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Abstract

Reconstructing regulatory and signaling response networks is one of the major goals of systems biology. While several
successful methods have been suggested for this task, some integrating large and diverse datasets, these methods have so
far been applied to reconstruct a single response network at a time, even when studying and modeling related conditions.
To improve network reconstruction we developed MT-SDREM, a multi-task learning method which jointly models networks
for several related conditions. In MT-SDREM, parameters are jointly constrained across the networks while still allowing for
condition-specific pathways and regulation. We formulate the multi-task learning problem and discuss methods for
optimizing the joint target function. We applied MT-SDREM to reconstruct dynamic human response networks for three flu
strains: H1N1, H5N1 and H3N2. Our multi-task learning method was able to identify known and novel factors and genes,
improving upon prior methods that model each condition independently. The MT-SDREM networks were also better at
identifying proteins whose removal affects viral load indicating that joint learning can still lead to accurate, condition-
specific, networks. Supporting website with MT-SDREM implementation: http://sb.cs.cmu.edu/mtsdrem
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Introduction

The relative ease of high-throughput data collection enables

profiling a system of interest in many ways with complementary

assays, at different times, and under various perturbations to

compare and contrast the outcomes. The resulting computational

challenge is to develop analysis strategies that maximally leverage

these related experiments to improve our ability to reconstruct

biologically accurate models.

Even when applied to study the same condition, different types

of high-throughput data (e.g., functional genetic screens and gene

expression) often times implicate largely disjoint groups of genes or

proteins because each experiment highlights different facets of the

biological processes and networks involved [1]. Consequently,

there has been extensive research to develop techniques for

integrating one or more types of condition-specific high-through-

put data with general purpose physical interaction networks, such

as protein-protein interactions (PPIs), to reconstruct signaling and

regulatory networks [1–3] (see [4] for a review). These methods

discern how the genes identified in complementary types of

experiments relate to one another in a network context and

propose new condition-specific regulators that are not directly

observed to be relevant in the original data but form connections

in the inferred networks.

Due to the dynamic nature of biological systems, especially

those controlling stimulus response and development, it is critical

to observe genome-wide changes over time [5]. As reviewed in [5],

there are now computational approaches that exploit the unique

structure in temporal datasets (e.g., time series gene expression) to

model dynamic processes and reverse engineer regulatory

networks [6,7]. Recent algorithms integrate temporal data and

PPI networks to improve signaling pathway prediction by

capitalizing on the dynamic information [8,9].

Despite advances in modeling the temporal dimension and

different types of assays per condition, there has been considerably

less progress made for datasets that contain multiple related

perturbations or stimuli. Typically each condition is analyzed in

isolation, and a post-processing comparison of the independent

models is required to draw conclusions across conditions [9,10].

Individual models of related conditions are required to appreciate

the unique aspects of each, but building these models indepen-

dently ignores that the observations may be generated from

structurally similar networks. As an example, consider the case of

host gene expression following virus infection. Although different
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viruses do not have identical effects on the host (hence the gene

expression patterns are unique to each virus), they also commonly

affect a similar core set of host proteins. These include Toll-like

receptors (TLRs), which recognize a large number of RNA viruses

and activate a downstream pathway that leads to common

expression response [11,12], and other elements of innate immune

response pathways [13]. Similarly, in yeast several different types

of stresses activate a large common set of genes (termed the

environmental stress response genes [14]), and additional exam-

ples abound in other species.

When modeling such responses, one may be able to take

advantage of these commonalties without sacrificing the ability to

reconstruct individual models for each response. This type of

machine learning is termed Multi-task learning [15] and usually

applies to cases where one learns models for different problems

that share information and/or parameters. A key advantage of

such framework is the ability to utilize additional data from related

conditions when reconstructing networks for a specific response.

This is especially important when reconstructing biological

response networks from high-throughput data because the number

of parameters to fit is very large relative to the number of samples.

In addition, extensive data from a well-characterized condition

may be able to compensate for sparse data in a similar, less-

understood condition.

