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Abstract

The standard view in biology is that all animals, from bumblebees to human beings, face a trade-off between speed and
accuracy as they search for resources and mates, and attempt to avoid predators. For example, the more time a forager
spends out of cover gathering information about potential food sources the more likely it is to make accurate decisions
about which sources are most rewarding. However, when the cost of time spent out of cover rises (e.g. in the presence of a
predator) the optimal strategy is for the forager to spend less time gathering information and to accept a corresponding
decline in the accuracy of its decisions. We suggest that this familiar picture is missing a crucial dimension: the amount of
effort an animal expends on gathering information in each unit of time. This is important because an animal that can
respond to changing time costs by modulating its level of effort per-unit-time does not have to accept the same decrease in
accuracy that an animal limited to a simple speed-accuracy trade-off must bear in the same situation. Instead, it can direct
additional effort towards (i) reducing the frequency of perceptual errors in the samples it gathers or (ii) increasing the
number of samples it gathers per-unit-time. Both of these have the effect of allowing it to gather more accurate information
within a given period of time. We use a modified version of a canonical model of decision-making (the sequential
probability ratio test) to show that this ability to substitute effort for time confers a fitness advantage in the face of
changing time costs. We predict that the ability to modulate effort levels will therefore be widespread in nature, and we lay
out testable predictions that could be used to detect adaptive modulation of effort levels in laboratory and field studies. Our
understanding of decision-making in all species, including our own, will be improved by this more ecologically-complete
picture of the three-way tradeoff between time, effort per-unit-time and accuracy.
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Introduction

The conventional wisdom in behavioral ecology and neurosci-

ence is that decision-making performance is the result of a tradeoff

between speed and accuracy, and that animals balance this

tradeoff according to the circumstances of each specific decision

[1]. For instance, bumblebees foraging on artificial flowers

sacrifice speed in favor of accuracy when the cost of picking the

wrong flower type is increased [2] and Temnothorax ants deciding

on a new nest-site sacrifice accuracy in the interests of speed as the

urgency of their decision increases [3]. Evidence apparently

consistent with such a tradeoff has been reported across a very

wide range of systems and scales, including visual discrimination in

rhesus macaques [4], olfactory discrimination in rats [5] and mice

[6], predator avoidance in bumblebees [7], and nest site selection

in honeybees [8].

We suggest that this picture is missing a crucial dimension: the

fact that an animal can vary the amount of effort it expends in
each unit of time. We use the term ‘‘effort per-unit-time’’ to refer

to any investment an animal makes whose effect is to increase the

amount of relevant information it acquires within each unit of

time prior to making a decision. This includes expending

resources on (i) sampling that information from the environment

at a faster rate (for example by moving more quickly through the

environment or by allocating more attention to the task [9]), and

(ii) lowering the frequency of perceptual errors among those

samples (for example by bringing the thermal and metabolic

conditions of the sensory system closer to the optimum, or by

investing in a more accurate sensory system on a developmental

or evolutionary timescale).

Behavioral ecologists have long underlined the importance of

the total expenditure of both time [10] and effort [11] in decision-

making. However, the literature on speed-accuracy tradeoffs has

focused on situations where the level of effort within each unit of

time is fixed, and this has allowed for some simplifying

assumptions such as assuming that time and effort are perfectly

correlated, to the point that the terms ‘‘time’’ and ‘‘effort’’ are

sometimes used interchangeably (in the absence of variable effort

levels this makes sense, because total expenditure on effort

increases linearly with time).
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In nature, however, individuals can vary the amount of effort

they invest in each unit of time. This breaks down the simplifying

assumption of perfect effort-time correlation and requires new

framework for studying how animals make decisions. The total

effort invested in a task is the product of time and effort per-unit-

time, and to a first approximation these can be varied

independently of one another, though undoubtedly a higher effort

per-unit-time will limit how long an animal can search. We do not

consider this higher-order interaction in detail in this paper,

although we do consider its implications in the discussion.

