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Abstract

Population-based studies indicate that between 5 and 9 percent of U.S. children exhibit significant 

deficits in mathematical reasoning, yet little is understood about the brain morphological features 

related to mathematical performances. In this work, deformation-based morphometry (DBM) 

analyses have been performed on magnetic resonance images of the brains of 79 third graders to 

investigate whether there is a correlation between brain morphological features and mathematical 

proficiency. Group comparison was also performed between Math Difficulties (MD-worst math 

performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender 

matched subjects. DBM analysis is based on the analysis of the deformation fields generated by 

non-rigid registration algorithms, which warp the individual volumes to a common space. To 

evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms 

have been used: (1) The Adaptive Bases Algorithm (ABA); (2) The Image Registration Toolkit 

(IRTK); (3) The FSL Nonlinear Image Registration Tool; (4) The Automatic Registration Tool 

(ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude 

(DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) 

was used to quantify local volumetric changes. Results show there are no statistically significant 

volumetric differences between the NC and the MD groups using JAC. However, DBM analysis 
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using DFM found statistically significant anatomical variations between the two groups around the 

left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of 

agreement between at least two algorithms based on voxel-wise analysis were used to define 

Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. 

Correlations between average DFM values and standard mathematical scores over these regions 

were found to be significant. We also found that the choice of registration algorithm has an impact 

on DBM-based results, so we recommend using more than one algorithm when conducting DBM 

studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain 

anatomical features related to mathematical performance in a relatively large population of 

children.
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1. Introduction

The ability to comprehend and manipulate numbers are fundamental cognitive skills, but 

population-based studies indicate that between 5 and 9 percent of U.S. children exhibit 

significant deficits in mathematical reasoning, which are manifested as learning disabilities 

or difficulties in developing age-appropriate competencies in math. Even as early as first 

grade, children with math difficulties (MD) demonstrate a specific weakness in the ability to 

accurately and quickly retrieve mathematical facts to perform simple arithmetic [1, 2], yet 

little is understood about the origins of such specific difficulties in the absence of more 

general limitations on learning and intelligence.

Neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have 

demonstrated that a reproducible set of parietal, prefrontal and occipitotemporal brain 

regions are systematically activated when subjects are asked to perform simple calculations 

[3–5]. For example, Dehaene et al. showed that exact calculations usually rely on semantic 

identification and retrieval of numerical facts from memory, engaging prefrontal regions, 

while approximation recruits bilateral areas of the parietal lobes involved in visual-spatial 

processing [4]. Similarly, Simon et al. characterized the functional specialization of 

calculation-related activations in the intraparietal sulcus [6]. However, although functional 

neuroimaging has been extensively applied to the study of populations with math 

difficulties, to date there have been few studies that have used high resolution structural 

MRI to see whether there are differences in brain morphology between normal and MD 

children, and none have examined whether specific structural variations in the brain are 

associated with the level of math skills in children.

In principle, morphological analysis can reveal differences in the underlying cerebral 

substrates between normal populations and groups with mathematical difficulties, 

independent of any specific functional assessment. For example, Issacs et al. [7] used voxel-

based morphometry (VBM) to demonstrate that impaired calculation ability in children with 

very low birth weight could be associated with less gray matter in the left parietal lobe in 

this population than in a normal cohort, while Rotzer et al. [8] showed that developmental 
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dyscalculia was associated with a significantly reduced gray matter volume in the right 

intraparietal sulcus, anterior cingulum, the left inferior frontal gyrus, and the bilateral middle 

frontal gyri. Molko et al. [9] also found an abnormal length, depth, and sulcal geometry of 

the right intraparietal sulcus in girls with dyscalculia associated with Turner’s syndrome. 

These studies provide strong evidence for structural differences in populations that suffer 

from comorbid disorders in calculation skills, but it is not known if there are structural 

variations which correlate with the range of mathematical ability found in a normal 

population, or whether children with low math skills can be distinguished by anatomical 

differences from those with normal abilities.

