ECG data are accumulated in a database at

a decision support system to obtain his or her baseline ECG pat-

terns. The decision support system uses these data to build a de-

cision tree, based either on feedback from medical experts during

an initial learning phase or on domain knowledge about heartbeat

classification. This tree allows subsequent ECG data to be classified

against the baseline by the decision support system. We use the

Pan–Tompkins algorithm7 to extract heartbeat features, and the

decision tree is then able to classify beats into 16 types on the basis

of these features. The effectiveness of our system has been dem-

onstrated by experiments on data from the MIT-BIH Arrhythmia

Database.8

Materials and Methods
Our system is trained to classify a patient’s ECG data by extracting

individual heartbeats and their features from the waveform. The

system considers both the QRS complex and the P wave, which serve

as indicators of ventricular and atrial activity, respectively. Once

trained, the system identifies the types of subsequent heartbeats on

the basis of their features using a decision tree. An overview of the

proposed heartbeat classification system is provided in Figure 2.

HEARTBEAT DETECTION
Our system looks for heartbeats in the ECG using the Pan–

Tompkins algorithm,7 which performs band-pass filtering, differen-

tiation, squaring, and integration over a moving window. The

heartbeat detection panel in Figure 3 depicts the output of consec-

utive steps in the algorithm when processing record 100 from the

MIT-BIH Arrhythmia Database.
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The band-pass filter reduces noise such as 60-Hz interference,

baseline wander, muscle noise, and T-wave interference in the ECG

signal. The difference equation of the low-pass filter is

y(nT ) = 2y(nT - T ) - y(nT - 2T ) + x(nT ) - x(nT - 6T ) + x(nT - 12T ) (1)

and the difference equation of the high-pass filter is

y(nT ) = 32x(nT - 16T ) - [y(nT - T ) + x(nT ) - x(nT - 32T )] (2)

The low-pass filter has a cutoff frequency of 11 Hz, and the high-

pass filter has a cutoff frequency of 5 Hz. After being filtered, the ECG

signal is differentiated to provide slope

information, using the following differ-

ence equation:

y(nT ) = (1=8T )[ - x(nT - 2T ) - 2x(nT - T )

+ 2x(nT + T ) + x(nT + 2T )] (3)

The slope approximates the ideal deriv-

ative for direct currents in a low fre-

quency range of 0–30 Hz.

The next step is to square the signal,

thus making all values positive, as well

as emphasizing higher frequencies. The

equation for squaring is

y(nT ) = [x(nT )]2 (4)

An integrating moving window is

then used to obtain waveform features,

which are added to the slope of the R

wave by the following equation:

y(nT ) =
1

N

� �
fx[nT - (N - 1)T]

+ x[nT - (N - 2)T] + � � � + x(nT )g (5)

This produces repeated peaks.

A heartbeat spans one peak, from

which the system can locate the QRS complex: Q is the starting point,

S is the ending point, and R is the summit of the peak. The system then

finds the P wave from the QRS complex. The P wave is located be-

tween the S point of the current heartbeat and the Q point of the next

heartbeat. The system divides the duration of the P wave into two and

uses the peak in the second interval as the P point.

FEATURE EXTRACTION
The position and amplitude of Q, R, S, and P [Fig. 3, feature ex-

traction stage (1)] are calculated for each beat. Ventricular activity is

related to the QRS complex, and atrial activity, to the P wave.

Six interval features are calculated [Fig. 3, feature extraction stage

(2)]. The RR interval stretches from the beginning of the P wave to the

beginning of the QRS complex. The other five features are extracted from

consecutive R waves. The RR interval is the time that elapses between

two consecutive R waves. The Pre-RR interval is the time between the

previous R wave and the current R wave, and the Post-RR interval is the

time between the current R wave and the following R wave. The Aver-

age-RR interval is the mean length of RR intervals over 60 cycles, and

the Local-RR interval is the mean RR interval over 10 cycles. The

Variable-RR interval is the average of the Pre-RR and Post-RR intervals.

