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Abstract

Despite advances in the treatment of HIV infection, heterosexual transmission of HIV remains 

high, and vaccines to prevent HIV acquisition have been unfruitful. Vaginal microbicides, on the 

other hand, have demonstrated considerable potential for HIV prevention, and a variety of 

compounds have been screened for their activity and safety as anti-HIV microbicides. Among 

these are the naturally occurring host defense peptides, small peptides from diverse lineages with 

intrinsic antiviral activity.

Naturally occurring host defense peptides with anti-HIV activity are promising candidates for 

vaginal microbicide development. Their structural variance and accompanying mechanistic 

diversity provide a wide range of inhibitors whose antiviral activity can be exerted at nearly every 

stage of the HIV lifecycle. Additionally, peptide modification has been explored as a method for 

improving the anti-HIV activity of host defense peptides. Structure- and sequence-based 

alterations have achieved varying success in improving the potency and specificity of anti-HIV 

peptides. Overall, peptides have been discovered or engineered to inhibit HIV with therapeutic 

indices of >1000, encouraging their advancement toward clinical trials.

Here we review the naturally occurring anti-HIV host defense peptides, demonstrating their 

breadth of mechanistic diversity, and exploring approaches to enhance and optimize their activity 

in order to expedite their development as safe and effective anti-HIV vaginal microbicides.
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Introduction

The global rate of HIV transmission remains at over two million people annually [1]. Of 

those infected, a rapidly growing number acquire HIV through male to female intercourse 

[1]. This is especially a problem in Sub-Saharan Africa and other regions where there is a 

high incidence of non-consensual intercourse. Here, where females remain at a greater risk, 

new and affordable methods for preventing vaginal HIV transmission are badly needed. HIV 

prophylaxis has been attempted by the use of recombinant vaccines and various 

formulations of microbicides. Despite nearly three decades of such research, no effective 

vaccine has emerged. For these reasons, improved microbicides are being pursued as a 

solution that could significantly reduce HIV transmission and ultimately reduce the number 

of AIDS-associated deaths.

Early attempts at the development of a topical HIV microbicide generally consisted of two 

major strategies. The first of these approaches was acidic formulations, designed to lower 

the pH of the vaginal milieu and thereby directly inactivate HIV; the second strategy 

employed a variety of surfactants, which acted by disrupting the lipid membranes of 

enveloped viruses such as HIV. While such strategies were shown to be effective in 

preventing HIV infection in a variety of in vitro studies, these treatments were often 

neutralized or degraded by the dynamic vaginal environment. In some cases, these 

treatments proved to be unsafe or even increased the risk of infection due to damage of the 

vaginal epithelia [2,3].

A safer alternative vaginal microbicide came later in the form of sulfated polyanionic or 

polysaccharide compounds, which were able to coat mucosal surfaces and protect target 

cells from infection [4,5]. Two of the more hopeful formulations from this category included 

Carraguard, a carrageenan based microbicide, and PRO2000, a sulfonated polyanionic 

compound shown to bind and coat both viral and host proteins. While preclinical data 

appeared promising, effective in vivo protection could not be achieved in phase III clinical 

trials [5,6]. With the disappointment of previous attempts at microbicide development, it has 

become evident that microbicides should work through safe, specific, and potent 

mechanism-based approaches, rather than the previously attempted non-specific compounds, 

so as to provide directed protection against viral infection while minimally affecting the 

contacted tissue.

This directed strategy for microbicide development has begun to yield promising results by 

implementing microbicide formulations containing the nucleoside analog reverse 

transcriptase inhibitor, tenofovir [7,8]. The first of these studies was CAPRISA 004, where a 

tenofovir-containing gel was found to reduce HIV transmission in South African women by 

as much as 54%, thus demonstrating that a topical microbicide could succeed in 

significantly preventing HIV infection. Despite these promising results, success is dependent 

on viral susceptibility to tenofovir and, with the discovery of naturally occurring drug-

resistance mutations in chronically infected patients, new microbicides will be required to 

remain effective against the variety of HIV strains circulating among infected individuals 