In this work, deformation-based morphometry (DBM) [10, 11] analysis was performed to 

identify potential morphological features in the brain related to mathematical performances 

for normal third-grade children. DBM involves the spatial normalization and co-registration 

of three dimensional image data into a common space and subsequent analysis of the 

deformation fields produced by the registration process. As such it does not attempt to make 

measurements of specific structures as in other techniques, but instead quantifies the local 

morphological differences in structure for all parts of the brain.

Initially we used a single registration approach to measure group differences but could not 

establish a rigorous criterion for establishing whether these were significant. We therefore 

broadened our analysis. Five non-rigid registration algorithms have been compared to study 

their effect on DBM results when there are clear and reported anatomical differences 

between the normal control subjects and group being tested as is the case with subjects with 

Williams Syndrome [12]. In this work, we study a group of subjects for which there are no 

documented gross anatomical differences and we study whether or not DBM can detect 

subtle differences that may be related to mathematical ability. We process these data with 

five non-rigid registration algorithms and we determine the extent to which findings are 

algorithm-dependent. The five non-rigid registration algorithms we have used are: 1) The 

Adaptive Bases Algorithm (ABA) [13]; 2) The Image Registration Tool Kit (IRTK) [14]; 3) 

The FSL nonlinear registration tool [15]; 4) The Automatic Registration Tool (ART) [16]; 5) 

The normalization toolbox in SPM8 [17].

There are three main questions we aimed to investigate: 1) whether there are anatomical 

differences between two groups of children with very different mathematical abilities; 2) 

whether there is a correlation between brain morphological features and mathematical 

proficiency in a group of children; 3) to what degree the registration algorithms used to 

perform these studies affect the results. We used the deformation field magnitude, which 

measures the displacement at each voxel, and the Jacobian determinant, which measures 

local volumetric changes to quantify group differences. To the best of our knowledge, this is 

the first study that uses DBM to investigate whether or not brain anatomical features 

correlate with mathematical performance in a relatively large population of third graders.
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2. Materials and Methods

2.1 Data Description

Seventy-nine children were recruited for imaging and testing (43 males; 36 females; mean = 

8.86 ± 0.38sd years old) following a protocol approved by the Vanderbilt Institutional 

Review Board (IRB). The calculation and reading subtests from the Wide Range 

Achievement Test – Third Edition (WRAT-3) [18] were administered to participants during 

the first semester of their third-grade year. Because children with a specific disability in 

mathematical calculation show a different pattern of cognitive deficits than children with a 

disability in both reading and mathematical calculation [19], we selected participants only 

with high reading ability as measured by their performance on the WRAT-3. The mean 

standard score value on the math score WRAT-M was 98.49 (SD = 12.93; range: 74 –135) 

and 112.47 (SD = 11.55; range: 95–141) on the reading score WRAT-R. No significant 

relationships between standard scores on the WRAT-3 subtests and participants’ age or 

gender were observed, and there was no significant correlation between reading and math 

scores. All subjects also had a score of at least 80 on the Wechsler Abbreviated Scales of 

Intelligence (WASI) [20].

Two subset groups were extracted from the 79 subjects based on their mathematical 

performances to conduct a group comparison study. Children who performed below the 20th 

percentile on WRAT-M were placed into the MD group; children with a WRAT-M 

percentile score above 50 were placed in the normal control (NC) group. There were twenty 

participants in the MD group (12 males and 8 females; mean age, 10.8±0.4 years) and 

twenty normal controls individually matched on age and gender (12 males and 8 females; 

mean age, 10.9±0.4 years).

The anatomical images were acquired with a 3T Philips Achieva MRI scanner with an 8-

channel sensitivity encoding (SENSE) head coil. For each subject, a 3D T1-weighted 

anatomic volume was obtained with a turbo field echo (TFE) sequence (TR = 8.9ms; TE = 

4.6ms; FOV = 256mm*256mm*170mm; image resolution = 1mm*1mm*1mm). All scans 

were acquired at the Vanderbilt University Institute of Imaging Science (VUIIS).

2.2 Creation of group atlases

All the MRI images were corrected for intensity inhomogeneity with the N3 algorithm [21] 

and rigidly aligned to the MNI template to correct for differences in pose and orientation 

during acquisition. First, the affine group atlas for the whole 79 MRI images was 

constructed in an iterative manner [12]. Due to the blurriness of the affine atlas, one volume 

was then selected and registered to the affine atlas with a nine-parameter affine 

transformation. Next, this transformed volume served as the reference volume, to which all 

the other images were registered with affine transformations.