Multi-task learning has been applied to other problems in the

biological domain including classification [16], genome-wide

association studies [17,18], protein structure [19], and pairwise

protein-protein interaction prediction [20,21]. Multi-commodity

flow [22] and iterative applications of a prize-collecting Steiner

forest algorithm [23] have been used to simultaneously reconstruct

related response or disease networks, but these methods do not

employ multi-task learning. In addition, these previous approaches

operate on static data and cannot account for the dynamic

behaviors that are crucial for understanding many types of

stimulus responses.

Here we present the Multi-Task Signaling and Dynamic

Regulatory Events Miner (MT-SDREM), which uses multi-task

learning to reconstruct response pathways and temporal regula-

tory networks. MT-SDREM is equipped to capitalize on the many

dimensions in complex systems biology datasets by integrating

different types of experimental data in each condition, explaining

the time-dependent elements of a response (as observed in gene

expression data), and constraining the inferred networks to be

similar for related conditions or perturbations. Like its single-

condition predecessor [8], MT-SDREM iterates between finding

pathways that connect the upstream proteins that directly interact

with an external stimulus (called source proteins) and the

downstream transcription factors (TFs) that regulate the response

and learning dynamic regulatory networks activated by these TFs.

The learning process involves the simultaneous reconstruction of

several such networks. While a different network is learned for

each condition, the joint learning framework allows sharing and/

or constraining parameters across the different networks which

helps overcome the overfitting problem that is often an issue when

reconstructing biological networks.

We demonstrate how MT-SDREM can be used to gain insights

into a clinically-relevant problem: characterizing the human

response to viral infection. In particular, we explore the differences

between mild, seasonal strains of the influenza A virus, which are

typically H1N1 or H3N2 strains [24], and lethal, pandemic strains

such as the H1N1 1918 Spanish flu and highly pathogenic avian

H5N1 strains. Influenza A strains are subtyped and named by

their hemagglutinin (HA) and neuraminidase (NA) proteins.

Although there are presently 18 known HA subtypes and 11 NA

subtypes [25] only a fraction of these have have infected humans.

Previous studies have characterized some of the differences

between seasonal and pathogenic strains. Seasonal H1N1 and

H3N2 and highly pathogenic H5N1 influenza strains infect

macrophages at similar rates, but H3N2 and H5N1 causes

apoptosis more rapidly than H1N1 [24]. H1N1 also lead to

weaker induction of MAPK signaling pathways than the H3N2

and H5N1 strains [24]. Genomic comparisons of human and

avian influenza strains identified 52 species-associated positions

that could potentially enable an avian strain to cross over to

humans if mutated [26]. Influenza strains also vary in the cells and

tissues they infect [27,28] with highly-virulent strains causing more

widespread inflammation, including in the alveoli [27]. Highly

pathogenic strains have been shown to induce a stronger

inflammatory cytokine response than seasonal influenzas [28]

and the host inflammatory response is often more deadly during

infection than the pathogen itself [29]. However, much remains

unknown about the host factors that are required for viral

replication or to mount cellular defenses.

We study three strains of the influenza A virus — seasonal H1N1,

seasonal H3N2, and highly pathogenic avian H5N1 — to explain

how common host proteins react to the viral infection in a similar

manner despite the differences in the temporal transcriptional

programs that are activated. The MT-SDREM networks identified

many known regulators of influenza response and also suggested

putative novel regulators. Because the responses are jointly modeled

using the multi-task setting, MT-SDREM is able to correctly

recover TFs that are important drivers of the immune response that

are missed when each viral strain is analyzed independently [10]

and by previous methods for combining gene expression data across

experiments. In addition, MT-SDREM networks are more

predictive of host genes that are required for viral replication, a

potentially clinically-relevant phenotype [29], than corresponding

independent models or gene prioritization algorithms.