[9].
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Though still in early stages of development, naturally occurring anti-HIV peptides are 

surfacing as potent yet broad-spectrum biomolecules for topical microbicides. These 

peptides are generally under 50 amino acids, and may inhibit a variety of bacteria, fungi, and 

viruses. A major advantage of using naturally occurring peptides is the extensive variety of 

peptides that can be found. Naturally occurring host defense peptides exist across all major 

lineages and represent one of the most ancient and conserved forms of immunity. Among 

the hundreds of host defense peptides that have been isolated and characterized, many have 

demonstrated varying degrees of anti-HIV activity in cell culture and biochemical assays 

[10]. These peptides vary in size and structure, but can be categorized into three major 

structural classes; the α-helices, the β-sheets and hairpins, and the closed cyclic peptides. 

(Table 1)

Short α-helices make up a large group of peptides, including amphibian dermaseptins, 

maximins and caerins; mammalian cathelicidins; and insect peptides, such as mellitin. A 

large family of peptides, collectively known as α-and β-defensins, represents many of the 

anti-HIV peptides containing β-turns, while the hairpin category is comprised of relatively 

smaller peptides such as protegrin and polyphemusin. The cyclic structure is less commonly 

observed and is represented mainly by plant-derived peptides such as the circulins and 

cycloviolacins, as well as some bacterial peptides such as the antibiotic gramicidin S 

[11-13]. Another small family of cyclic peptides, the θ-defensins, has been discovered in 

some non-human primates. However, while characteristics such as charge and structure have 

been shown to be common across the majority these peptides, structure is not always 

indicative of how these peptides are able to prevent infections. Anti-HIV activity can be 

executed by many different specific mechanisms.

The prospect of naturally occurring antiviral peptides as potent anti-HIV compounds has 

attracted a great deal of research and continues to deliver promising results. Here, we will 

review the correlation between structure, mechanism, and activity of naturally occurring 

anti-HIV peptides. Further, we will discuss strategies for the modification of the many 

characterized anti-HIV peptides and how these approaches enhance their potential for 

clinical development.

Anti-HIV Mechanisms of Naturally Occurring Peptides

Naturally occurring antiviral peptides have been shown to exert their activity at nearly every 

stage of the HIV lifecycle. Despite similarities in structure and properties, naturally 

occurring antiviral peptides have diverse mechanisms targeting specific stages in of HIV 

infection (Fig. 1). The variety of unique anti-HIV properties displayed by these peptides 

offers great potential for modification and development into mechanism-based, HIV 

microbicides.

A great majority of naturally occurring anti-HIV peptides prevent the initial steps of viral 

entry into host cells present at the sites of infection. The ability to inhibit HIV at an early 

stage makes these peptides desirable for development into microbicides. Peptides that inhibit 

HIV through direct inactivation are often α-helical, and are isolated from arthropod venom 

or amphibian skin [14-16]. The lytic activity of these peptides against enveloped viruses has 
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been reported as a mechanism for the amphibian-derived caerins and dermaseptins, as well 

as the active fragment of human lysozyme [17-19]. Here, inhibition of HIV is often 

attributed to peptide-lipid interactions involving oligomerization of lytic peptides in bilayers 

and subsequent disruption of membrane integrity [20,21]. Interestingly, peptide-mediated 

membrane disruption has been shown in biophysical studies to occur through interactions 

between negatively charged bacterial lipids and cationic host defense peptides [20]. 

However, when used at concentrations meant to disrupt the host-derived lipids of enveloped 

viruses, these peptides will disrupt the mammalian cell membranes as well. It is likely for 

this reason that peptides whose anti-HIV activity remains solely dependent on lipid-peptide 

interactions, such as honeybee mellitin and various amphibian peptides, possess a low 

therapeutic index and exhibit a relatively high degree of cytotoxicity (Fig. 2). The 

observation that many peptides that directly inactivate HIV also maintain a relatively high 

degree of cytotoxicity suggests that secondary mechanisms, in addition to HIV envelope 

penetration/disruption, may be necessary for microbicide development. It is therefore 

understandable that several more HIV-specific mechanisms, in addition to membrane 

disruption, have also been observed for many anti-HIV peptides, in particular those that 

directly interfere with the HIV entry process.