The Average-RR and Local-RR intervals have had other definitions

in previous work. For example, in de Chazal et al.,9 the Local-RR

interval was defined as the mean RR interval over 10 heartbeats,

centered on the current beat, and the Average-RR interval was de-

fined as the mean of all RR intervals in the same ECG recording. These

definitions require data about heartbeats later than the current beat

Fig. 1. System architecture and operational scenario for intelligent electrocardiography (ECG)
monitoring. Lte, long-term evolution.

Fig. 2. The proposed heartbeat classification system. ECG, elec-
trocardiography.
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and are therefore unsuitable for real-time applications. We have thus

redefined the mean RR intervals in terms of past heartbeats.

HEARTBEAT CLASSIFICATION USING THE DECISION TREE
Decision trees built by algorithms such as ID3 (Iterative Dichot-

omiser 3)10 and C4.511 are commonly used for heartbeat classifica-

tion. ID3 is a statistical algorithm and is thus less sensitive to errors

in training data. However, it is not suitable for our application be-

cause the decision tree that it creates has discrete attributes. Instead,

we use the C4.5 algorithm, which allows the use of numerical

attributes.

The C4.5 algorithm constructs the decision tree by determining the

uncertainty of features in the training data and selecting those that are

most reliable. The iteration continues until the system has classified all of

the heartbeats in the training data. Let T

beasetof trainingdata, and letFbeaset

of 14 extracted features represented by
fi 2 F(1pip14) Uncertainty is ex-
pressed as an entropy value E(T), as
follows:

E(T ) = - p(T , f1) log2p(T , f1)

- p(T , f2) log2 p(T , f2) . . .

- p(T , fn) log2 p(T , fn) (6)

If all of the heartbeats exhibiting a

particular feature are in the same class,

then the entropy of that feature is 0; if

the numbers of positive and negative

heartbeats are equal, then the entropy

of the feature is 1, as shown in the first

training stage of Figure 3. We use in-

formation gain as a metric of uncer-

tainty. The information gain Gain (T,

F) of a feature F from training data T is

defined as follows:

Gain(T , F) = E(T )-+v2Values(F)

jTvj
jT j E(Tv)

(7)

where Values(F) is the set of all

possible values for feature F and Tv

is the subset of T for which feature

F has value v. The features are in-

terpreted in terms of information

gain. The C4.5 algorithm recur-

sively places the feature with the

highest gains as the attribute at the

root of the tree.

Results
We used the MIT-BIH Arrhythmia

Database for training and testing the proposed decision tree–based

classifier. The database contains 48 half-hour recordings, each

containing two ECG lead signals (denoted as lead A and lead B). In 45

of the recordings, lead A is a modified limb lead II (MLII), and lead B

is a modified lead V1. In the other recordings, lead A is V5, and lead B

is V2 or MLII. The lead signals were band-pass-filtered to the range

of 0.1–100 Hz and were digitized at 360 Hz.

The database contains approximately 109,000 heartbeats. Each

beat is labeled with its type and the location of the QRS complex.

These labels can be used to determine the accuracy of classifica-

tion, and our system takes account of 16 of these labels. These

labels are listed in Table 1, which also gives totals for each type of

beat in the database. Table 2 relates these heartbeat types to in-

dividual records.

Fig. 3. Summary of proposed system for the classification of heartbeats. ecg/ECG, electrocardio-
graphy; MLII, modified limb lead II.
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To evaluate the performance of our system, we used three standard

metrics, sensitivity, specificity, and accuracy. Sensitivity is the ability

of the system to identify heartbeats of a particular type correctly,

expressed as follows:

Sensitivity = TP=(TP + FN ) (8)

where TP is the number of true-positives and FN is the number of false-

negatives. Specificity is the ability of the system not to identify heart-

beats incorrectly if they are not of a particular type, expressed as follows:

Specificity = TN=(TN + FP) (9)

where TN is the number of true-negatives and FP is the number of

false-positives. Accuracy is an overall measure of the system’s ability

to classify heartbeats, which combines sensitivity and specificity as

follows:

Accuracy = (TP + TN )=(TP + FP + FN + TN ) (10)

We evaluated the performance of our system in two stages. We

first considered heartbeat detection, which affects classification

performance. Table 3 summarizes the detection of heartbeats from

the MIT-BIH data. Overall, our system achieved a mean sensitivity of

97.22% and a mean specificity of 96.89%. The most problematic

recording was 107, which had many abnormal beats with unusually

large P waves exhibiting atypical peaks, resulting in the lowest

specificity of 50.05%. Performance on this recording might be im-

proved through deeper analysis of the P wave, but this is beyond the

scope of this study.

The second part of the performance evaluation was heartbeat

classification. We used two methods to evaluate the performance of

our decision tree classifier. In the first method, we applied the 10-fold

cross-validation procedure.12 All of the heartbeats in the MIT-BIH

data were distributed into 10 subsets of approximately equal size.

Then, the classifier was trained 10 times, leaving out one of the

subsets each time. The omitted subset was used to compute the pre-

diction error of the classifier on the training set. The data for each

heartbeat have two signals derived from leads A and B. When using

the training data obtained from lead A, the accuracy was 94.75%, and

it was 92.7% when using the data from lead B, as shown in Table 4.

When we applied our classifier to the training data from both leads

A and B, the accuracy rose to 96%.

In the second method, both the training and the test data were

extracted from a single record using the 10-fold cross-validation

procedure. Each record was divided into 10 subsets, and the clas-

sifier was trained using nine of these subsets, whereas the re-

maining subset was used for testing. This process was repeated for

each of the 10 subsets. Because the MIT-BIH Arrhythmia Database

is not large (its data are taken from 30-min ECG recordings of about

48 patients), we increased the experimental dataset by replicating

each heartbeat and then carried out 10-fold cross-validation. In

this case, the system achieved an average sensitivity of 99.5%,

specificity of 89.97%, and accuracy of 96.73%, as shown in Table 5.

Although there may be some learning bias helping the system to

analyze the heartbeat of an individual, this result suggests the

potential of our Holter ECG monitoring system in providing reli-

able and intelligent personal ECG telemetry using the proposed

decision tree–based decision support system.

Discussion
The original Holter monitor simply records aspects of the elec-

trical activity of a patient’s cardiovascular system, with the aim

of subsequent diagnosis of abnormal cardiac rhythms, especially

those that only occur occasionally, and abnormal cardiac impulse

conduction. Holter monitoring has usually been performed in a

hospital, where a patient must stay for a couple of days at a time, but

abnormalities that occur very infrequently may nevertheless re-

main undetected. Automatic heartbeat classification for real-time

decision support has not been a part of established Holter moni-

toring processes. Our system allows the patient much more freedom

of movement, thus permitting longer-term monitoring, as well as

providing the automatic heartbeat classification needed for deci-

sion support.

Several other studies have proposed ECG detection systems based

on the QRS complex.13–23 These include the classification of ECG

heartbeat characteristics using wavelet features13–17 or waveform

features.9,18–21,24 Karimifard et al.22 used Hermitian coefficients, and

Osowski et al.23 used higher-order statistics. Other methods of

Table 1. Heartbeat Types

HEARTBEAT TYPE ANNOTATION
NUMBER OF
HEARTBEATS

Normal beat (NOR) N 75,016

Left bundle branch block beat (LBBB) L 8,075

Right bundle branch block beat (RBBB) R 7,259

Atrial premature beat (APC) A 2,546

Aberrated atrial premature beat (AP) a 150

Nodal (junctional) premature beat (NP) J 83

Supraventricular premature beat (SP) S 2

Premature ventricular contraction (PVC) V 7,130

Fusion of ventricular and normal beat

(VFN)

F 803

Ventricular flutter wave (VF) ! 472

Atrial escape beat (AE) e 16

Nodal (junctional) escape beat (NE) j 229

Ventricular escape beat (VE) E 106

Paced beat (PACE) / 7,028

Fusion of paced and normal beat (FPN) f 982

Unclassifiable beat (UN) Q 33

PARK AND KANG
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Table 2. Occurrence of Different Types of Heartbeats in MIT-BIH Records