Results and Discussion

MT-SDREM simultaneously infers signaling and dynamic

regulatory networks for multiple related conditions. It extends

Author Summary

To understand why some flu strains are more virulent than
others, researchers attempt to profile and model the
molecular human response to these strains and identify
similarities and differences between the resulting models.
So far, the modeling and analysis part has been done
independently for each strain and the results contrasted in a
post-processing step. Here we present a new method,
termed MT-SDREM, that simultaneously models the re-
sponse to all strains allowing us to identify both, the core
response elements that are shared among the strains, and
factors that are uniquely activated or repressed by
individual strains. We applied this method to study the
human response to three flu strains: H1N1, H3N2 and H5N1.
As we show, the method was able to correctly identify
several common and known factors regulating immune
response to such strains and also identified unique factors
for each of the strains. The models reconstructed by the
simultaneous analysis method improved upon those
generated by methods that model each strain response
separately. Our joint models can be used to identify strain
specific treatments as well as treatments that are likely to be
effective against all three strains.

Multi-Task Learning of Signaling and Regulatory Networks
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the SDREM tool [8,10] which discovers signaling pathways by

orienting edges in protein interaction networks. To demonstrate

the performance of such multi-task network learning we looked at

data from 3 different flu viruses: H1N1, H3N2, and H5N1.

For each of these viruses we obtained time series gene

expression measurements of cells infected with the virus. For

H1N1 the data is from [30] and contains 10 time points. For

H5N1, we obtained data from [31] with 5 time points, and the

H3N2 data from [32] had 6 time points. In addition, for each of

these viruses we obtained a set of sources (host proteins interacting

with the virus proteins) from mass spec experiments. Data for

H1N1 is from [33] and literature [30,34] and contains 200 human

proteins that were experimentally determined to interact with

H1N1 proteins. Data for H3N2 is from [33] and consists of 153

host proteins and source data for H5N1 is from [33] and literature

[34–39] and consists of 41 sources.

MT-SDREM reconstructed networks
Joint signaling network. Figure 1 presents the joint signal-

ing network learned for the three conditions (Methods). The top

layer (nodes colored in red) are sources for at least one of the

conditions. The bottom layer (nodes colored green) are TFs

identified in at least one of the conditions, and the middle layer

(blue nodes) are signaling proteins linking the sources and TFs in

the networks. We colored each node with multiple colors

depending on the condition for which it was identified as a top

network protein (Methods). The lightest shade for each color

represent nodes from the H1N1 reconstructed network, the

darkest is from the H5N1 network and the middle shade is for the

H3N2 network.

While sources (red shades) are provided as inputs, all other

nodes were automatically identified by MT-SDREM. Several of

the proteins identified in multiple networks, both as intermediate

and as TFs are well known immune response regulators. For

example, we identify a pathway from UBE2I (a source for both

H1N1 and H3N2) to SUMO1 (signaling protein identified for all

strains). SUMO activates E1 and transfers it to conjugating

enzyme E2. Then UBE2I interacts with and transfers SUMO to a

target viral protein. Indeed, it has been recently shown that

SUMO interacts with the key flu protein, NS1, via UBE2I [40]. In

addition, TRAF6, part of the TRAF (TNF receptor associated

factor) family of proteins, is identified as an important protein for

H5N1. Pro-inflammatory cytokines including TNF-a are known to

be hyper-induced in H5N1 infected macrophages [41].

We also identify several TFs as common amongst the 3

conditions. SMAD4 is present in all 3 conditions. The SMAD

family of TFs is part of the TGFb pathway which is responsible for

regulating macrophage activation and proliferation of T cells [12].

STAT1 and JUN, both key immune response regulators, are also

identified in all 3 conditions. We also identify NR3C1 which

produces the GR protein that is known to inhibit T and B cells as

well as suppressing phagocyte function [42] (this could be a viral

strategy to reduce the effects of immune response). Interestingly,

we identify the AKT1 gene in all 3 conditions, part of the PI3K/

AKT pathway, which has recently been shown to be activated by

the influenza A virus’s NS1 protein [43]. We also identify the

PPARG TF which has been linked to immune response by

regulation of immune and inflammation related genes [44]. Other

TFs belonging to the AP-1 TF complex are also identified for

various conditions – ATF2 for H1N1 and H5N1, and FOSL2 for

H1N1 and H3N2. NFKB1 and RELA, both part of the NF-kB

complex are identified for H1N1 and H5N1 respectively.