Surprisingly there appears to have been no exploration of the

simultaneous three-way trade-off involving the marginal costs of

both time and effort.

Time and effort per-unit-time are separate units of
investment, and their relative cost will vary

In order to study this three-way tradeoff, we distinguish between

the ‘‘baseline’’ cost of time, and the additional cost of the effort

that is invested within each unit of time.

The ‘‘baseline’’ cost of each unit of time encompasses all those

costs that accumulate at a fixed rate when an individual spends

time on a particular activity, regardless of the level of effort per-

unit-time that it devotes to that activity. These include, for

example (i) the costs associated with predation risk (e.g. in each

unit of time spent out of cover assessing potential food sources

there is a particular probability that the individual will be spotted

and then killed or injured by a predator, which will entail a fitness

cost) and (ii) opportunity costs (e.g. each unit of time allocated to

foraging cannot be spent searching for mates). The baseline cost of

time might increase with the appearance of a predator (increasing

the chance of being predated in each time unit spent out of cover),

or of a potential mate (increasing the opportunity cost).

In contrast, the ‘‘cost of effort per-unit-time’’ is the cost to the

animal of the resources under its control which it devotes to a

particular task within each unit of time. These are costs over and

above the ‘‘baseline’’ cost of time that are incurred as a result of

spending additional energetic resources on a higher sampling rate

or a lower error rate (as explained above). The cost of effort per-

unit-time will therefore increase if a given unit of energetic

expenditure becomes more costly in fitness terms, for instance

because food is less abundant (and hence existing reserves are

harder to replenish) or because the individual’s energetic reserves

are depleted (making the remaining reserves more valuable).

Effort per-unit-time and time are thus two different units of

investment. Distinguishing between them is important. The

baseline cost of time and the cost of effort per-unit-time will both

vary depending on the states of both the animal and its

environment. This variation is unlikely to be perfectly correlated:

for instance, a change in an animal’s food reserves does not

perfectly predict the risk of predation, and the appearance of a

predator does not perfectly predict the value of the animal’s

reserves. There will therefore be some fluctuation in the relative
cost of time and effort.

Substitution between time and effort per-unit-time
should bring a fitness benefit

An animal that can modulate the amount of effort it invests

within each unit of time can take advantage of this fluctuation in

relative cost by substituting between time and effort as one

becomes more expensive relative to the other. For instance when

time is more expensive the animal can respond by spending less

time on the task, but more effort within each unit of time that it

does spend. It is thus ‘‘freed’’ from the constraints of the simple

speed-accuracy trade off. It does not need to accept the same

decline in accuracy that an animal facing that two-way tradeoff

would face if it reduced its investment of time to the same degree,

because it can increase the effort it expends in each of the

remaining units of time, boosting its accuracy. This brings a fitness

advantage. Similarly, when effort per-unit-time is more expensive

the animal can respond by spending more time on the task, but

investing less effort in each unit of that time, which should also

bring a fitness advantage.

To take a hypothetical example, imagine an animal leaving its

nest unguarded to gather a food item from one of two alternative

patches. Let us assume that it gains a fitness benefit if it accurately

chooses the richest patch. If a nest predator appears nearby, time

spent foraging will become more expensive as the nest is more

likely to be discovered and depredated in the parent’s absence.

The optimal strategy for an individual limited to a simple speed-

accuracy trade-off will be to spend less time gathering information

about the two patches and to return to the nest more quickly,

accepting the reduction in accuracy that this will entail but

improving the chance of preventing nest predation.

However, the appearance of the predator does not affect the

marginal cost of effort, for instance the energetic cost of faster

neural processing to reduce perceptual errors, or of faster

movement between the patches to gather samples more quickly.

Both of these factors could increase the amount of information the

animal gathers about the patches in a given period of time. The

optimal strategy for an animal that can modulate effort in this way

will be to spend less time in assessing the two patches, but also to

expend more effort in each of those units of time. It will thereby

maintain better accuracy than an individual limited to a simple

speed-accuracy trade off, and will therefore gain the fitness benefit

of foraging from the richest patch more often.