A DBM atlas was built with all the 79 MRI images and served as the template image in the 

following DBM analysis using the scheme proposed by Guimond et al. [22]. The atlas 

creation technique used is an iterative process in which (a) one volume is chosen as a initial 

reference/atlas, (b) all the other volumes are registered to the atlas using a non-rigid 

registration method, (c) the deformation fields which register the atlas to each of the other 
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volumes are computed and averaged, (d) the average deformation field is applied to the 

average of deformed volumes to the atlas, thus resulting in a new atlas, and (e) the process is 

repeated from (b) until convergence. Experience has shown that the process converges after 

three to four iterations. The results are insensitive to the choice of the original reference. 

Previous results showed that the choice of non-rigid registration algorithm does not affect 

the creation of the group atlases at both the cortical and deep brain structure levels [12]. 

Registration between volumes was thus achieved using the ABA algorithm [13], which is an 

intensity-based non-rigid registration algorithm developed in house. The registration and 

averaging steps were conducted on the Vanderbilt University Advanced Computing Center 

for Research and Education (ACCRE) parallel-computing cluster.

2.3 Group Differences Identified with DBM

To investigate whether there are anatomical differences between two groups of children with 

different ranges of mathematical abilities, DBM analysis was first carried on the two 

extreme subset groups: the NC group and the MD group. Twenty affinely transformed 

images in both the NC and MD groups were registered to the DBM atlas using five non-

rigid registration algorithms: ABA, IRTK, FSL, ART, and SPM. Differences between these 

five registration algorithms are briefly summarized in [12]. In the study presented herein, 

standard parameter values suggested by the algorithm developers were used. Each algorithm 

yielded a series of 20 forward deformation fields, one for each subject in each group. Each 

forward deformation field contains one three-dimensional vector at each voxel, capturing the 

displacements along the X, Y and Z directions required to match each voxel in the DBM 

atlas to its corresponding voxel in each individual subject. Two DBM features derived from 

each deformation field were calculated: the Jacobian determinant (JAC) and the deformation 

field magnitude (DFM). The JAC measures local volumetric expansion or shrinkage and the 

DFM measures anatomical shape variations.

Statistical differences in the JAC or DFM values between the NC and the MD groups were 

assessed using the general linear model regression implemented in SPM8 (Wellcome 

Department of Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk). For each 

registration algorithm, two-sample t-tests were performed on a voxel-by-voxel basis 

between the NC subjects and the MD subjects, leading to one T map for each of the two 

DBM features. Family Wise Error (FWE) correction based on the random field theory [23] 

was performed to correct for multiple comparisons at both the peak and cluster level 

inferences. In this study, a loose threshold of uncorrected p of 0.01 and a commonly used 

threshold of uncorrected p of 0.001 were both applied on the T maps to visualize different 

ranges of statistical significance. A FWE corrected p value of 0.05 was then used to define 

statistically significant clusters/voxels at both the peak and cluster levels. Clusters that 

survived either peak or cluster level FWE corrections were deemed to be regions of 

difference identified with DBM.

Different registration algorithms may generate different regions of morphological difference 

between the NC and the MD groups. Therefore, common regions of interests (ROIs) were 

defined as follows. The output of the DBM analyses was transformed into a binary image, in 

which a voxel value is one if the voxel is within a statistically significant cluster after FWE 
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correction and zero otherwise. Adding all the binary images produced by the different 

registration algorithms leads to a membership image, which is then thresholded empirically 

at two to localize common regions of interests (ROIs). These regions were then used to 

perform ROI-based analysis.