Regulatory networks. In addition to the signaling parts of

the networks, MT-SDREM also reconstructs dynamic regulatory

networks for each of the different flu strains. We show the

regulatory network inferred for H1N1 in Figure 2. For space

reasons not all TFs presented in Figure 1 are shown for the model

in Figure 2, though all TFs that are associated with H1N1 are used

by the model. Full list of TF assignments to paths in the regulatory

networks is available on the Supporting Website. Corresponding

networks for H3N2 and H5N1 are presented in Supplementary

Results in S1 Text. Several of the TFs identified as controlling the

first splits in both the H1N1 and H3N2 networks belong to the

IRF family of TFs, known to regulate interferons, which play an

important role in viral immune response [12]. TFs belonging to

the FOS, ATF, and JUN families appear in both the H1N1 and

H5N1 networks. These TFs are part of the AP-1 TF complex

(which is known to regulate gene expression in response to a

variety of stimuli including cytokines, and viral infections [45]). We

also identify the SMAD family of TFs to play a part in all 3

networks. The STAT family of TFs is found to play a role in all 3

conditions. This family of TFs is part of the JAK-STAT signaling

pathway. This is a class of pathways responsible for activating

transcription in response to extracellular signals from messengers

such as interferons, interleukins, growth factors, etc. [46,47].

In addition to analyzing the TFs identified we performed an

enrichment analysis using the Gene Ontology (GO) terms

associated with each path in the reconstructed regulatory

networks. All p-values that we give below are after correcting for

multiple hypothesis testing.

In the H1N1 regulatory network, the gene cluster correspond-

ing to the path labeled A is predicted to be regulated by STAT1,

part of the JAK-STAT signaling pathway, IRF1 and IRF2. This

path is enriched for ’defense response to virus’, ’immune response’,

’type I interferon signaling pathway’, and ’cytokine-mediated

signaling’ categories (p-value of v0.001 for both). We also find

enrichment for similar categories in paths labeled B, C of the

H1N1 network and the paths labeled D-H of the H3N2 network

(Figure S1 in S1 Text). In addition, we also find enrichment for

’toll-like receptor signaling pathway’ in path F, and ’T cell

activation’ and ’lymphocyte activation’ in path H (p-value of

v0:001). Path D is also predicted to be regulated by several

members of the IRF family.

We find enrichment for the more general categories of ’defense

response’ and ’immune response’ in the path labeled I of the

H5N1 network (Figure S2 in S1 Text, p-value of v0:001).

Notably, in all 3 conditions, the genes in the relevant paths are

being upregulated indicating a response to all three pathogens that

has shared features.

The complete list of GO categories for all the labeled paths can

be found on the Supporting Website.

Strain specific proteins. In addition to looking for common

response, we used MT-SDREM to identify strain-specific factors

and proteins. These represent potential targets for individual

strains and may explain why some are more virulent than others.

S1 Table present the set of unique proteins identified for each

strain (defined as those appearing in the top 100 proteins set for

that strain, but not in the top 100 of the other two). While many of

the proteins on the list are not well characterized in the three

conditions making it hard to validate the results, some are known

and the results agree with very recent experimental data. For

example, IRF7 which was only identified by MT-SDREM for

H3N2 was recently tested for H5N1 and shown to be significantly

lower in H5N1 response when compared to less virulent strains

[48]. Similarly, as mentioned above, the regulatory networks for

H1N1 and H3N2 contain several IRFs as key regulators while the

networks reconstructed for H5N1 does not pointing to a potential

target for improving prognosis from this infection.

Multi-Task Learning of Signaling and Regulatory Networks
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Several proteins that are only predicted for H5N1 response are

known to have important roles in H5N1 infection. Knockdown of

DDX39B, also known as UAP56, decreased H5N1 viral titre

nearly 10 fold in infected cells [49]. MAPK8 (JNK) was strongly

induced in H5N1 (and H3N2) infection, but not H1N1 infection

[24]. NUP98 recruits the H5N1 protein NS2 to the nucleoli, and

disrupting this interaction impedes viral propagation [38]. Mice

with wild type MX1 were protected against infection by a highly

lethal H5N1 strain relative to mice with defective MX1 [50].

