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Abstract: Pharmaceutical agents provide diagnostic and therapeutic utility that are central to 

patient care. However, all agents also carry adverse drug effect profiles. While most of these 

are clinically insignificant, some drugs may cause unacceptable toxicity that impacts negatively 

on patient morbidity and mortality. Recognizing adverse effects is important for administer-

ing appropriate drug doses, instituting preventive strategies, and withdrawing the offending 

agent due to toxicity. In the present article, we will review those drugs that are associated with 

impaired renal function. By focusing on pharmaceutical agents that are currently in clinical 

practice, we will provide an overview of nephrotoxic drugs that a treating physician is most 

likely to encounter. In doing so, we will summarize risk factors for nephrotoxicity, describe 

clinical manifestations, and address preventive and treatment strategies.
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Introduction
In the era of modern medicine, patients are exposed to an expanding variety of drugs for 

diagnostic and therapeutic purposes. Unfortunately, some of these agents cause adverse 

drug effects linked with systemic toxicity, including impairment of renal function. 

Nephrotoxicity results in serious clinical syndromes, including acute kidney injury 

(AKI). Nephrotoxic agents have been implicated as etiologic factors in 17%–26% of 

in-hospital AKI.1,2 Given the hospitalization rates, morbidity, and mortality associated 

with AKI, knowledge of the typical agents associated with nephrotoxicity is essential 

in improving AKI rates and outcomes.3 Drug-induced renal impairment involves many 

classes of drugs and includes prescription agents as well as commonly encountered 

over-the-counter drugs. There are drug-specific and patient-specific risk factors that 

influence the development of drug-related nephropathy. In the present article, we 

will review these factors and discuss the various classes of agents associated with 

nephrotoxicity.

Risk factors for nephrotoxicity
Drug- and kidney-specific factors
Toxicity of therapeutic and diagnostic agents may be inherent to the pharmacologi-

cal compound itself and the potential for toxicity may be heightened in the kidney 

microenvironment. For example, the aim of chemotherapy is to kill malignant cells 

via various mechanisms aimed at arresting cellular division. Since the cell cycle oper-

ates normally in nonmalignant cells, healthy tissues, including renal parenchymal 
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cells, are also affected. However, in particular ways, the 

kidney is especially poised as a target for toxicity. Since it 

receives a significant percentage of cardiac output, robust 

blood flow through the kidney regularly exposes it to drugs 

and drug metabolites. Some of these agents may have the 

requisite charge and size for filtration at the glomerulus and 

subsequently gain entry into renal tubular epithelial cells 

via pinocytosis or endocytosis.4 Other drugs are transported 

via peritubular capillaries and gain access to renal tubular 

epithelial cells at the basolateral surface, where they are 

taken up by organic anion and organic cation transporters 

(OATs and OCTs, respectively) and eventually effluxed 

into tubular lumens.5 Genetic polymorphisms that affect the 

function of these transporters may explain differences in 

susceptibility to nephrotoxicity of drugs such as cisplatin.6 

As tubular fluid flows down the loop of Henle, water is reab-

sorbed, thus increasing the tubular concentration of drug to 

potentially injurious levels. Tubular cells in the collecting 

duct and loop of Henle are at greater risk for nephrotoxic-

ity because they are highly metabolically active and, as a 

result, reside in a relatively hypoxic microenvironment. In 

addition, the kidney oxidizes drugs via cytochrome p450 and 

other enzyme systems into smaller metabolites, suggesting 

that intrarenal drug toxicity may be mechanistically linked 

to reactive oxygen species as well as direct effects of drug 

metabolites.4,7 Lastly, certain therapeutic agents may gain 

toxic potential within the kidney microenvironment. For 

example, methotrexate (MTX) nephrotoxicity depends upon 

crystallization of the parent compound and its metabolites. 

This crystallization is highly favored with the acidic urine 

pH that exists in the normal host with average protein intake. 

Thus, both inherent properties of a particular drug and the 

kidney-specific environment contribute to clinically signifi-

cant nephrotoxicity. While these are general mechanisms for 

kidney injury, specific drugs may exploit unique pathways 

to induce nephrotoxicity. We will examine these in greater 

depth in later drug-specific discussions.

Patient-specific risk factors
Certain patient characteristics predispose to drug-induced 

nephrotoxicity. Among these, older age and female sex are 

associated with reduced muscle mass and lower total body 

water. This can impact on drug dosing in two ways. First, 

reduced muscle mass is reflected in lower serum creatinine. 

Depending on the type of estimating equation used to approx-

imate glomerular filtration rate (GFR), this may be falsely 

interpreted as high GFR, leading to inappropriately high drug 

dosing. Second, decreased total body water increases the 

concentration of drug in serum. Both factors work in concert 

to raise serum drug concentration to potentially toxic levels. 