2.4 Correlation of DBM Findings with Math Scores

DBM was also performed on the entire dataset of 79 MRI images to explore possible 

correlations between morphometric features and mathematical performances in children (the 

second question we are addressing in this work). All the 79 affinely transformed images 

were registered to the DBM atlas using the five non-rigid registration algorithms: ABA, 

IRTK, FSL, ART and SPM. For each algorithm, JAC and DFM features were calculated at 

each voxel from the 79 deformation fields. An ANCOVA test was performed to correlate on 

a voxel basis the value of these features and the WRAT-M scores, adjusting for age and 

gender. This yielded T maps of statistical differences for each registration algorithm, which 

capture the correlations between each of the DBM features and the participants’ WRAT-M 

standard scores. The T maps were then thresholded at uncorrected p of 0.01 and 0.001 to 

show the level of statistical significance at each voxel.

As shown in Section 3.2, group differences identified with DFM yielded three common 

ROIs that were used to perform a ROI-based study on the complete set of image (79 

volumes). The mean values of the DFM were computed over each ROI and correlated with 

the WRAT-M scores. Plots of mean feature values vs. WRAT-M scores were produced to 

show the general trends that were observed. Regression lines were also computed for each 

region and each registration algorithm.

3. Results

3.1 Smoothness Estimation of DBM Features

We first estimated the smoothness of the JAC and DFM fields expressed as their full width 

at half maximum (FWHM) in all directions computed with SPM8. The results are shown in 

Fig. 1. SPM produced the smoothest fields for both JAC and DFM, followed by IRTK, FSL, 

ABA and ART. Because the smoothness of the deformation affects the statistical analysis of 

DBM results, it is possible that differences in field smoothness have an impact on the size, 

shape, and location of regions for which statistically significant differences in DBM feature 

values are observed.

3.2 Group Differences Detected with the JAC Feature

Fig. 2 shows the color-coded T maps of the voxel-wise T-test analysis performed on the 

JAC feature obtained with five non-rigid registration algorithms. Each row displays selected 

slices in the T maps obtained with one algorithm. From top to bottom the rows show the 

results obtained with ABA, IRTK, FSL, ART and SPM. Warm colors mean that a larger 

JAC value is observed in the NC children than in the children in the MD group. Cold colors 

mean the opposite. Qualitative comparisons across different registration algorithms show 

that ABA, IRTK and FSL produce somewhat similar patterns, ART produces a more 

scattered T map, and SPM yields a smoother map than all the other algorithms. To localize 
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the regions that show a statistical difference in the JAC value, a loose threshold with 

uncorrected p of 0.01 (T = ±2.43, df = 38) and a widely used threshold with uncorrected p of 

0.001 (T = ±3.32, df = 38) are applied on the raw T maps. Fig. 3 shows the regions with 

different ranges of p values for each registration algorithm. For voxels with positive T 

values (NC>MD), yellow and red colors are used to label voxels with uncorrected 

0.001<p<0.01 and p<0.001 respectively. For voxels with negative T values (NC<MD), 

green and blue colors are used to indicate the uncorrected 0.001<p<0.01 and p<0.001 

respectively. The thresholded maps are superimposed on one volume nonlinearly deformed 

to the DBM atlas to show the corresponding structures. ABA, IRTK and FSL find consistent 

red regions around the right inferior frontal gyrus, midbrain area and right inferior temporal 

gyrus. However, none of these clusters survived the FWE correction (corrected p of 0.05) at 

either peak or cluster level. Results show that there are no statistically significant volumetric 

differences between the children with normal and low mathematical abilities. This is so 

despite the consistency of the results observed across algorithms.

3.3 Group Differences Detected with the DFM Feature

Fig. 4 shows the color-coded T maps of the voxel-wise T-test analysis performed on the 

DFM feature between the NC and the MD group obtained with five non-rigid registration 

algorithms. Warm colors mean that MD subjects have larger anatomical variations than the 

NC subjects. Cold colors mean the opposite. Qualitative comparison shows that ABA, IRTK 

and FSL show similar patterns, while ART and SPM produce the least smooth and the 

smoothest T maps, respectively. Thresholding the T maps with uncorrected p values of 0.01 

and 0.001 leads to Fig. 5, showing the color-coded regions with different ranges of statistical 

significance in a similar fashion as in Fig. 3. The results shown in Fig. 4 and Fig. 5 indicate 

that the MD children have more anatomical variations than the NC children around the left 

temporal and occipital lobe, the orbital-frontal area and the right insular cortex. Such 

differences are consistently found across different registration algorithms although patterns 

vary somewhat. After FWE correction for multiple comparisons, all the clusters that 

survived for the different registration algorithms were combined to find the common regions 

of interests. If at least two registration algorithms found overlapping regions (membership 

threshold of 2), these were considered to be a common ROI in which anatomical variation 

differences between the NC and the MD group may exist.