RECORDING
NUMBER N L R A a J S V F ! e j E / f Q

100 2,239 — — 33 — — — 1 — — — — — — — —

101 1,860 — — 3 — — — — — — — — — — — 2

102 99 — — — — — — 4 — — — — — 2,028 56 —

103 2,082 — — 2 — — — — — — — — — — — —

104 163 — — — — — — 2 — — — — — 1,380 666 18

105 2,526 — — — — — — 41 — — — — — — — 5

106 1,507 — — — — — — 520 — — — — — — — —

107 — — — — — — — 59 — — — — — 2,078 — —

108 1,739 — — 4 — — — 17 2 — — 1 — — — —

109 — 2,492 — — — — — 38 2 — — — — — — —

111 — 2,123 — — — — — 1 — — — — — — — —

112 2,537 — — 2 — — — — — — — — — — — —

113 1,789 — — — 6 — — — — — — — — — — —

114 1,820 — — 10 — 2 — 43 4 — — — — — — —

115 1,953 — — — — — — — — — — — — — — —

116 2,302 — — 1 — — — 109 — — — — — — — —

117 1,534 — — 1 — — — — — — — — — — — —

118 — — 2,166 96 — — — 16 — — — — — — — —

119 1,543 — — — — — — 444 — — — — — — — —

121 1,861 — — 1 — — — 1 — — — — — — — —

122 2,476 — — — — — — — — — — — — — — —

123 1,515 — — — — — — 3 — — — — — — — —

124 — — 1,531 2 — 29 — 47 5 — — 5 — — — —

200 1,743 — — 30 — — — 826 2 — — — — — — —

201 1,625 — — 30 97 1 — 198 2 — — 10 — — — —

202 2,061 — — 36 19 — — 19 1 — — — — — — —

203 2,529 — — — 2 — — 444 1 — — — — — — 4

205 2,571 — — 3 — — — 71 11 — — — — — — —

207 — 1,457 86 107 — — — 105 — 472 — — 105 — — —

208 1,586 — — — — — 2 992 373 — — — — — — 2

209 2,621 — — 383 — — — 1 — — — — — — — —

210 2,423 — — — 22 — — 194 10 — — — 1 — — —

212 923 — 1,825 — — — — — — — — — — — — —

213 2,641 — — 25 3 — — 220 362 — — — — — — —

214 — 2,003 — — — — — 256 1 — — — — — — 2

215 3,159 — — 3 — — — 164 1 — — — — — — —

217 244 — — — — — — 162 — — — — — 1,542 260 —

219 2,082 — — 7 — — — 64 1 — — — — — — —

220 1,954 — — 94 — — — — — — — — — — — —

continued/
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Table 2. Occurrence of Different Types of Heartbeats in MIT-BIH Records continued

RECORDING
NUMBER N L R A a J S V F ! e j E / f Q

221 2,031 — — — — — — 396 — — — — — — — —

222 2,062 — — 208 — 1 — — — — — 212 — — — —

223 2,029 — — 72 1 — — 473 14 — 16 — — — — —

228 1,688 — — 3 — — — 362 — — — — — — — —

230 2,255 — — — — — — 1 — — — — — — — —

231 314 — 1,254 1 — — — 2 — — — — — — — —

232 — — 397 1,382 — — — — — — — 1 — — — —

233 2,230 — — 7 — — — 831 11 — — — — — — —

234 2,700 — — — — 50 — 3 — — — — — — — —

!, ventricular flutter wave; /, paced beat; a, aberrated atrial premature beat; A, atrial premature beat; e, atrial escape beat; E, ventricular escape beat; f, fusion of paced and

normal beat; F, fusion of ventricular and normal beat; j, nodal (junctional) escape beat; J, nodal (junctional) premature beat; L, left bundle branch block beat; N, normal

beat; Q, unclassifiable beat; R, right bundle branch block beat; S, supraventricular premature beat; V, premature ventricular contraction.