In addition to these factors, hypoalbuminemia also carries the 

risk of inducing toxic drug levels by increasing the unbound 

drug fraction in the serum.

Risk of drug nephrotoxicity is increased in the patient 

with AKI or chronic kidney disease (CKD). Thus, the patient 

who is on diuretic therapy or has vomiting or diarrhea that 

results in true volume depletion is vulnerable to toxic drug 

effects on the kidney. Similarly, the patient with congestive 

heart failure or hepatic failure with ascites who has effective 

volume depletion may experience prerenal AKI and become 

more susceptible to the nephrotoxic effects of certain agents. 

Hepatic failure is a particular risk factor for drug-induced 

renal impairment because cirrhotic patients tend to have 

reduced muscle mass and hypoalbuminemia, which, as 

discussed earlier, increases the chance of inadvertent drug 

overdosing. Additionally, the presence of hyperbilirubinemia 

is the highest predictive factor for nephrotoxicity among 

patients with liver failure, putatively because of tubular 

damage from bile salts.8

Like patients with AKI, those with CKD are also vulner-

able to drug nephrotoxicity via several shared mechanisms, 

including excessive drug dosing relative to kidney function 

and decreased renal reserve. Other populations at particular 

risk for drug-induced renal impairment include the elderly 

and neonates. For elderly patients, reduced muscle mass and 

total body water may be factors, as previously discussed in 

this article. Additional variables in older patients include 

comorbid conditions that predispose to AKI as well as an 

increased likelihood of polypharmacy with nephrotoxic 

drugs. In neonates, particularly those with premature deliv-

ery, drug nephrotoxicity bears a significant burden for AKI 

compared to adult patients, with some data suggesting that 

drug-induced renal impairment leads to 16% of AKI cases 

in newborns.9 Several factors may explain this, including 

increased susceptibility of the neonatal immature kidney to 

nephrotoxic insults as well as the use of multiple nephrotoxic 

agents in critically ill newborns.10,11

Some drugs induce renal injury in the context of a sys-

temic syndrome. For example, a particular drug may possess 

inherent nephrotoxic potential, which is increased in the 

setting of sepsis and decreased effective circulating volume. 

Certain agents contribute to renal failure within a rare but 

life-threatening hypersensitivity syndrome known as drug 

reaction and eosinophilia with systemic symptoms (DRESS). 

While DRESS has features in common with Stevens–Johnson 

syndrome as well as other cutaneous drug eruption diseases, 
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it is distinguished by eosinophilia, atypical lymphocytosis, 

and visceral involvement.12,13 An ever-expanding list of agents 

is associated with development of DRESS.13 While the liver 

is the most commonly implicated organ, kidney involvement 

has been reported in the form of acute tubulointerstitial 

nephritis with sulfasalazine and leflunomide.14,15 Though the 

specific mechanistic link to renal failure is not clear, a recent 

study examining peripheral T-cell responses in 40 patients 

with DRESS found that a majority of cases involved human 

herpesvirus 6, human herpesvirus 7, and Epstein–Barr virus 

reactivation.16

Overview of drug-induced  
renal impairment
In discussing drug-induced renal impairment, it is help-

ful to recall that renal function is a composite of several 

steps which includes renal arterial blood flow, glomerular 

filtration, tubular fluid formation, and exit of urine into 

the urogenital system. Drugs can impair renal function by 

interfering with any of these steps. Thus, one method of clas-

sification divides drug-induced nephrotoxicity into prerenal, 

intrarenal, or postrenal mechanisms. However, while many 

drugs have a single mechanism of injury, some classes of 

drugs possess multiple ways of inducing renal dysfunction. 

The following subsections will expand upon the different 

categories of drugs that have nephrotoxic potential, with 

examples of the most commonly encountered drugs in each 

category.

Nonsteroidal anti-inflammatory drugs
Classes of nephrotoxic drugs
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely 

used to relieve pain and signs of inflammation. Their effec-

tiveness and relative safety make them among the most 

frequently sold over-the-counter medications worldwide. 

The worldwide incidence of renal side effects is reported 

to be around 1%–5%.17 However, widespread use makes 

NSAIDs among the most common causes of drug-induced 

renal injury. NSAIDs can result in a variety of renal com-

plications (Table 1).