Fig. 6 displays the statistically significant clusters after the FWE corrections for each of the 

five non-rigid registration methods, superimposed on one volume nonlinearly deformed to 

the DBM atlas. In this figure, pixels with uncorrected p values smaller than 0.001 (red 

clusters in Fig. 5) that are part of a statistically significant cluster at either cluster/peak or 

both levels are shown in color based on their T values. Each column shows the DBM results 

for one algorithm on the same selected views as in Fig. 5. Warm colors mean that larger 

DFM values were observed in the MD subjects than in the NC subjects. Cold colors mean 

the opposite. The line type used for the circles reflects the statistical significance after FWE 

corrections for the clusters within the ROI. If a cluster in a region is significant at both peak 

and cluster levels, a solid circle is drawn around the region. Starred lines or dashed lines are 

drawn around a cluster which is statistically significant at either peak level or cluster level. 

Three regions of interests (ROIs) are circled with different colors: R1-Orange; R2-Red, and 
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R3-Yellow. All five non-rigid registration algorithms found R1 located around the left 

occipitotemporal sulcus, the left fusiform gyrus around Brodman Area (BA) 37 and the 

cerebellum. ABA and IRTK also found R2 around the left olfactory sulcus and the gyrus 

rectus (BA 47). IRTK and ART found R3 in the right insular cortex. Tab. 1 lists all the 

clusters found in each ROI by different registration algorithms and their maximum T values, 

the FWE corrected p values at peak and cluster levels, and the cluster sizes. The blue/green 

background color means that this region is statistically significant after FWE correction with 

corrected p threshold at 0.05/0.5 (a looser criterion) either at peak-level or cluster-level for 

that algorithm.

R2 and R3 each were found to be statistically significant by only two algorithms (different 

pairs for each region). Fig. 5 also shows that the other algorithms found regions of 

difference in the same general area. For example, FSL, ART and SPM all found yellow or 

red clusters around R2 that meet the loose uncorrected p threshold (p<0.01). Also, ABA and 

FSL both have a relatively large red cluster (uncorrected p<0.001) around the right insular 

cortex (R3). However these were not found to be significant after FWE correction. There is 

also a unique cluster around the left superior frontal gyrus found only by IRTK that is 

statistically significant at peak-level after FWE correction (corrected p of 0.025 < 0.05). 

Because this cluster is only found by one algorithm, it is not kept as a common ROI used to 

perform ROI-based analysis. It is thus not shown in Fig. 6.

3.4 Correlation Between the DFM Feature and the WRAT-M Score

Correlation analysis between the children’s WRAT-M scores and the anatomical features for 

the entire dataset of 79 children was conducted throughout the entire brain with the DBM 

technique. The results were calculated for the five non-rigid registration algorithms 

introduced previously. Only the DFM feature has been considered in the correlation study, 

because no group volumetric differences were found between the NC and the MD group. 

Fig. 7 shows the color-coded T maps for the voxel-wise correlation coefficient between 

WRAT-M scores and the DFM feature for all 79 children. This map was produced with an 

ANCOVA model, adjusted for age and gender. Each row displays the three selected views 

of the T maps obtained with one algorithm. From top to bottom, the rows show the results 

obtained with ABA, IRTK, FSL, ART, and SPM. Warm colors mean negative correlation 

between the WART-M score and the DFM value, while cold colors mean positive 

correlation. As was done in Fig. 3 and Fig. 5, a loose threshold at uncorrected p of 0.01 (T = 

±2.38, df = 74) and a regular threshold at uncorrected p of 0.001 (T = ±3.20, df = 74) are 

used to threshold the T maps. Images thresholded with these values are coded with different 

colors, as shown in Fig. 8. As can be observed, the yellow and red clusters in Fig. 8 appear 

to be in a position that is similar to the position of the yellow and red clusters shown in Fig. 