HIV entry occurs through a well-characterized, yet complex multi-step mechanism. The 

surface envelope protein, gp120, first engages the host cells by binding to the CD4 receptor 

present on monocytes, macrophages, dendritic cells, and the CD4+ T-cells. This initial 

binding brings gp120 into close proximity with one of two major co-receptors recognized by 

HIV: the chemokine receptors CCR5 and CXCR4. After binding to a co-receptor the viral 

envelope undergoes a conformational change exposing the fusion protein gp41, which then 

inserts its N-terminus into the host membrane. At this stage, which has been shown to occur 

at either the plasma membrane or within endosomes, gp41 mediates the fusion of the host 

and viral membranes allowing the release of the viral capsid into the host cytosol. This 

multistep process provides critical points at which infection can be blocked by several anti-

HIV peptides.

Peptides shown to bind viral gp120, such as θ-defensins and the Griffithsia-derived 

grifonin-1, prevent the virus's initial engagement of the host cell [22-24]. This activity may 

be related to the lectin properties of these molecules combined with the prominent 

glycosylation of gp120. Lectin activity of naturally occurring antiviral peptides is 

particularly promising considering the success of several large protein lectins in reducing 

HIV transmission in organotypic models [25,26]. Another advantage of peptides with lectin 

activity is that while mutations in envelope proteins may provide resistance to many drugs 

targeting gp120, molecules with the ability to bind glycosylated proteins should retain their 

broad-spectrum activity.

HIV co-receptors CXCR4 and CCR5 may also act as targets for antiviral peptides, including 

horseshoe crab tachyplesins and polyphemusin II and human β-defensins 2 and 3 [27,28]. 

Polyphemusin II directly binds CXCR4, thus preventing the interaction of HIV gp120 with 

its host cell target. Beta-defensins 2 and 3 employ a similar mechanism, as they both bind 

the co-receptor CXCR4, preventing initial HIV engagement of host cells. Additionally, they 
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induce CXCR4 internalization, thus reducing the levels of this co-receptor present on the 

cell surface.

The final stage of HIV entry is the gp41-mediated fusion of the viral envelope with the host 

membrane at either the cell surface or within endosomal compartments. An important 

advantage of a peptide that targets fusion, rather than earlier stages in entry, is that viral 

tropism and the highly variable gp120 sequence rarely affect anti-HIV activity of such 

peptides. This is supported by reports that peptides targeting fusion have been shown to be 

active against a more diverse group of primary HIV isolates of varying subtypes and 

tropisms [29,30]. HIV fusion is the primary target of the mammalian θ-defensins, in 

particular the human pseudogene product retrocyclin [31,32]. Theta-defensins likely bind to 

the C-terminal α-helix of gp41, thereby preventing formation of the 6-helix bundle structure 

that mediates membrane fusion [32,33]. Research on θ-defensins as fusion inhibitors has 

focused primarily on retrocyclin and its synthetic analogs. Retrocyclins have been shown to 

not only be active against a diverse range of subtypes from clinical isolates, but they also 

have been shown to overcome drug resistance mutations in gp41 through only a two-fold 

increase in peptide concentration [29,31]. In addition to their anti-HIV activity, retrocyclins 

are not cytotoxic at relatively high concentrations and do not elicit a host response while 

remaining active in both organotypic tissue and non-human primate models [34,35]. Another 

naturally occurring peptide shown to inhibit HIV fusion is a 20-residue cleavage product of 

human α1-antitrypsin known as VIRus Inhibitory Peptide (VIRIP). This peptide possesses a 

very specific mechanism whereby it forms a complex with a conserved domain of gp41, thus 

preventing the initial insertion of gp41 into the host membrane [30]. Where other peptide 

fusion inhibitors act by binding the N and C terminal heptad repeats of gp41, VIRIP is 

unique in that it binds to the hydrophobic “fusion peptide” region.

In addition to exhibiting extracellular activity, antiviral mechanisms of some peptides extend 

to target the early stages of intracellular HIV infection. Such peptides may still serve as 

effective microbicides if they can prevent successful integration of HIV into the host's 

genomic DNA. Indolicidin, a peptide of bovine origin, has been shown to prevent infection 

by specifically inhibiting integration of reverse-transcribed viral DNA into the host genome 

[36]. Components of the human cathelicidin peptide, LL-37, have also been shown to carry 

out their activity through inhibition of reverse transcriptase and the viral protease [37]. 