The model
In this paper we adapt a canonical model of statistical decision-

making, the sequential probability ratio test (SPRT) [12,13], to

demonstrate that the ability to modulate effort levels does indeed

confer a fitness advantage, and therefore that we should expect this

ability to have evolved in nature. In the model, we examine effort

of the second kind defined above: the investment an animal can

Author Summary

Efficient decision-making is vital to the lives of all animals,
but the underlying principles of how they achieve this are
not yet fully understood. Researchers studying decision-
making have generally assumed that animals balance a
two-way trade-off between speed and accuracy: the more
time they spend gathering information, the more accurate
their decisions will be, but the greater the cost they have
to pay. We suggest that this picture is missing a crucial
component: the effort that animals spend on gathering
information within each unit of time. This is important
because an animal that can change the amount of effort it
invests per-unit-time can use this ability to maintain the
accuracy of its decisions even when it reduces the amount
of time it spends on them, and can therefore gain a fitness
advantage. We predict that this ability to change effort
levels should therefore be widespread in nature. This
updated view of a three-way trade-off between speed,
effort per-unit-time and accuracy will help behavioral
ecologists, neuroscientists, economists and psychologists
to understand decision-making better, and may also lead
to the development of more efficient control algorithms
for robot decision-makers.

Speed, Effort per-Unit-Time and Accuracy
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make to reduce the perceptual errors that pollute the information

it gathers before making a decision. Since both kinds of effort have

the same effect of increasing the rate at which the individual

gathers information, this choice does not affect the conclusions we

can draw from our results and they apply equally to effort of the

first kind (sampling rate).

Individuals in our model are tasked with making a binary choice

about some (initially unknown) state of their environment, for

instance whether a foraging patch is fruitful or not. They gather

noisy evidence from their environment, and use the sequential

probability ratio test (SPRT) [14] to make their decision.

The decision threshold an individual uses in the SPRT is

defined by the value of the parameter h (increasing h results in an

increased investment of time spent gathering information, other

things being equal). Its effort level is controlled by the parameter w
(increasing w results in an increased investment of effort per-unit-

time). See ‘‘Methods’’ for a fuller explanation of the operation of

these. A unit of time spent gathering evidence imposes a fitness

cost of ctot~ctzce, where ct is the baseline cost per-unit-time of

time spent gathering information and ce is the additional cost of

effort per-unit-time. Making a correct decision brings a fitness

benefit of b (measured in fitness units). We define the fitness of an

individual as the benefit it obtains across all the decisions it makes,

less the total cost it incurs in making those decisions (see equation

(8) in ‘‘Methods’’).

Results

The optimal values of the decision-making parameters
depend on the relative costs of time and effort

We calculated the fitness of individuals (equation (8)) across a

range of h and w values, and examined how the optimum values

moved as we changed Ct, the baseline cost of time. All the fitness

landscapes we examined had a single maximum point (e.g. Fig. 1)

suggesting that there is a single optimum decision threshold, h, and

effort level, w, for each set of environmental parameter values. As

we increased the cost of time, the optimal value of the decision

parameter, h (which controls the decision time, other things being

equal) decreased, while the optimal effort level, w, increased

(Fig. 1a–c). This is because when the baseline cost of time is high,

it pays to spend less time gathering evidence, but more effort

ensuring that evidence that you do gather is error-free.

Individuals that can control their investment of effort
have higher fitness when relative costs change

Using these fitness landscapes, we then defined two groups of

individuals. Type 1 could adapt both their threshold parameter h
and their effort level w to the environmentally-determined optima,

while Type 2 had a fixed effort level, with their value of w set to the

environmentally-determined optimum for ct~20. We computed

the optimal values of the free decision parameters for different

values of ct, and compared the proportion of decisions that the two

types made correctly (pc), their mean decision time (dt) and their

fitness (F ). Individuals of Type 1 made more correct decisions than

those of Type 2 at both ct~2 and ct~200 (Fig. 2a). They also

increased their decision time more dramatically when the cost of

time was decreased, and reduced it more when the cost was

increased (Fig. 2b). They also had higher fitness (Fig. 3). They

achieved this fitness gain because they substituted effort for time (or

vice versa) as their relative costs changed. The central result that we

seek to illustrate is shown in Fig. 4: as the baseline cost of time

increases, individuals not only reduce their mean decision time, but

also increase their mean expenditure on effort per-unit-time, ce.