5, but with smaller cluster sizes and lower significances of uncorrected p values. None of the 

clusters are statistical significant after the FWE correction.

Fig. 9 presents the plots showing the relation between the mean DFM over each ROI (Y 

axis) and the math scores for each registration algorithm (X axis). Each subpanel shows the 

computed regression line. The legends on each subpanel include the ROI (R1, R2 or R3) to 

which the plot relates (top left), the registration algorithm that has been used (bottom left), 
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the correlation coefficient r between the mean DFM and the WRAT-M scores (right side), 

and the p value. If the correlation is statistically significant (p<0.05), the sub-panel is 

marked with a red border; otherwise (p>0.05) it is drawn in blue. Because this analysis is 

based on one single value/region, i.e., the mean value of the feature over the region, there is 

no need for multiple comparison correction.

As can be observed, ABA, IRTK and ART show statistically significant correlations 

between the mean of the DFM over each ROI and the WRAT-M scores. This agrees well 

with the color-coded clusters around R1, R2 and R3 for these algorithms in Fig. 5 and Fig. 8. 

This means that the lower the child’s math score, the larger the DFM mean values tend to be 

over each ROI, i.e. the more the voxels in this ROI have to be displaced to match the atlas 

image with the subject’s image. FSL yielded statistically significant correlations over R2 

and R3, but not over R1. Fig. 8 also shows that FSL found the correlation T maps over R2 

and R3 to meet the loose uncorrected threshold of 0.01, but not over R1. SPM finds 

statistically significant correlations only between mean DFM and WRAT-M scores over R1, 

as can be seen from Fig. 8. These results suggest that there may be a correlation between 

brain anatomy and math performance over these regions even though these differences are 

not strong enough to produce significant findings in voxel-wise analyses when FWE 

correction for multiple comparisons are used.

4. DISCUSSION

Deformation-based morphometry analyses have been used to investigate brain anatomical 

features for third-grade children with different mathematical abilities. Five non-rigid 

registration algorithms (ABA, IRTK, FSL, ART and SPM) have been used to detect 

morphological differences between age and gender matched children in NC and MD groups 

and to study the effect registration algorithms have on DBM results. Agreement among at 

least two algorithms has also been used to define ROIs that were used to correlate 

anatomical features and mathematical ability over the entire set of 79 images. We did not 

find statistically significant volumetric differences measured with the JAC between the NC 

and the MD groups. This leads to the conclusion that either no differences exist or such 

differences are too subtle to be detected. However, DBM analysis performed on the DFM 

features showed significant anatomical variations between the two groups around three 

regions identified consistently by at least two registration algorithms after FWE correction 

(p of 0.05). The three regions are the left occipital-temporal cortex, left orbital-frontal 

cortex, and right insular cortex. DBM analysis on the entire 79 children did not find 

statistically significant correlation between the DFM and math scores after FWE correction. 

But ROI-based correlations of mean DFM values and WRAT-M scores are statistically 

significant. Parameter values that need to be specified for each registration algorithm may 

also have an effect on the results. This has not been investigated in this study for which 

values suggested by the algorithm developers were used.

The findings reported in this study reinforce some of the conclusions we drew in our 

previous work [12] i.e., that registration algorithms indeed have an impact on DBM-based 

results. We would thus recommend using more than one algorithm when conducting DBM 

studies. Consensus among algorithms despite weak statistical significance obtained with 
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each of them may be an indication that the criteria for inclusion are too strict and that 

findings are real.

Our findings also expand on previous functional studies of developmental changes in 

occipital-temporal cortex with age [24] by demonstrating that a relationship between 

calculation skill and morphological variability in these cortices may exist as early as third 

grade. The DFM in the left occipitotemporal cortex and the left fusiform gyrus are found to 

be statistically different between the NC and the MD group, as well as negatively correlated 

with mathematical skills. Functional specialization of the left occipitotemporal cortex has 

been demonstrated for various classes of visual stimuli [25,26]. Diminished processing of 

written numerical symbols could explain findings of significantly slower response times 

during calculation tasks in individuals with MD compared to their same age peers [1, 2]. The 

left fusiform gyrus is also an area critical to word/number recognition so differences in 

architecture in this region could be linked to differences in math performance.