Prostaglandin (PG) inhibition mediated by NSAIDs 

explains many of its renal complications. PGs play a signifi-

cant role in maintaining normal renal physiology. PG-induced 

renal vasodilation is critical for maintaining adequate renal 

perfusion. NSAIDs impair this renal vasodilation and alter 

renal hemodynamics. This effect is magnified in patients who 

are hypovolemic or are concomitantly using angiotensin con-

verting enzyme (ACE) inhibitors. It is important to note that 

AKI can occur with either nonselective NSAIDs or selective 

(COX-2-specific) NSAIDs.18

PGs have also been shown to play a role in stimulating 

renin and angiotensin-mediated aldosterone release.19 Thus, 

NSAID-mediated PG inhibition can result in hyperkalemia 

and metabolic acidosis (hyporeninemic hypoaldosteronism). 

Hyponatremia induced by NSAIDs is possibly related to 

release of inhibitory effect of PGs on antidiuretic hormone 

(ADH)-facilitated water absorption at the distal collecting 

tubules.20,21 NSAID-mediated PG inhibition is also respon-

sible for sodium retention, which can lead to hypertension 

and edema.

Angiotensin-converting enzyme  
inhibitors and angiotensin II receptor 
blockers
These groups of drugs are widely used in the treatment of 

hypertension and congestive heart failure and for delaying 

the progression of diabetic nephropathy. Angiotensin II con-

stricts both the afferent and efferent arterioles, but the effect is 

more pronounced on the efferent arteriole.22 The net effect of 

angiotensin II is an increased intraglomerular pressure. This 

mechanism is critical in renal autoregulation, ie, maintaining 

a stable GFR across a wide range of renal perfusion pressures. 

ACE inhibitors and angiotensin II receptor blockers (ARBs) 

antagonize the activity of angiotensin II, thereby interfering 

with the renal autoregulation of GFR. Though this effect is 

well tolerated in most patients, in certain situations the loss 

of autoregulation could precipitate or potentiate AKI. These 

situations include: 1) bilateral renal artery stenosis or renal 

artery stenosis in solitary kidney; 2) volume depletion; and 3) 

concomitant use of NSAIDs, cyclosporine, and tacrolimus.23 

ACE inhibitors or ARBs should be withheld if the patient has 

or is at risk for volume depletion. Furthermore, coadministra-

tion of NSAIDs along with ACE inhibitors or ARBs should be 

avoided, especially in the setting of preexisting CKD or volume 

Table 1 Renal complications of nonsteroidal anti-inflammatory 
drug use

• � Prerenal azotemia
• � Acute tubular necrosis
• � Acute papillary necrosis
• � Acute interstitial nephritis
• � Chronic tubulointerstitial nephritis (analgesic nephropathy)
• � Minimal change disease
• � Membranous nephropathy
• � Hyperkalemia and metabolic acidosis (hyporeninemic hypoaldosteronism)
• � Hyponatremia
• � Hypertension
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depletion. Combination therapy involving both ACE inhibitors 

and ARBs is associated with more adverse events, including a 

higher risk for AKI and hyperkalemia.24

Antimicrobial agents
Aminoglycosides
Aminoglycosides (AGs) are well known to cause nephrotoxic-

ity and ototoxicity. In spite of these risks, they are still widely 

used in the treatment of Gram-negative bacterial infections. 

Even at therapeutic doses, the incidence of nephrotoxicity is 

reported to be as high as 10%–25%.25,26 Risk for nephrotoxic-

ity is higher with prolonged duration of therapy, hypovolemic 

states, preexisting CKD, and older age. Clinically, AKI mani-

fests after 5–7 days of therapy. Renal complications are usually 

dose-dependent, but subtherapeutic doses of AGs have been 

implicated in causing chronic tubulointerstitial nephritis.27 

AGs are non-protein bound and freely filtered at the glomeruli. 

Due to their cationic structure, AGs can undergo proximal 

tubule reabsorption by megalin-mediated endocytosis. This 

leads to a preferential accumulation of the drug in the cortical 

tubular cells, which results in tubular cytotoxicity. The risk for 

nephrotoxicity is directly proportional to the cationic charge. 

Neomycin is the most toxic drug in this group, followed by 

gentamicin, tobramycin, amikacin, and streptomycin (least 

toxic). Intracellular accumulation results either in tubular cell 

death or in functional alteration of cell membrane transporters. 