Table 3. Performance Evaluation of Heartbeat Detection

RECORDING
NUMBER

SENSITIVITY
(%)

SPECIFICITY
(%)

ACCURACY
(%)

100 99.96 100.00 99.98

101 99.84 99.82 99.83

102 99.82 98.91 99.37

103 99.67 100.00 99.84

104 96.58 75.30 85.94

105 96.17 92.82 94.50

106 93.99 99.80 96.90

107 99.86 50.05 74.96

108 96.38 84.03 90.21

109 99.64 99.84 99.74

111 99.58 99.62 99.60

112 99.60 99.53 99.57

113 99.94 100.00 99.97

114 99.52 99.16 99.34

115 99.59 100.00 99.80

116 98.80 99.67 99.24

117 99.80 99.74 99.77

118 99.09 97.19 98.14

119 94.94 99.50 97.22

121 99.31 99.15 99.23

122 99.96 100.00 99.98

123 100.00 100.00 100.00

124 99.14 99.63 99.39

200 93.19 95.80 94.50

201 95.14 99.38 97.26

Table 3. continued

RECORDING
NUMBER

SENSITIVITY
(%)

SPECIFICITY
(%)

ACCURACY
(%)

202 99.30 99.72 99.51

203 95.53 95.37 95.45

205 99.37 99.25 99.31

207 86.83 99.90 93.37

208 94.11 96.23 95.17

209 98.59 99.90 99.25

210 97.58 98.42 98.00

212 99.53 99.85 99.69

213 98.48 94.52 96.50

214 98.22 99.30 98.76

215 98.88 99.88 99.38

217 96.75 96.08 96.42

219 93.12 100.00 96.56

220 99.03 100.00 99.52

221 98.21 99.67 98.94

222 94.31 98.26 96.29

223 98.34 100.00 99.17

228 96.26 87.15 91.71

230 91.57 100.00 95.79

231 78.17 100.00 89.09

232 98.13 99.22 98.68

233 97.30 99.22 98.26

234 99.46 100.00 99.73

Average 97.22 96.89 97.06
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heartbeat characterization are based on P wave detection using local

search25–27 or ventricular and atrial source separation.28,29

Other automatic methods of heartbeat classification have been

based on machine learning.9,13–24 Arif et al.13 and Karimifard

et al.22 used the k-nearest neighbor method with good results. Ye

et al.14 and Osowski et al.23 used a support vector machine, which is

known to be a good tool for classification.30,31 De Oliveira et al.20

investigated a Bayesian network, and de Lannoy et al.24 used

weighted conditional random fields. Yet other studies have in-

volved neural networks15,16,21 or linear discriminates.9,18 However,

none of these techniques classifies heartbeats automatically using

a decision tree.

Some issues remain in achieving practical use of the ECG

monitoring system that we propose. First, the patient-worn ECG

sensor module needs to be small and lightweight and to operate

with low power, to ensure portability. This is the reason why we

considered Bluetooth as the technology for communication be-

tween the sensor and the patient’s mobile device. However, this

Table 4. Results of Classification Using the First Method

LEAD
SENSITIVITY

(%)
SPECIFICITY

(%)
ACCURACY

(%)

A 94.90 94.60 94.75

B 92.80 92.60 92.70

A + B 95.60 95.50 96.00

Table 5. Results of Classification Using the Second Method

RECORDING
NUMBER

SENSITIVITY
(%)

SPECIFICITY
(%)

ACCURACY
(%)