While mechanisms have been identified for both of these peptides using solely biochemical 

assays, it is important to note that they also possess anti-HIV activity in infected cell culture 

experiments [38,39].

While many of these peptides remain in experimental stages, the mechanisms that they 

employ can all prevent the initial infection that would otherwise lead to acquisition of HIV. 

Obtaining a mechanistic understanding of these peptides can be useful to develop 

modifications leading to greater anti-HIV activity, decreased cytotoxicity, and improvement 

of expression/synthesis. Such modifications will likely be critical for development of 

naturally occurring peptides as microbicides.
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Modification of Naturally Occurring Anti-HIV Peptides

The abundance of host defense peptides with diverse mechanisms of antiviral activity has 

supported their development as anti-HIV prophylactic microbicides. While such peptides are 

lauded for their ubiquitous occurrence across diverse lineages and their relatively broad 

spectrum antimicrobial activity, the challenge for microbicide development is in finding and 

isolating peptides that demonstrate potent and specific HIV inhibition; these compounds 

must not demonstrate toxicity to host cells or endogenous flora. The specificity of antiviral 

compounds is expressed as their therapeutic index, the ratio of their CC50 (concentration at 

which host cell viability/proliferation is reduced by 50%) to their IC50 (concentration at 

which viral infection is reduced by 50%) [40]. This is a useful gauge for the clinical 

potential of anti-HIV peptides. Some antiviral candidates exhibit desirable therapeutic 

indices as natural isolates (e.g. griffithsin, with an IC50 >1000) [26]. Other compounds may 

not be as promising in their native form, but they can be drastically improved by engineered 

modifications to achieve favorable therapeutic indices (e.g. VIRIP, whose therapeutic index 

was enhanced from >68 to >5000 by sequence optimization) [30].

Various techniques have been explored in an effort to increase the therapeutic index of anti-

HIV peptides via sequence-based and structural modifications. Further, several delivery 

approaches have been employed to improve the application and stability of anti-HIV 

peptides. In this section we will review the attempts and outcomes of several such 

modifications in order to evaluate techniques aimed at enhancing the therapeutic index of 

anti-HIV peptides and their clinical development as topical microbicides.

Many host defense peptides exhibit anti-HIV activity in their native form, whereas other 

peptides require modifications in order to meet the characteristics of an anti-HIV 

microbicide candidate. One straightforward technique for antiviral peptide improvement is 

the identification of active domains. In many cases, the antiviral activity of a large protein is 

attributed to only a small peptide fragment. Thus, the recombinant expression or synthetic 

production of the active portion is a practical way to streamline production and delivery of 

the antiviral peptide. This approach was demonstrated by the identification and isolation of 

the active portions of human anti-HIV proteins LL-37, lysozyme, and α-melanocyte-

stimulating hormone (α-MSH).

The 14.7 kDa host defense protein lysozyme inhibits a wide range of microbes [41]. The 

protein as a whole exhibits anti-HIV activity at nanomolar concentrations, but this activity 

can be distilled down to a 9-amino acid peptide sequence, RAWVAWRNR. This peptide 

adopts an α -helical structure that inhibits HIV infection with approximately the same 

potency as full-length lysozyme [18]. Similarly, the anti-HIV activity of the human 

cathelicidin product LL-37 is achieved by a 25-residue region of the C-terminus. This 

fragment inhibits the activity of HIV reverse transcriptase enzyme with a lower IC50 than 

the intact LL-37 protein (7μM, down from the original 15 μM) [37]. Thus, isolating the 

active domain of an antiviral protein can increase its potency.

An extreme instance of active domain isolation is demonstrated by the antiviral peptide α-

MSH. Alpha-MSH is a human anti-inflammatory protein expressed by keratinocytes and 
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monocytes, among other cell types. Importantly, microbicides that exhibit anti-inflammatory 

activity may perform dual functions in preventing HIV transmission. First, they can suppress 

HIV infection by inhibiting the activation of the proinflammatory transcription complex NF-

κB, which otherwise drives replication of HIV by binding the proviral long terminal repeat 

and promoting transcription of the viral genome [42]. Second, by suppressing inflammation 

and reducing recruitment of immune cells to mucosal tissues, these peptides minimize the 

pool of potential CD4+ target cells that could become infected by invading HIV virions. In 

the case of the antiinflammatory protein α-MSH, antiviral activity can be achieved by only a 

three amino acid sequence, KPV, which suppresses NF-κB activation and concomitant HIV 

infection at equimolar concentrations in comparison to the full-length α-MSH protein [43]. 