The latter explains the electrolyte abnormalities (hypokalemia, 

hypomagnesemia, and hypocalcemia) commonly associated 

with AG use. Rarely, AGs have been reported to cause Fanconi 

syndrome where impaired proximal tubule reabsorption results 

in renal wasting of sodium, potassium phosphate, amino acids, 

glucose, bicarbonate, and low-molecular-weight proteins.28 AGs 

also accumulate in the distal tubules and collecting ducts.29 This 

could result in distal tubular dysfunction leading to impaired 

concentration capability and polyuria. To prevent nephrotoxic-

ity, loading and maintenance doses should be calculated based 

on estimated creatinine clearance.30 Monitoring peak and trough 

serum AG levels, expanding volume, and limiting dosing to 

once daily versus multiple times daily are other strategies by 

which to minimize the risk of AG nephrotoxicity.30,31

Sulfamethoxazole–trimethoprim  
and sulfa-based antibiotics
Sulfamethoxazole (SMX) is probably the most widely used 

sulfa-based antibiotic. It is generally prescribed along with 

synergistically acting trimethoprim (TMP) as a combination 

antimicrobial agent. Low cost and excellent spectrum of anti-

microbial activity make SMX-TMP a popular choice among 

clinicians. The recent rise in incidence of methicillin-resistant 

Staphylococcus aureus-related skin infections has further 

increased use of this drug. SMX–TMP has several adverse renal 

effects. First, it is important to note that TMP inhibits proximal 

tubular secretion of creatinine and can result in elevation of 

measured serum creatinine.32,33 This effect is not accompanied 

by a decrease in actual GFR and hence should not be considered 

as AKI. TMP can also result in hyperkalemia by inhibiting the 

epithelial sodium channel at the distal convoluted tubule, which 

provides the driving force for potassium excretion.34,35 While 

overall incidence of SMX–TMP-associated renal disease was 

reported as low in a previous retrospective cohort, newer data 

suggest the overall incidence may be as high as 11.2%.36,37

AKI from sulfa-based antimicrobial agents is most com-

monly secondary to acute interstitial nephritis (AIN). Use 

of high-dose sulfadiazine can, on rare occasions, also cause 

crystal nephropathy.38,39 Urine microscopy in this case may 

reveal the characteristic birefringent, needle-shaped crystals 

arranged in a “shocks of wheat” pattern. Crystal precipita-

tion typically occurs in acidic urine and in low-flow states. 

Thus, alkalinization of the urine and high fluid intake could 

potentially prevent development of crystalluria.38

Vancomycin
Vancomycin (VCM), a glycopeptide antibiotic, is commonly 

used in the critical care setting since it is a first-line agent in 

the treatment of severe methicillin-resistant Staphylococcus 

aureus infections. VCM-related nephrotoxicity is generally 

due to acute tubular necrosis (ATN) or AIN.40 High trough 

levels (.15 mg/L), long duration of therapy, and concomi-

tant administration of other nephrotoxins (eg, AGs) have 

been described as significant risk factors for development 

of nephrotoxicity.41,42 The exact nephrotoxic mechanism of 

VCM-related ATN is not yet fully established. It has been 

suggested that VCM-induced oxidative stress results in 

the tubular damage.43 Given its widespread use, clinicians 

should be aware of this risk and should monitor patients for 

development of nephrotoxicity. Overall risk for nephrotoxic-

ity is difficult to pinpoint as there is wide variability within 

the reported numbers from different studies. A recent meta-

analysis found incidence of nephrotoxicity ranged between 

5% and 43% across 15 different prospective and retrospec-

tive cohorts.41 In patients with CKD, the dosing should be 

strictly based on estimated creatinine clearance.

Ciprofloxacin
Ciprofloxacin, a commonly prescribed fluoroquinolone 

antibiotic, has been reported to cause AIN and crystalluria.44 
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Ciprofloxacin crystallizes in alkaline urine.45 Crystals can 

sometimes be visualized by polarized microscopy as birefrin-

gent needles, stars, or sheaves.44,46 Crystallization could be 

avoided by making sure the patients are volume replete and by 

dosing the drug appropriately for the level of renal function.

Other antibiotics
Penicillins and cephalosporins are commonly used anti-

microbial agents and have been found, although rarely, 

to cause AIN and ATN.47,48 Polymyxins (colistin and 

polymyxin B) cause AKI by toxic tubular injury.49 While 

the polymyxins have been largely replaced by newer anti-

microbial agents, clinicians should be aware that they are 

being reintroduced for the treatment of certain multidrug-

resistant infections.

Antiviral agents
Acyclovir
High-dose intravenous use of acyclovir can induce AKI 

secondary to crystal precipitation in the renal tubules.50,51 

Acyclovir crystals can sometimes be detected by urine sedi-

ment microscopy. Typically, they are birefringent, needle-

shaped crystals. Nephrotoxicity can be prevented by adequate 

volume expansion, low-dose infusion, and slower rate of 

infusion. Treatment of acyclovir nephrotoxicity is limited to 

saline diuresis to prevent further crystallization by inducing 

high urine flow rates.