This option is not available to individuals with a fixed effort level,

who cannot make the substitution between effort and time.

Discussion

Our results provide a specific example that illustrates the

broader conceptual point made in the introduction: an optimal

decision-maker that can modulate the effort it invests per-unit-time

will substitute effort for time when the relative cost of time

increases, and this will give it a fitness advantage over individuals

that cannot do so. We have shown that this effect is produced in

Fig. 1. The optimal decision threshold and effort parameters for different values of the cost of time. Each point in these fitness
landscapes shows the mean fitness of individuals using a particular pair of values of h, the decision threshold, and w, the effort parameter (which
denotes the probability of making a perceptual error). We define fitness as net gain: deciding correctly brings a benefit, but the time and effort
involved in each decision impose a cost (see Methods for details). The topology of the fitness landscape and the optimal values of h and Q (black
circles) vary as we change the baseline cost of time, ct . In panel A ct~2, in panel B ct~20 and in panel C ct~200. The optimum value of the decision
threshold (h) decreases as the cost of time rises, because individuals can no longer afford to collect so much evidence before making a decision. At
the same time, the optimum value of the effort parameter (Q) increases, as individuals increase the investment they make to eliminate the perceptual
errors in their sampling. Other parameter values: b~10000, c~0:9, g~0:5, k~0:1, n~7:5|106 (see Methods for details).
doi:10.1371/journal.pcbi.1003937.g001
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Fig. 2. Comparison of individuals with and without the ability to modulate effort. Type 1 (red bars) can vary its level of effort (which it
controls through the parameter w) whereas type 2 (blue bars) cannot do so (it has a fixed value of w). Type 2 has the value of w optimal for one
particular value of the cost of time; in our example this is ct~20. A Both types have the same performance under baseline regime of ct~20, but
when ct increases or decreases, type 1 makes a greater proportion of correct decisions than type 2. B If ct decreases, type 1 increases its decision time
(td ) to a greater extent than type 2, and if ct increases, it reduces its decision time to a lower level than the type 2. These results are from a very large
number of simulations, so the error bars on these values are vanishingly small and all differences are significant. Other parameter levels: b~10000,
c~0:9, g~0:5, k~0:1, n~7:5|106 (see Methods for details and calculations).
doi:10.1371/journal.pcbi.1003937.g002

Fig. 3. The fitness advantage of individuals who can modulate effort. When the cost of time (ct) is raised or lowered from its baseline value,
individuals of Type 1, who can control their level of effort, have a fitness advantage over individuals of Type 2, who cannot do so. Type 2 has an effort
level adapted to the baseline regime under which it evolved (ct~20). Therefore at ct~20, the fitness of the two types is exactly equal and the
Relative Fitness Advantage is zero. Other parameter levels: b~10000, c~0:9, g~0:5, k~0:1, n~7:5|106 (see Methods for details).
doi:10.1371/journal.pcbi.1003937.g003

Speed, Effort per-Unit-Time and Accuracy

PLOS Computational Biology | www.ploscompbiol.org 4 December 2014 | Volume 10 | Issue 12 | e1003937



the dynamics of the SPRT when the relative costs of time and

effort are varied and individuals are allowed to vary their effort

levels.