These examples illustrate how active domain isolation can simplify antiviral peptide 

production by focusing expression and isolation to only the relevant domains.

In other cases, antiviral activity is exerted by a more complex structure and cannot be fully 

recapitulated by a smaller peptide derivative. Such is the case of the small peptide mimetic 

grifonin-1, which was modeled after the 12.7 kDa antiviral protein griffithsin. Griffithsin is 

isolated from Griffithsia sp. of red algae, and structural analysis suggests that its antiviral 

activity is achieved by three glycan-binding motifs that bind the envelope glycoprotein 

gp120 to inhibit viral attachment to host cells [26,44]. Grifonin-1 is a peptide mimetic of the 

proteoglycan-binding β-turn domains of griffithsin and was constructed using non-canonical 

residues to optimize its stability and efficacy. Yet in this instance, the peptide mimetic 

suffered a 1000-fold decrease in antiviral activity compared to the parent protein when 

assayed at equimolar concentrations [22]. Still, its therapeutic index remains high, and 

because of its smaller size, it may prove to possess advantages in delivery over its parent 

protein griffithsin.

In addition to active domain isolation, intramolecular modifications that alter peptide 

sequence are often employed in hopes of improving the therapeutic index of anti-HIV 

peptides. Such modifications have been explored for antiviral peptides isolated from a 

myriad of sources and exhibiting diverse structures, with varying success. One group of 

antiviral peptides that has had little success in achieving promising therapeutic indices is 

comprised of peptides exhibiting direct virucidal activity by membrane lysis. As discussed 

above, membrane-disrupting anti-HIV peptides have poor therapeutic indices in their native 

forms. These permeabilizing peptides have been mutated in an effort to increase their 

therapeutic potential, which has been relatively unsuccessful. This is due to the difficulty of 

selectively targeting the peptides' lytic activity to viral membranes that are derived from host 

cell membranes over the host cells themselves. The difficulty of selectively directing 

antimicrobial peptides to the HIV membrane is evidenced by the peptides dermaseptin S4, 

the caerins, and indolicidin [15,16,39]. These peptides all execute antiviral activity by 

disrupting the viral membrane, and all are active in the micromolar range. Yet none of these 

molecules, nor their derivatives, achieve a therapeutic index of >20, as each induces 

cytotoxicity near its active concentration. Thus, anti-HIV peptides that function by lysis of 

viral membranes will likely be limited in therapeutic potential due to their corresponding 

disruption of host cell membranes.
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While lytic peptides are unlikely to achieve specific inhibition of virions over host cells, the 

majority of anti-HIV peptides exert their inhibitory activity by mechanisms distinct from 

direct membrane disruption. For example, many antiviral peptides interact with host cell 

receptors or surface molecules, with viral surface proteins, or they may influence 

intracellular processes such as receptor trafficking or transcriptional regulation. In the case 

of such specific interactions, antiviral activity should be individually engineered to enhance 

peptide affinity for its target molecule. Such an approach was employed for optimization of 

the horseshoe crab antimicrobial peptide, polyphemusin II.

Polyphemusin II exhibits anti-HIV activity at submicromolar concentrations by binding to 

the host cell chemokine receptor CXCR4, one of two coreceptors utilized by HIV to enter 

host cells [27,45]. However the therapeutic index of native polyphemusin II is 25, limiting 

its potential for development. Yet a peptide with a defined mechanism but undesirable 

toxicity posed an opportunity for improvement, and through an extensive series of sequence 

and structural modifications, over 100 analogues of polyphemusin II have been constructed 

and therapeutic indices of >10,000 have been achieved [45-50]. Notably successful 

analogues include T22 (therapeutic index = 170) and T140 (therapeutic index = 13,000) 

[51]. While these modifications have produced potent and specific inhibitors, the 

prophylactic potential of these peptide analogues is still limited due to their restricted 

activity against only X4-tropic viruses. This is especially limiting since nearly all HIV 

founder strains (viral strains responsible for establishing initial infection) utilize the 

chemokine coreceptor CCR5 rather than CXCR4 to attach and fuse to host cells [52,53].