Foscarnet
Foscarnet is nephrotoxic by inciting ATN,52 although a case 

report also suggested the possibilty of a crystal-related 

injury.53 In addition to AKI, foscarnet can also cause sig-

nificant electrolyte abnormalities. For example, foscarnet 

can result in symptomatic hypocalcemia by chelating 

free (ionized) calcium.54 Other electrolyte disturbances 

include hypomagnesemia, hypokalemia, and hypo- or 

hyperphosphatemia.55

Antiretroviral drugs
Since the introduction of highly active antiretroviral therapy, 

there has been a dramatic improvement in mortality and 

morbidity associated with HIV disease. Since antiretroviral 

therapy is generally lifelong, it is important for clinicians to 

be able to recognize the common nephrotoxic manifestations 

of these drugs.

The most prominent of the nephrotoxic antiretroviral 

agents is tenofovir, a nucleoside reverse transcriptase inhibi-

tor that can cause AKI with or without proximal tubulopathy.56 

AKI results from direct toxicity to tubular cells, mediated by 

mitochondrial injury, resulting in ATN.57 Proximal tubular 

dysfunction presents as electrolyte derangements, including 

an overt Fanconi syndrome.58 Discontinuation of tenofovir 

generally reverses these pathological changes; however, 

severe cases of AKI may result in residual CKD.

Protease inhibitors, another class of antiretroviral drugs, 

can also be nephrotoxic.59,60 Indinavir, a once-prominent 

protease inhibitor, can crystallize in renal tubules, resulting in 

crystal-related kidney injury and nephrolithiasis. Fortunately, 

the use of indinavir is on the decline as it is being replaced 

by newer and safer agents. Atazanavir is a newer protease 

inhibitor that is also associated with nephrolithiasis, but to a 

much lesser extent compared to indinavir. Cases of AIN have 

also been reported with use of protease inhibitors, including 

indinavir, abacavir, ritonavir, and atazanavir.60

Antifungal agents
Amphotericin B
Amphotericin B (AmB) is frequently used in the treatment 

of serious, life-threatening fungal infections. Therapeutic 

use is often limited by dose-dependent nephrotoxicity. 

AmB is available for use in two forms: a conventional form 

and the more recent liposomal form. Liposomal AmB has 

an improved renal safety profile compared to conventional 

AmB.61 Two pathogenic mechanisms have been suggested to 

explain AKI with AmB use.62 The antifungal effect of AmB is 

related to its ability to alter membrane permeability of fungal 

cells, which leads to cell death. AmB can bind to cholesterol 

molecules in cellular membranes, thereby altering membrane 

permeability. This effect can be toxic to renal tubular cells 

and result in ATN and tubular dysfunction. Tubular dys-

function manifests as renal tubular acidosis (RTA), urinary 

concentration defects, and electrolyte disturbances.63 The 

second mechanism for AKI is renal vasoconstriction. Volume 

depletion can worsen the nephrotoxic effects, so volume 

expansion is standard of care to prevent nephrotoxicity with 

AmB infusions.

Chemotherapeutic agents
Chemotherapeutic drugs play a central role in the treatment 

of various neoplasms. Unfortunately, they can result in 

serious multisystem complications. Nephrotoxicity is com-

mon with many chemotherapeutic agents and can result in 

a wide spectrum of renal complications. An overview of 

chemotherapy-related nephrotoxicity is listed in Table 2. 

While a detailed explanation of all mechanisms underlying 

chemotherapy nephrotoxicity is beyond the scope of this 
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tubules is due to preferential accumulation of the drug in 

proximal tubular cells. This cellular uptake happens via the 

copper transporter-1 and OCT2.64–66 Other platinum-based 

chemotherapeutic agents such as carboplatin and oxaliplatin 

are not as nephrotoxic as cisplatin because of reduced uptake 

via OCT2. In addition to measuring kidney function, serum 

electrolytes should be monitored during cisplatin therapy to 

detect metabolic abnormalities. Some strategies to prevent 

cisplatin nephrotoxicity include intravenous volume expan-

sion, avoidance of other potential nephrotoxins, and limiting 

cisplatin use in patients with preexisting CKD.67 Various 

strategies, such as coadministration of hypertonic saline 

and sodium thiosulfate, have been tried to prevent cisplatin 

nephrotoxicity, but thus far none of them have demonstrated 

definite positive clinical results.67

Ifosfamide
Ifosfamide, a structural isomer of cyclophosphamide, is an 

alkylating agent used in the treatment of solid organ tumors, 

including those affecting children. Like cisplatin, ifosfamide 

also undergoes cellular uptake at the proximal tubule via 

OCT2.68 Once inside the cell, the drug is then metabolized 

into chloroacetaldehyde, which is chiefly responsible for 

cellular toxicity.69 Proximal tubular dysfunction resulting in 

Fanconi-like syndrome is a common manifestation of ifosf-

amide nephrotoxicity. Tubular cell death could also result in 

AKI. It is interesting to note that cyclophosphamide, despite 

its structural similarity, is not transported via OCT2 and 

hence is not associated with similar nephrotoxic events.68 

Prevention of ifosfamide nephrotoxicity is limited to volume 

expansion with saline.