In addition, two volumes located in the orbitofrontal cortex and the right insular cortex 

showed similar behavior. These brain regions are associated with attention, decision-

making, and executive function. Functional imaging has implicated that insular is an 

important area involving emotional processing [27], speech-motor function [28]. In 

particular the right anterior insula has been identified as a key region of interest in specific 

phobias [29, 30]. A disruption in any one of these cognitive processes could conceivably 

cause a break down in the normal course of procedures and interrupt the processes of 

solving calculation problems. In view of the evidence that young children compared to 

adults have increased activation in prefrontal cortex while performing a simple calculation 

task [24], the increased morphological variability in poor calculation performers may be a 

contributing factor to their use of less mature strategies during problem solving and retrieval 

errors [1, 2]. A significant difference between the findings in the current study and previous 

studies [31–33] is that we did not find morphological differences in the parietal cortex 

related to mathematical skill. The differences may be due to the behavioral task that we used 

the method of analysis, or participant characteristics such as age and severity of 

mathematical disability. Although the findings from this study appear to be in accordance 

with neuropsychological models and previous results, more rigorous validation, particularly 

correlating with other neuroimaging modalities such as functional MRI, are still warranted 

to confirm them. In particular, more specific descriptions of the variations in deformation 

fields in terms of underlying sulcal architecture, gyral patterns or tissue volumes should be 

established.
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Fig. 1. 
Smoothness estimation (FWHM in X, Y and Z directions) for JAC (left) and DFM (right) T 

maps for different registration algorithms (from left to right): ABA, IRTK, FSL, ART, and 

SPM.
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Fig. 2. 
The color-coded T maps of the voxel-wise T-test analysis on the JAC features between the 

NC and the MD group based on five non-rigid registration algorithms. Each row displays 

selected slices in the T maps obtained based on one algorithm, from top to bottom: ABA, 

IRTK, FSL, ART and SPM.
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Fig. 3. 
The regions with different ranges of p values for DBM results of JAC based on each 

registration algorithm superimposed on one volume deformed to the DBM atlas. Warm 

colors show that the NC population has larger JAC values than the MD population, and cold 

colors mean the opposite. None of these clusters survived FWE multiple comparison 

correction.
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Fig. 4. 
The color-coded T maps of the voxel-wise T-test analysis on the DFM features between the 

NC and the MD group based on five non-rigid registration algorithms. Each row displays the 

selected slices in the T maps obtained based on one algorithm, from top to bottom: ABA, 

IRTK, FSL, ART and SPM.
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Fig. 5. 
The regions with different ranges of p values for DBM results of DFM based on each 

registration algorithm superimposed on one volume deformed to the DBM atlas. Warm 

colors mean that the MD population has larger DFM values than the NC population, and 

cold colors mean the opposite.
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Fig. 6. 
Three common ROIs in the DBM results of DFM difference between NC and MD groups. 

All clusters are statistical significant after FWE correction and superimposed on one volume 

deformed to the DBM atlas. Three ROIs were identified and circled with different colors. 

The line type indicates different statistical significance levels.
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Fig. 7. 
The color-coded T maps of the voxel-wise ANCOVA analysis between the DFM feature and 

WRAT-M scores for all the 79 children based on five non-rigid registration algorithms. 

Each row displays three selected views of the T maps obtained based on one algorithm, from 

top to bottom: ABA, IRTK, FSL, ART and SPM.
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Fig. 8. 
The regions with different ranges of p values for DBM results of DFM correlated with 

WRAT-M scores based on each registration algorithm superimposed on one volume 

deformed to the DBM atlas. Warm colors mean that the MD population has larger DFM 

values than the NC population, and cold colors mean the opposite.
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Fig. 9. 
Scattered plots for correlation analysis between the mean DFM over each ROI and the 

WRAT-M scores for all the 79 children, using five different registration algorithms. Red 

frames mean that the correlation coefficients are statistically significant (p<0.05), blue 

frames mean the opposite.
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