Yet the survey of sequence substitution and incorporation of non-canonical residues in 

polyphemusin II analogues paved the way for the optimization of other antiviral peptides. 

For example, while enantiomeric amino acid residues occur naturally in some antiviral 

peptides (e.g. gramicidin), they are now also frequently engineered into modified analogues 

of other antiviral peptides (e.g. analogues grifonin-1, VIR-353 and VIR-449) [22,30,54]. 

Additionally, synthesized analogues are now often engineered to contain non-canonical 

residues such as citrulline, naphthylalanine, cyclohexylalanine, and cyclohexylglycine to 

expand the available repertoire of structural building blocks [22,50]. This has allowed for a 

broader spectrum of physical characteristics to be incorporated into antiviral peptide 

analogues, which in turn increases our ability to optimize their anti-HIV activity. In addition 

to optimizing the therapeutic profile of analogues, incorporation of such non-classical 

residues may also enhance the stability of microbicides by imparting resistance to 

stereospecific proteolytic degradation [55].

While sequence substitutions have elucidated some useful trends and approaches, structural 

modifications aimed at improving antiviral peptides have been more difficult to interpret. As 

an example, the porcine peptide protegrin has been extensively modified by structural 

rearrangements that displayed varying success in improving antiviral activity. Protegrin is an 

18 amino acid antimicrobial peptide that in its native form contains four cysteines, which are 

linked by two disulfide bonds to stabilize a β-hairpin structure [56]. Tamamura and 

colleagues engineered a series of disulfide-linked protegrin variants to construct each 

possible arrangement of two disulfide linkages between the four cysteines. Surprisingly, 
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these bond rearrangements and accompanying major structural changes did little to alter 

antiviral activity or cytotoxicity to host cells [57].

On the other hand, Tam and colleagues cyclized protegrin, which slightly enhanced the 

therapeutic index by subduing cytotoxicity to mammalian cells. However, when a third 

disulfide bond was incorporated by introducing two additional cysteine residues in the cyclic 

analogue, the CC50 was improved another 6-fold, resulting in nearly a 9-fold increase in 

therapeutic index compared to native protegrin [58]. This result suggests that the stabilized 

hairpin motif might be important for executing anti-HIV activity. Yet, in surprising contrast 

to the improved therapeutic profile achieved by the stabilized cyclization of protegrin, 

complete elimination of all disulfide bonds was even more successful in enhancing the 

therapeutic index of protegrin; a linearized analogue achieved an overall improvement >15-

fold compared to native protegrin, arguing that structural rigidity is likely not an important 

determinant of antiviral activity [57]. Thus, apparently disparate structural alterations 

achieved similar enhancement of therapeutic potential for the anti-HIV peptide protegrin. 

The interpretation of these results is confounded by the lack of a recognized antiviral 

mechanism for protegrin; without understanding the critical molecular interactions that 

allow protegrin to inhibit HIV, it is increasingly difficult to rationalize and predict the effect 

of structural rearrangements on the therapeutic profile of antiviral peptides. Protegrin 

modifications stand in contrast to the engineered analogues of polyphemusin II, which 

achieved exceptional therapeutic indices on account of a mechanistic understanding of its 

antiviral activity. These contrasting examples highlight the importance of elucidating the 

mechanism of viral inhibition in order to successfully design improved anti-HIV peptides.

Through extensive substitutions and rearrangements, a pool of promising antiviral peptides 

has been assembled, some with therapeutic indices exceeding 1000. Once an antiviral 

peptide has demonstrated safety and efficacy in vitro, a suitable application system must be 

formulated for its mucosal delivery to be evaluated in animal and clinical studies. These 

formulations can be tailored to ensure stability and safety for the intended exposed surfaces 

(vaginal, penile, rectal), and they have evolved from simple gel and cream suspensions to 

dissolvable films for mucosal application and vaginal rings for slower release of 

antimicrobial compounds with fewer reapplications [59]. These formulation options allow 

microbicides to be designed for immediate application pre-coitus or for continual delivery in 

the form of long-lasting rings.