MTX and pemetrexed
MTX is an anti-folate agent widely used as chemotherapy 

against several malignancies. MTX-induced AKI occurs with 

high-dose (1,000–33,000 mg/m2) intravenous use and results 

from crystallization in the renal tubules as well as direct tubu-

lar toxicity resulting in ATN.70 The crystallization is enhanced 

by high urinary MTX concentration, low urine volume, and 

acidic urine pH. Since 90% of MTX is cleared by kidneys, 

the urine concentration of this drug closely follows its serum 

concentration. Preventive strategies include maintaining high 

urine output with intravenous volume expansion and urinary 

alkalinization. Leucovorin rescue is frequently provided to 

prevent systemic toxicity of MTX by restoring the reduced 

folate pool. Once AKI is established, management is usually 

supportive. High-flux hemodialysis efficiently clears MTX 

Table 2 Overview of nephrotoxicity from oncologic drugs

Renal syndromes associated with AKI or CKD
Acute tubular necrosis
• � Cisplatin
• � Pemetrexed
• � Streptozocin*
• � Mithramycin
• � Zoledronate
Acute interstitial nephritis
• � Interferon
• � Allopurinol
Thrombotic microangiopathy
• � Gemcitabine
• � Mitomycin C
• � Anti-angiogenic agents
Crystal nephropathy
• � Methotrexate
Renal syndromes associated with electrolyte disorders
Proximal tubulopathies (often leading to Fanconi syndrome)
• � Cisplatin
• � Ifosfamide
• � Streptozocin*
Hyponatremia (from SIADH)
• � Cyclophosphamide
• �V incristine
Hypernatremia (from nephrogenic diabetes insipidus)
• � Cisplatin
• � Ifosfamide
Hypomagnesemia
• � Cetuximab
• � Cisplatin

Note: *Streptozocin is also referred to as streptozotocin.
Abbreviations: AKI, acute kidney injury; CKD, chronic kidney disease; SIADH, 
syndrome of inappropriate antidiuretic hormone secretion.

Table 3 Renal complications from cisplatin use

• � Acute kidney injury
• � Hypomagnesemia
• � Hypocalcemia
• � Fanconi-like syndrome
• � Hyponatremia from renal salt wasting
• � Distal renal tubular acidosis
• � Thrombotic microangiopathy

article, we will highlight some of the commonly used che-

motherapeutic agents.

Cisplatin
Due to its efficacious tumoricidal activity, cisplatin is a stan-

dard component in the treatment regimens for various solid 

organ tumors. Cisplatin use can result in a variety of clinical 

renal syndromes (Table 3). The main mechanism for causing 

AKI is thought to be a direct cellular toxic injury primarily 

to the proximal tubule. The selective injury to proximal 
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but is limited by postdialysis rebound of MTX levels.71,72 

Newer potential therapies include carboxypeptidase G2 

([CPDG2] glucarpidase), a recombinant bacterial enzyme 

that rapidly hydrolyzes MTX to inactive metabolites. CPDG2 

has been shown to efficiently reduce toxic MTX levels.73 At 

this time, the use of CPDG2 is restricted by high cost and 

limited availability, but, despite these limitations, CPDG2 

is promising therapy as it results in sustained reduction in 

MTX levels. 

Pemetrexed, a structural analog of MTX, is another antifo-

late agent used in cancer treatment. Nephrotoxicity of peme-

trexed is mostly due to direct tubular injury resulting in ATN.74,75 

However, nephrogenic diabetes insipidus (NDI) and distal RTA 

has also been reported following pemetrexed use.75

Targeted cancer therapies
Recent advancements in tumor research have led to the devel-