H5N1-derived NS1 stimulates the ERK pathway, increasing cell

viability and promoting infection [51]. Through interactions with

viral NS1 and another host factor, IVNS1ABP (NS1-BP) can

counteract this NS1-induced ERK phosphorylation [51].

Comparison of MT-SDREM with prior work
To test the advantages of multi-task learning we compared MT-

SDREM with previous methods that can be used to analyze

expression and interaction data. Since we are not aware of prior

Figure 1. Joint signaling network inferred by MT_SDREM for the three flu viruses. Top: Sources, Middle: Signaling (intermediate)
proteins, Bottom: TFs. Nodes are colored according to the role the protein is determined to play in the pathway (red - source, blue - signaling,
green -TF). Each node is also denoted with the set of strains it was predicted for (color shades). For example, JUN is a TF predicted for all three strains
whereas TCF12 is identified as a source for H1N1 and H3N2 but not for H5N1. See Supplementary Methods in S1 Text for details about how nodes
and edges are selected from the global network for this figure.
doi:10.1371/journal.pcbi.1003943.g001

Multi-Task Learning of Signaling and Regulatory Networks
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Figure 2. H1N1 Regulatory network. Each path represents a set of genes with a similar expression profile. Split nodes are colored green and are
annotated with the TFs that are predicted to regulate genes in the paths going out of the split at the time point associated with the split. The blue
TFs are up-regulated at that split time point while the red TFs are down-regulated. The black TFs are not differentially expressed at the split point.
Note that several of the TFs included in this latter group are likely post-transcripitionally regulated.
doi:10.1371/journal.pcbi.1003943.g002

Multi-Task Learning of Signaling and Regulatory Networks
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methods that utilize multi-task learning in biological network

reconstruction we first looked at the differences between applying

MT-SDREM and applying SDREM separately to each of the

three flu datasets. We have also compared MT-SDREM’s results

to a baseline joint ranking of differentially expressed (DE) genes

from different experiments in a single analysis. This approach is

similar to several previous studies that perform follow up analysis

using such joint sets [52].

Since the ’ground truth’ (complete underlying networks for each

condition) is obviously unknown, we used three different types of

complementary information for these comparisons. First, we

examined the set of TFs identified by each of these methods and

determined their relevance to the condition being studied. Next,

we used the Gene Ontology (GO) to test the differences in the

identified functional categories between the different analysis

methods. Expression experiments and RNA interference (RNAi)

screens have revealed a multitude of host pathways and processes

that are involved in viral host response including MAPK signaling,

apoptosis, trafficking, mRNA export, splicing, and proteolysis

[30,53,54]. A statistical meta-analysis implicates nearly 3000 host

genes [55] in these pathways. Although many processes as a whole

are relevant to influenza response, not all genes participating in

those processes necessarily are important. Therefore we focused

our TF and GO evaluation on immune processes, which were

shown to compose a critical component of the host response that

kills infected cells, protects uninfected cells, combats viral

components, and promotes inflammation [56] Finally, we used a

set of RNAi experiments that were performed for H1N1 and

H5N1 to test the ability of these different methods to identify key

disease related proteins. In these experiments proteins are knocked

down one at a time and the impact on viral load is measured. A

protein affecting viral load is likely participating in the host

response and so methods that can identify such proteins more

accurately are in better agreement with the observed response.

The RNAi data for H1N1 was obtained from [30,53,54,57,58]

resulting in a total of 980 screen hits, 925 of which were present in

our initial interaction network (which contained 16671 genes,

Methods). 32 screen hits for H5N1 were obtained from [57], all of

which are present in our interaction network.

Comparison of identified TFs
In Table 1 we present the overall and pairwise overlap of the

inferred TFs for the 3 conditions (extracted by same mechanism as

in SDREM [8,10]) for MT-SDREM and compare it to when

SDREM is run independently on the 3 conditions (I-SDREM).