Investments of time and effort per-unit-time both lead to the

same benefit: a greater number of accurate statistical samples and

therefore a more accurate estimate of the state of the world and a

more accurate decision. If the cost of a unit of time varies

independently of the cost of a unit of effort, individuals who can

substitute one currency for the other are able to exploit whichever

one is cheapest. They will substitute effort for time when the

baseline costs of time become relatively more expensive, and

substitute time for effort when effort becomes more expensive

(Fig. 4 shows this effect in the context of our model). In contrast,

individuals limited to fixed effort level lack this flexibility. Because

they cannot substitute into the cheaper currency, accuracy for

them comes at a higher price. They therefore have lower fitness.

We hypothesize that control of effort per-unit-time will

therefore be common in nature and suggest various avenues for

experimental work on this topic (see Box 1 for our empirical

predictions). It is notable that equivalent substitutions are well

studied in other fields. For instance there is an interesting analogy

between the speed-effort-accuracy tradeoff we suggest here and

the theory of labor-capital tradeoffs in economics [15]. The role of

variable effort in biology may have been overlooked until now

simply because the cost of effort per-unit-time varies less in the

laboratory than it does in animals’ natural environments.

Fig. 4. Effort and time are substituted for one another as their relative costs change. This figure shows our central result. The black circles
show the mean expenditure of individuals of Type 1 on time and effort per-unit-time as the value of ct varies across two orders of magnitude. As the
fixed costs of time (ct) increase, optimally-adapted individuals substitute expenditure on effort per-unit-time (ce), which is under their control, for
expenditure on time (shown by the decrease in the total decision time td ). Where time is expensive, they spend more on effort and less on time, and
where time is cheap, they spend more on time and less on effort in each unit of time. This effect is the behavioral manifestation of the changes in the
underlying decision parameters h and w, and could be measured experimentally. Other parameter levels: b~10000, c~0:9, g~0:5, k~0:1,
n~7:5|106 (see Methods for details).
doi:10.1371/journal.pcbi.1003937.g004
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We expect natural selection to favor the evolution of mecha-

nisms to modulate effort per-unit-time when four conditions are

met. First, we note that there is likely to be a baseline cost of

maintaining the ability to modulate effort. This ability will

therefore be favored whenever a species’ environment varies

enough that the benefits of the flexibility that ability brings

outweigh this baseline cost. This general problem is analogous to

others that are well understood. For instance, insect species with a

distinct dispersal morph face a similar question: is environmental

variability great enough that the benefits of developing dispersal

ability outweigh the fixed costs involved (let alone the variable

ones) [16]? We predict that species that occupy niches where there

is relevant variation in the cost of time will be more likely to have

evolved the ability to modulate their effort levels.

Second, the correlation between variation in the marginal

baseline cost of a unit of time and variation in the marginal cost of

a unit of effort per-unit-time must be less than 1. Where this is the

case, optimally-adapted animals will be able to benefit by

responding to rising time costs by substituting into effort and vice

versa. In contrast, were the correlation perfect (equal to 1), the

costs of time and effort could not vary relative to one another and

so there can be no benefit from switching from one to the other.

This is not the same as saying that the total expenditures of time

and of effort are uncorrelated. They are obviously tightly

correlated. This condition concerns variation in the costs per unit

of time, not the total costs summed over time.

At present there appears to have been no explicit empirical

investigation of the relationship between variation in the marginal

cost of time and variation in the marginal cost of effort per-unit-

time (Table 1 gives examples of these costs and possible sources of

their variation). It seems likely that variation in the marginal costs

of time will be only weakly correlated with variation in the

marginal costs of effort. There is no literature that suggests, for

example, that an increase in the probability of being discovered by

a predator in any given unit of time predicts the cost of a unit of

energetic expenditure. Of course the presence of a predator is

likely lead to a greater total expenditure of energy (e.g. through

fleeing or deterrence) but this is not the same as suggesting that it

Box 1. Empirical predictions.

Behavioral Timescale
We predict that levels of effort per-unit-time will vary on a
behavioural timescale in systems including the following:

Individual decisions

1. Mammalian brains: changes in fMRI signals of neural
activity reflect the energy consumption of different brain
regions [20], and fluctuations in neural activity account for
differences in response speed in decision tasks [21].
Prediction: fMRI signals in brain areas contributing to a
decision will be stronger if the cost of time is increased.