opment of targeted molecular therapies that allow effective 

cancer therapy with fewer systemic side effects compared 

to conventional chemotherapeutic agents. Anti-angiogenic 

drugs, which include monoclonal antibodies against vas-

cular endothelial growth factor (VEGF) and inhibitors of 

VEGF receptor (VEGF-R), act by disrupting tumor vas-

cular development. Unfortunately, these agents interfere 

with VEGF signaling in normal tissues as well, resulting in 

adverse renal effects. In podocytes, VEGF plays an impor-

tant role in the maintenance of a fenestrated glomerular 

endothelium. Disruption of this pathway by VEGF inhibi-

tion may result in hypertension, proteinuria, and thrombotic 

microangiopathy.76

Cetuximab, a monoclonal antibody against epidermal 

growth factor receptor (EGFR), is another drug used for 

targeted tumor therapy. EGFRs are also present on basolat-

eral membrane of distal convoluted of the distal convoluted 

tubule. Activation of these receptors stimulates magnesium 

reabsorption via TRPM6 channels (transient receptor poten-

tial cation channel, subfamily M, member 6). Thus, inhibition 

of EGFR in renal tissue by cetuximab can result in renal 

magnesium wasting and hypomagnesemia.77

Bisphosphonates
Certain malignancies commonly metastasize to bone and 

stimulate osteoclast-mediated bone resorption. Bisphos-

phonates can inhibit bone resorption, thereby preventing 

or delaying skeletal complications. They are also first-line 

agents in treating tumor-associated hypercalcemia. While oral 

bisphosphonates have no adverse renal effects, nephrotoxicity 

is an important complication with high-dose intravenous 

administration. Intravenous pamidronate use has resulted 

in collapsing focal segmental glomerulosclerosis.78 On the 

other hand, intravenous zoledronate is associated with ATN.78 

The risk of nephrotoxicity correlates with a short infusion 

time and high dosage. Hence, the risk can be attenuated by 

decreasing the infusion rate, adjusting the dose for level of 

renal function, and avoiding the drug in patients with CKD.79 

Ibandronate is another intravenous bisphosphonate, which 

has a better renal side effect profile and should be considered 

as an alternative in patients with renal dysfunction.

Radiocontrast agents
Intravenous iodinated radiocontrast agents are necessary for 

several diagnostic and interventional radiology procedures. 

Contrast-induced nephropathy (CIN), a well-known com-

plication associated with iodinated radiocontrast media, is 

one of the most common causes of in-hospital AKI. CIN 

classically presents with a rise in serum creatinine within 

the first 24–48 hours of exposure. In most cases, the AKI 

is reversible and the serum creatinine returns to baseline 

in 7–10 days.80 There are multiple mechanisms involved in 

causing AKI. Soon after administration, the initial insult is 

triggered by an intense renal afferent vasoconstriction. This 

effect can result in renal medullary hypoxia and subsequent 

ATN. Another mechanism for causing AKI is by osmotic 

nephrosis (see “Osmotic agents”). Several factors contribute 

to the risk and severity of CIN (Table 4).81

Risk of CIN can be attenuated with certain preventive 

strategies. Intravenous hydration before and after radiocontrast 

agent exposure is the cornerstone of preventing the incidence 

of CIN. There is some controversy surrounding the appropri-

ate choice of intravenous fluid. Several randomized trials, as 

Table 4 Important risk factors for contrast-induced nephropathy

Patient factors
• �V olume depletion or low effective circulatory volume
• � Congestive heart failure
• � Preexisting kidney disease
• � Anemia
• � Diabetes mellitus
• � Older age group
Procedure- and contrast media-related risk factors
• �E mergency procedures in critically ill patient
• � Need for circulatory support (intra-aortic balloon pump, vasopressors)
• � Total dose of contrast agent
• � Need for repeated procedures with ,2 days in between
• � High viscosity of contrast agent
• � Intra-arterial administration
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demonstrated in a recent systematic review, have compared 

the benefit of isotonic sodium bicarbonate infusion versus 

isotonic saline infusion. The results are variable and there is 

no definite evidence favoring sodium bicarbonate infusion.82 

Another frequently used prophylactic agent is the antioxidant 

drug N-acetylcysteine (NAC). Results from a recent clinical 

trial concluded that NAC has no benefit in preventing CIN.83 

Meanwhile, other data seems to indicate potential benefit.84,85 

Hence, the available evidence is conflicting, and benefits of 

NAC are yet to be conclusively proven at this time, although 

future trials may provide definite answers.86 Despite the lack 

of evidence, NAC is still widely used, mainly because of its 

favorable drug safety profile, low cost, and ease of administra-

tion. Other preventive strategies that are obvious and should 

be followed whenever possible include avoiding concomitant 

use of nephrotoxic drugs, limiting contrast volume, avoiding 

repeated contrast exposure, and achieving hemodynamic 

stability before the test or procedure.