Note that the pairwise intersections shown are in addition to the

overall intersection between all of the 3 conditions.

The shared TFs identified by MT-SDREM among all 3

conditions that are missed by I-SDREM include several that are

known to be immune response related. In particular, CEBPA is

known to be responsible for regulating a large variety of cell

functions including immune and inflammatory response [59].

MT-SDREM also identifies SMAD4 in all three conditions.

SMAD family proteins are part of the TGFb pathway as

mentioned above. MT-SDREM also identifies RB1 which has

been implicated in viral immune response [60], JUN which is part

of the AP-1 TF complex, and PPARG an important TF regulating

immune response mentioned above. In contrast, I-SDREM does

not identify any TF in the intersection that MT-SDREM does not.

In addition, we also find several immune response related TFs

in the pairwise overlaps for MT-SDREM that we do not see for I-

SDREM. For the overlap between H1N1 and H3N2, MT-

SDREM identifies IRF1/3/5 which are known to regulate

interferons and thus important for immune response. For the

overlap between H1N1 and H5N1, MT-SDREM finds the the

STAT3 gene which is part of the JAK-STAT signaling pathway

and ATF2, part of the AP-1 TF complex.

For the pairwise intersection of H1N2 and H3N2, I-SDREM

identifies NR3C1 as a TF while MT-SDREM only selects it as an

intermediate (signaling) protein. It also identifies another member

of the SMAD family (SMAD3 whereas MT-SDREM identifies

SMAD4). For H3N2 and H5N1 it identifies AHR whose

activation inhibits inflammation [61] and RELA in the intersec-

tion of H1N1 and H5N1, which as part of the NF-kB complex.

We also compared MT-SDREM to the popular TF prediction

tool oPossum [62]. Our primary goal when comparing MT-

SDREM with oPossum is to highlight the fact that using network

information in the multi-task learning framework is useful. The

input to oPossum is a list of genes identified by the experiment(s)

and using this list it attempts to find overrepresented TF-binding

sites. To select a common gene list from all three experiments we

ranked the genes for each condition according to their differential

expression and then merged the 3 rankings using the Kemeny-

Young method [63]. Similar to the number of genes used by MT-

SDREM we used the top 3000 in the joint ranking as input to

oPossum. In Table 2 we present the comparison. Note that since

we used oPossum as the tool for the comparison of MT-SDREM

with other methods for integrating data from several conditions,

the results shown for Table 2 are different from the intersection

results of Table 1. Here, for the MT-SDREM rankings we used

the sum of % path flow going through each gene across the 3

networks to rank TFs (Methods). The oPossum TFs are ranked

according to their Z-score.

While oPossum is able to identify a few relevant TFs, for most of

the TFs identified by oPossum, we could not find significant roles

in immune response regulation for them. In contrast, several of the

shared MT-SDREM TFs that are not identified by oPossum are

known to play major roles in immune response as discussed above.

These include STAT1/3, JUN/ATF2, CEBPA/B which regulate

a large number of immune response genes, RB1 which has been

implicated in viral immune response networks [60], PPARG, and

SMAD. MT-SDREM also uniquely identifies IRF1 which plays a

major role in viral immune response by regulating interferons.

oPossum was able to identify only two relevant TFs that were not

found by MT-SDREM. These are ZEB1 which regulates the IL2

interleukin, part of the immune response system and AHR, part of

the ANTR-AHR complex. See also Tables S13–S15 in S1 Text

for condition-specific comparisons using oPossum.

We also tried to compare MT-SDREM with the Inferelator

method [6] but following email discussions with the authors of that

method determined that such comparison is not feasible since

Inferelator requires expression data for a large number of conditions

while we only had time series response for three types of infections.

GO enrichment comparisons
To compare the GO enrichment of shared genes/proteins we

examined the top 500 genes in the combined MT-SDREM

network (ranked using the same sum of % of path flow going

through genes across the 3 networks as we did for the oPossum

comparison) with the top 500 genes from the combined ranking of

the differentially expressed (DE) genes from each condition

(combined using the Kemeny-Young method as explained before).