2. Bumblebees: bumblebees can increase their temperature
through non-shivering thermogenesis [2,22]. Increased
temperature is known to accelerate the response time of
photoreceptors in other insects [23], and may offer a way
for bumblebees to enhance their perceptual accuracy.
Prediction: bumblebees foraging in low light will invest
more energy in non-shivering thermogenesis when the
cost of time is increased, for instance by increasing
perceived predation risk.

3. Human attention: attention is a potentially useful metric of
effort in humans. One common measure of how much
attention human subjects are paying to decision tasks in the
laboratory is how easily distracted they are. We expect
attention levels, and thus also subjects’ susceptibility to
distraction, to vary in the circumstances we have predicted
for effort more broadly. Prediction: human subjects who are
given less time to complete a detection task will be less easily
distracted by external stimuli, and those given a task that can
be more efficiently solved using multiple senses will respond to
distractions operating in fewer sensory modalities.

Collective decisions

4. Eusocial insects: the number of scouts sent out by
honeybees [8] or Temnothorax ants [3] looking for a new
nest site is a measure of effort at the colony level. The
larger the number of colony members employed as scouts,
the greater the opportunity cost the colony may have to
pay in terms of missed foraging opportunities or colony

maintenance tasks not done. Prediction: ant colonies will
allocate more individuals to scouting when the cost of
delay is increased, for instance by warming their old nest
site so that their brood are in danger of desiccation.

Social decisions

5. Animal contests: in many species, animals decide the
outcome of ritualized contests by a process of ‘‘mutual
assessment’’ which is analogous to statistical decision
making. They estimate one another’s ‘‘strength’’ from
information revealed by their aggressive interactions and
the fight ends when one individual is sure enough that it is
the weaker of the two that its optimal strategy is to stop
fighting. Fights often escalate from cheap displays that
reveal little information to more dangerous (and hence
costly) physical interactions that reveal more information
[24–26]. Prediction: individuals will escalate to the more
informative physical interactions faster and fights will be
decided sooner when the cost of time spent fighting is
increased. For instance, contests between male zebrafish
(Danio rerio) escalate from lateral displays to physical biting
[27], and we predict that this escalation will occur more
quickly in the presence of cues indicating the proximity of a
predator.

Evolutionary Timescale
We also predict that variable levels of effort per-unit-time will
be found on an evolutionary timescale, for example:

6. Eyes: Insects’ compound eyes have excellent temporal but
poor spatial resolution. They therefore integrate visual
information over time in order to build up detailed spatial
pictures [28]. In contrast, vertebrate eyes have excellent
spatial resolution even with very short sample times but
they require a much greater investment of developmental
resources [29]. Prediction: species that occupy niches
where time is more expensive will have eyes with better
spatial resolution (for example by having more omatidia),
controlling for phylogeny and other ecological factors that
affect their visual needs.

Speed, Effort per-Unit-Time and Accuracy
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would result in an increase or decrease in the fitness cost of

spending a single unit of energy. In any case, even if there is a non-

zero correlation between changes in the cost of time and the cost

of effort per-unit-time, there will be a fitness benefit to substituting

between time and effort per-unit-time wherever that correlation is

less than perfect.

Third, there must be diminishing marginal returns to increasing

investment in effort per-unit-time [17]. Diminishing marginal

returns are ubiquitous in disciplines concerned with individuals’

investment decisions such as biology and economics and would

obviously be expected here. However it will be useful to test the

magnitude of these diminishing returns explicitly in the case of

effort per-unit-time, in order to verify that the relationship

between cost and error is concave over the behaviorally relevant

range and to parameterize our model.