Immunosuppressive agents
Calcineurin inhibitors
Tacrolimus and cyclosporine are widely used calcineurin inhibi-

tors (CNIs). They are currently considered to be the cornerstone 

of immunosuppressive therapy after solid organ transplanta-

tion. CNIs possess a very narrow therapeutic window and are 

susceptible to multiple drug–drug interactions, which often 

lead to toxic serum drug levels. CNI-related nephrotoxicity 

occurs in multiple ways.87 Acute toxicity is usually related to 

altered renal hemodynamics secondary to afferent arteriolar 

vasoconstriction. Rarely, AKI could also result from thrombotic 

microangiopathy.88 Long-term CNI exposure can cause inter-

stitial fibrosis and tubular atrophy, leading to CKD.89,90

Miscellaneous
Lithium
Lithium has been the mainstay of treatment for patients 

with bipolar disorder for many years. Chronic lithium use 

can result in various forms of nephrotoxicity. The most 

common renal disorder associated with chronic lithium use 

is NDI. Clinically significant NDI can occur in up to 20% 

of patients on lithium. The mechanism for lithium-induced 

NDI is possibly by downregulation of acquaporin-2 (AQP2) 

channels in the collecting duct.91 Long-term lithium therapy 

can also lead to CKD secondary to chronic tubulointer-

stitial nephritis. Rarely, nephrotic syndrome secondary to 

minimal change disease or focal segmental glomeruloscle-

rosis have been shown to occur after lithium therapy.92,93 

Lithium use has also resulted in hypercalcemia secondary 

to hyperparathyroidism.94 The exact mechanism leading to 

hyperparathyroidism is not clear at this time.

Proton-pump inhibitors
Proton-pump inhibitors (PPIs) are currently the mainstay of 

treatment for gastroesophageal reflux disease. They are gen-

erally well tolerated but can, rarely, lead to AKI from AIN.95 

Although many drugs can result in AIN, PPI-induced AIN 

requires special mention because it is one of the most com-

mon causes of AIN in some regions.96 Since PPIs are widely 

prescribed drugs, the incidence of PPI-induced AIN is on the 

rise. As with most cases of drug-induced AIN, withdrawal of 

the drug usually results in recovery.

Acetaminophen
Acetaminophen is probably the most common over-the-counter 

analgesic and antipyretic medication. Acetaminophen overdose 

is well described to cause acute fulminant liver failure. Rarely, 

acetaminophen toxicity can lead to AKI. The incidence of AKI 

in acetaminophen overdose is around 2%.97 The incidence rises 

with severity of the overdose. Rate of AKI is higher in patients 

with concomitant acute liver failure, which may be related 

to hemodynamic instability or development of hepatorenal 

syndrome. AKI can also occur without acute liver failure 

where the mechanism of nephrotoxicity is acute tubular injury 

leading to ATN.97 Treatment is usually supportive in nature. 

It is interesting to note that NAC, which is widely used in the 

treatment of acetaminophen toxicity, prevents liver failure but 

has no effect on incidence or progression of AKI.97,98

HMG-CoA reductase inhibitors
HMG-CoA reductase inhibitors (statins) are generally consid-

ered as the first-line agents in treating hypercholesterolemia. 

A common side effect of statin therapy is statin-induced myo-

pathy, which is reported in up to 7% of patients on chronic 

statin therapy.99 Statin-induced myopathy could range from 

nonspecific myalgia without elevation of creatine kinase 

to life-threatening rhabdomyolysis.99 The occurrence of 

rhabdomyolysis is rare, and one study revealed an average 

incidence of 0.44 per 10,000 person-years.100 The incidence 

is higher in patients on combination therapy with statins and 

fibrates. AKI from statin use is usually in the setting of rhab-

domyolysis; however, a direct tubular toxicity independent 

of rhabdomyolysis has also been reported.101

Osmotic agents
AKI from osmotic agents, frequently referred to as osmotic 

nephrosis or osmotic nephropathy, occurs when renal tubules 
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serum creatinine and BUN is a universal finding in AKI and 

does not reveal the etiology, which can delay or confound 

diagnosis; and 2) by the time a rise in these traditional mark-

ers is noticed, significant renal damage has likely already 

occurred. Recently, a variety of novel biomarkers have been 

identified, which allow early detection of kidney injury.105 

Some biomarkers can also differentiate the location of injury 

(eg, glomerular injury versus tubular injury), thus allowing 

more precise identification of the culprit drug.105 Though 

clinical data are lacking for drug-induced nephrotoxicity, 

in a murine model of nephrotoxic kidney injury, the trans-

membrane tubular protein kidney injury molecule-1 (Kim-1)  

provided greater specificity and sensitivity compared to 

BUN and creatinine in detecting nephrotoxic injury from 

cisplatin, gentamicin, and cyclosporine.106 Ongoing research 

in the area of renal biomarkers may provide us with more 

sensitive and specific tools in the future to help detection of 

drug-induced nephrotoxicity in its early stages, thus allowing 

timely intervention.
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