100 99.90 95.70 97.80

101 99.80 80.10 89.95

102 99.50 95.90 97.70

103 99.90 50.00 74.95

104 97.30 98.30 97.80

105 99.70 92.50 96.10

106 99.90 99.70 99.80

107 100.00 98.40 99.20

108 99.50 78.10 88.80

109 99.80 91.20 95.50

111 100.00 0.00 50.00

112 100.00 100.00 100.00

113 100.00 100.00 100.00

114 99.70 96.70 98.20

115 100.00 100.00 100.00

116 99.80 99.10 99.45

117 99.90 0.10 50.00

118 99.80 98.70 99.25

119 100.00 100.00 100.00

121 99.80 100.00 99.90

122 100.00 100.00 100.00

123 100.00 100.00 100.00

124 99.40 95.20 97.30

200 99.00 99.10 99.05

201 98.90 97.70 98.30

202 99.60 94.00 96.80

203 98.70 96.80 97.75

205 99.60 94.90 97.25

Table 5. continued

RECORDING
NUMBER

SENSITIVITY
(%)

SPECIFICITY
(%)

ACCURACY
(%)

207 99.30 99.70 99.50

208 98.30 98.90 98.60

209 99.60 98.70 99.15

210 99.20 96.60 97.90

212 99.60 99.40 99.50

213 98.80 99.20 99.00

214 99.60 98.40 99.00

215 99.90 98.30 99.10

217 98.40 98.10 98.25

219 99.70 93.30 96.50

220 99.90 98.00 98.95

221 99.80 99.10 99.45

222 97.30 92.40 94.85

223 98.30 98.10 98.20

228 99.70 99.20 99.45

230 100.00 0.00 50.00

231 99.60 99.20 99.40

232 99.90 99.80 99.85

233 99.70 99.80 99.75

234 100.00 100.00 100.00

Average 99.50 89.97 96.73

INTELLIGENT HEARTBEAT CLASSIFICATION USING DECISION TREE

ª M A R Y A N N L I E B E R T , I N C . � VOL. 20 NO. 12 � DECEMBER 2014 TELEMEDICINE and e-HEALTH 1075



requires that the patient does not move out of Bluetooth range of

his or her own smartphone, which is not always practical. The

alternative is to integrate a communication module for wide-area

networking into the ECG sensor, but this increases its weight,

power, and size.

Second, medical telemetry applications typically require only a

moderate data rate; the primary requirements that they place on a

wireless system are wide coverage, high transmission reliability, and

low cost. Infrastructure-oriented wireless technologies, including

3GPP LTE, provided by cellular operators, and versions of IEEE

802.11 (Wi-Fi), have been recommended as means of supporting ECG

monitoring in diverse environments. Wi-Fi was not, of course,

originally designed for medical telemetry, but has been considered

for this application because of its wide deployment and low cost.32

However, Wi-Fi suffers from limited coverage and variable latency.33

Conversely, LTE technologies, while more expensive, support high-

mobility devices and have broad coverage.34 If monitoring systems

can reuse existing LTE infrastructure, then the initial cost of de-

ployment is greatly reduced.

A compromise solution is offered by machine-type communica-

tions (MTC)35 technologies, which operate over LTE networks. MTC

has recently received a lot of attention because it has many advan-

tages, such as low cost and low power, while inheriting the wide

coverage of existing LTE networks. An ECG sensor that communicate

through MTC could be small and light, but nevertheless transmit

directly to a decision support system without the need for an inter-

mediate mobile device.

Finally, we observe that telemetry applications require high

transmission reliability and low service latency, as their effectiveness

is sure to be compromised by the loss, corruption, or late delivery of

data. However, guaranteeing those requirements is challenging be-

cause the data rate of a wireless channel is variable, and such

channels are subject to errors. Designing a protocol for proper error

control, which can also be combined with an appropriate diversity

scheme, is therefore essential.36,37

Conclusions
We have proposed and evaluated an intelligent system for the

wireless monitoring of cardiac activity. This system classifies an ECG

waveform in terms of features using a decision tree. Our system

achieved a high level of accuracy when evaluating data from the

MIT-BIH Arrhythmia Database. This form of test is appropriate for a

project at an early stage. In the future, we intend to implement and

evaluate our system on data obtained directly from a patient, by

adding a ‘‘live mode’’ to our classification system, which will allow it

to be combined with Holter monitoring. We also plan to improve the

accuracy of classification by reformulating the method of P wave

detection.
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