Fourth, the fraction of the sampling error that can be eliminated

by increasing effort per-unit-time must be sufficiently large. The

noise in the samples an animal gathers is due both to the intrinsic

variability of the environment and to the error introduced by its

perceptual systems. If the first source of error swamps the second,

the potential gains from increasing effort per-unit-time may not

outweigh the costs, in which case we would not expect animals to

vary their effort levels. Again, the relative magnitudes of these

sources of noise have not yet been measured, and this is an

interesting area for future work. We predict that species found in

environments in which the signals they use for decision-making are

noisier will be less likely to have evolved the ability to vary their

effort levels. This condition would obviously not apply where the

animal increases its effort by gathering more samples per unit time,

rather than by reducing the errors in those samples.

Decision-making is central to the ability of all animals to survive

and reproduce. The current view in behavioral ecology and

neuroscience is that animals face a two-way tradeoff between

speed and accuracy [1,2,18]. We suggest that effort per-unit-time,

previously neglected, should be added as a third dimension in this

tradeoff. If animals can adjust not only how long they spend

gathering information prior to making a decision but also the effort

they invest on gathering that information within each of those

units of time, this can lead to an increase in both their accuracy

and their fitness in the face of a changing environment. Current

empirical evidence of the link between speed and accuracy in a

wide range of species is consistent with this updated paradigm [3–

8]. However, additional experiments comparing wild-type indi-

viduals with others that have had the hypothesized mechanisms of

effort modulation ‘‘knocked out’’ would help to determine whether

animals adaptively modulate their effort levels. Testing the

hypothesis that animals have evolved to balance a three-way

trade-off among speed, effort per-unit-time and accuracy will

deepen our understanding of decision-making in all species,

including our own, and may lead to the development of more

efficient control algorithms for artificial decision-makers.

Methods

The sequential probability ratio test
In our model, individuals use the sequential probability ratio test

to choose between two hypotheses about their environment [12].

We use a standard choice task in which an individual must

decide whether some object is in state 1 or state 0. In order to

inform this decision, the individual gathers a string of samples

from the object. These samples are themselves either 1 s or 0 s

with a probability that depends on the state of the object. The task

here is to determine which of two known distributions the evidence

is drawn from. This allows us to isolate the speed-effort-accuracy

tradeoff from other factors. A more complex decision task that

could also be used in this context is the multi-armed bandit

problem. There, an individual is faced with K levers each

providing a different (unknown) distribution of rewards when

pulled, and its goal is to maximize the overall payoff. In the bandit

problem the speed-effort-accuracy tradeoff is overlain with a

second tradeoff between exploration (trying different arms) and

exploitation (sticking with the arm believed to give the best payoff)

[19].

In order make this abstract choice task easier to explain, let us

imagine it within an imaginary ecological situation: individuals are

foraging in a season where trees may be one of two types, good or

bad (i.e. 1 or 0). They can gather evidence regarding the state of a

given tree by examining the fruit husks lying beneath it. An

individual will benefit if it can correctly decide whether a tree is

good or bad before climbing up to the canopy to forage, but there

is a cost to spending time and effort examining husks.

Of the fruit husks lying below a good tree a proportion c are a

deep green color, indicating that they are fine, and contained

nutritious material. The others are paler and drier, indicating that

the fruit inside was rotten. Under a bad tree, a proportion gvc of

the husks are from good fruit. Individual animals know the values

of c and g, but not the state of the tree in front of them (which in

our simulations is good 50% of the time and bad 50% of the time,

chosen at random). Their task is to decide the tree’s type.

Each husk therefore constitutes a piece of evidence that the

animal gathers, ei, that has value 1 if the husk is fine and 0 if it is

rotten. The individuals then apply the sequential probability ratio

test to the evidence. Each piece of evidence is converted into a

weight wi , which is the log-likelihood ratio in favor of the

hypothesis that the tree is good (h1) versus bad (h2). If the husk was

observed to be fine, then the weight of evidence is given by

Table 1. Marginal costs of time and effort per-unit-time and possible sources of variation.

Example of marginal cost Sources of variation in that cost

Time The additional risk in each unit of time of being discovered
by a predator and killed or injured.

Presence or absence of the predator nearby.

The opportunity cost of not engaging in other fitness
enhancing activities, for instance finding or attracting mates.