Recently, another technique has surfaced in the vaginal microbicide field; the recombinant 

expression of antimicrobial proteins by transgenic lactobacilli is being explored as a delivery 

option. Lactobacillus species comprise the majority of the endogenous commensal vaginal 

microbiota. These probiotic bacteria produce antimicrobial bacteriocins, proteins that have 

been shown to inhibit urogenital pathogens [60]. Lactobacilli are also known to contribute 

lactic acid and hydrogen peroxide to the vaginal canal, which can prevent HIV by direct 

viral inhibition or indirectly by inhibiting pathogenic infections that increase host 

susceptibility to HIV acquisition [61-63]. In fact, pathogenic conditions in which lactobacilli 

are depleted from the vaginal lumen are accompanied by increased rates of HIV 

transmission, such as the microbial shift condition bacterial vaginosis, in which 

displacement of vaginal lactobacilli is accompanied by a 60% increased rate of HIV 
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infection [64]. As the benefits of these commensal flora have been elucidated, the past 

decade has seen an increase in studies to supplement the natural antiviral activity of the 

vaginal microbiome and even to enhance it through recombinant techniques.

To this end, the expression of antiviral peptides by probiotic lactobacilli has been eagerly 

explored. The transformation of lactobacilli has been improved, and it has been shown that 

these bacteria can achieve superior folding of recombinant antiviral proteins compared to 

mammalian expression systems [65]. Furthermore, recombinant fusion inhibitor peptides 

corresponding to the heptad repeat-2 region of the HIV envelope protein gp41 were 

expressed by these transgenic bacteria, and they successfully inhibited HIV fusion in vitro 

[66]. Initial in vivo studies have demonstrated successful colonization of the human vaginal 

canal when lactobacilli were administered in repeated doses [67]. Most recently, 

recombinant lactobacilli expressing the antiviral protein cyanovirin-N were administered 

vaginally to macaques, which successfully prevented vaginal infection by SHIV up to 63% 

[68]. This rate of inhibition is likely a combined effect of the endogenous protective factors 

contributed by the lactobacilli in addition to the antiviral protein they were engineered to 

recombinantly express. Thus, in addition to accomplishing sustained delivery of antiviral 

compounds, the intravaginal application of transgenic lactobacilli has the dual advantage of 

also bolstering the endogenous protective barrier of the female reproductive tract. This 

merits further investigation as a clinical strategy for vaginal microbicide delivery.

Looking ahead, the isolation and optimization of natural peptides with potent and specific 

anti-HIV activity support their development as prophylactic topical microbicides. 

Considering the failure of cytotoxic detergent-based microbicides to provide safe and 

effective protection against HIV, the superior therapeutic indices and diverse mechanisms of 

action of naturally occurring anti-HIV peptides provide a spectrum of promising antiviral 

candidates. As experience and understanding of these peptides accumulate, our ability to 

enhance their activity brings them ever nearer to clinical development as anti-HIV 

microbicides.
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Fig. (1). 
Mechanisms of anti-HIV peptides. Antiviral activity is exerted by representative peptides at 

the five major stages prior to infection. These stages are: direct inactivation of cell-free 

virions, attachment of virions to host cells at CD4 and CXCR4/CCR5, fusion of the viral 

envelope with the host cell membrane (shown here within the endosome), reverse 

transcription of viral RNA into DNA provirus, and integration of the provirus into the host 

genome.
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Fig. (2). 
Therapeutic indices of naturally occurring anti-HIV peptides and their analogues. Anti-HIV 

peptides with available therapeutic indices are plotted as IC50 against CC50. For IC50 or 

CC50 concentrations that were reported as a range, the mid-range value was plotted. For 

peptides whose CC50 was not reached experimentally, the highest concentration shown to be 

nontoxic was used as a CC50 and the plotted symbol is appended with an upward arrow 

indicating that its CC50 could be higher than the plotted value. Native peptides are closed 

symbols, and modified analogues are open symbols. Therapeutic index thresholds are 

indicated as lines at each 10-fold increment.
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