Presence or absence of a potential mate nearby.

Effort per-unit-time The energetic costs of more acute sensory apparatus and/or
faster neural processing (to process samples more accurately
and quickly).

The marginal cost of expending energy will vary depending on the availability
of food or oxygen from the environment, and the status of the animal’s
internal energy reserves.

The energetic costs of faster physical movement (to gather
samples more quickly).

doi:10.1371/journal.pcbi.1003937.t001
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wi~log
P(ei~1Dh1 : good)

P(ei~1Dh2 : bad)
~log

c

g
ð1Þ

and if it was observed to be rotten, then the weight of evidence is

given by

wi~log
P(ei~0Dh1 : good)

P(ei~0Dh2 : bad)
~log

1{c

1{g
ð2Þ

These weights are summed over time to form the individual’s

decision variable. We measure time in terms of the number of

pieces of evidence observed. After n pieces of evidence, the

decision variable is given by

DVn~
Xn

i~1

wi ð3Þ

The individual’s decision thresholds are determined by the

parameter h. This parameter is bounded so that 0:5vhv1. An

individual decides that a tree is good if

DVn§log
h

1{h
ð4Þ

and decides that the tree is bad if

DVnƒlog
1{h

h
ð5Þ

The closer h is to 1, the higher the threshold, and (with other

parameters held constant) the more pieces of evidence the animal

will gather before making a decision.

Costs and benefits
Individuals make errors of perception, misjudging the state of a

fraction of the husks they observe. The amount of effort they invest

in assessing each husk is given by the parameter w. In the real world,

effort might include the level of visual or olfactory attention used to

examine a husk, the energetic cost of picking it up to assess its mass

and the risks associated with tasting it. The value of w is the

probability of correctly observing the state of a piece of evidence.

Each sample ei takes the true value of husk i with probability w,

and with probability 1{w the value of ei is chosen at random

from(fine,rotten). The value of w is bounded at 0 and 1.

Individuals know their own level of error, and therefore use the

adjusted parameters ca and ga in the SPRT, where

ca~wc{0:5(1{w) and ga~wg{0:5(1{w). Acquiring each

sample imposes a cost ctot~ctzce, where ct is the cost of the

time taken to gather a sample and ce is the additional cost of the

effort invested in ensuring that sample is accurate.

The value of ct is determined by the individual’s environment (so

in our model we set it exogenously). In contrast, ce is a function of

the amount of effort per-unit-time. We assume diminishing returns

to increasing investment of effort and use a hyperbolic function for

the relationship between ce and w. The probability of making an

error-free observation, w, is given as a saturating function of ce:

w~1{
1

(1zkce)
: ð6Þ

where k is a parameter that determines how quickly the reduction in

error saturates with increasing expenditure on effort. This can be

rewritten to give an expression for the cost ce as a function of w:

ce~
1

k

1

1{w
{1

� �
, ð7Þ

In any given environment, the average cost an animal pays in order

to reach a decision is therefore a function of the two evolving

decision parameters, w and h. Between them, these affect the cost of

examining each husk, and the total number of husks examined

before a decision is reached.

Individuals gain a benefit b if the decision they make about the

state of the tree they are under is correct.

Calculation of optimal strategies
The optimal strategies were found approximately through use of

a discrete grid of values for w and h. We simulated the mean

decision time, td , and the proportion of correct decisions, pc, using

an ensemble of n stochastic realizations of the model for each pair

of values on this grid. We then calculated absolute fitness, F , as

F~pcb{tdctot: ð8Þ

The optimum strategy for a given set of environmental parameters is

given by the pair of values of w and h that led to the greatest fitness.

Supporting Information

S1 Dataset Simulation code and output. This dataset

contains: (i) C++ code used to simulate tdand pc for a discrete grid

of h and w values; (ii) tab-delimited text files containing the output of

those simulations; and (iii) matlab code used to calculate the

optimum h and w values for different levels of ct and to plot figs. 1–4.

(ZIP)
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