We used FuncAssociate [64,65] to compute standard GO

enrichment for the genes. We found 3 categories, only 2 of which

were immune response related for which the p-value for DE genes

was ƒ0:001 but which were not present in the MT-SDREM list

or if present, their p-value was v0:01. The categories are listed in

Table 4. However, for the vice versa comparison, we found a large

Multi-Task Learning of Signaling and Regulatory Networks
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number of categories for which the MT-SDREM p-value was

ƒ0:001 but which were either not enriched for in the DE genes

list (most common outcome) or if present, their p-value was

ƒ0:01. A subset of the immune response related categories are

listed in Table 3. Note that we find significant enrichment for a

very varied set of immune response processes including T cell

activation, cytokine production, activation of immune response,

etc. as well as categories related to viral genome expression and

positive regulation of viral process. The DE genes list is only

enriched for negative regulation of viral process and viral genome

replication. The complete set of the categories is in S45 Table.

To further compare methods that are based on joint expression

analysis to those that are based on joint network learning we

looked at the GO enrichment for the top 50 TFs identified by MT-

SDREM and oPossum. The top 50 TFs for MT-SDREM are

ranked using the joint ranking based on path flow for the 3

conditions as done for the GO comparison above. We used the TF

Z-score provided by oPossum to rank TFs for oPossum. We again

used FuncAssociate [64,65] to compute standard GO enrichment

for the TFs. We obtained only one immune-response related

category (interleukin related) for which the p-value for the

oPossum TF set was ƒ0:001 while being §0:01 for MT-SDREM

(presented in Table 6). However we obtained 270 categories in

total for which the MT-SDREM p-value was ƒ0:001 but the p-

value for oPossum was §0:01, a large number of which were

immune response related. Due to space constraints, only a subset

of these are presented in Table 5. These include ’postive

regulation of innate immune response’, ’viral process’, and

’cytokine-mediated signaling pathway’. The complete list of

categories is in S46 Table. See also Tables S14–S25 in S1 Text

for several additional comparisons of MT-SDREM and other

methods using GO enrichment data.

RNAi screen hits
Using the screen hit data for H1N1 and H5N1 we compared

the performance of MT-SDREM, I-SDREM and Endeavour

[66,67]. Endeavour is a gene prioritization algorithm which uses a

set of seed genes (the sources) to rank genes based on several types

of evidence including gene expression, interaction networks

derived from various sources, text mining, sequence similarity,

and functional annotations. It combines the individual rankings to

create a global ranking for all genes. For the MT-SDREM and I-

Table 2. TF comparison for oPossum and MT-SDREM.

oPossum MT-SDREM

MZF1_1–4 EP300

SP1 TP53

ZNF354C BRCA1

MZF1_5–13 JUN?

NFYA ESR1

ZEB1? AR

MIZF RB1?

ROAZ SMAD4?

GABPA STAT1?

TEAD1 CEBPA?

TLX1-NFIC PPARG?

SPIB STAT3?

Hand1-Tcfe2a SMAD3?

ARNT-AHR? HIF1A

ELF5 RELA?

MYC-MAX MYC

TP53 ATF2?

ELK1 CEBPB?

REL? SOX9

AR IRF1?

oPossum and MT-SDREM comparison. Immune response related TFs have a ?
next to them. oPossum TFs are ranked according to their Z-score. MT-SDREM
TFs are ranked according to the path flow measure as described in the main
text and Supplementary Methods in S1 Text.
doi:10.1371/journal.pcbi.1003943.t002

Table 3. GO categories enriched in MT-SDREM that are not enriched as significantly in Differentially Expressed (DE) genes.

GO Category MT-SDREM p-value ƒ DE genes p-value GO Category Description

GO:0002218 0.001 NA activation of innate immune response

GO:0002684 0.001 NA positive regulation of immune system process

GO:0002429 0.001 NA immune response-activating cell surface receptor signaling pathway

GO:0046328 0.001 NA regulation of JNK cascade

GO:0001816 0.001 NA cytokine production

GO:0001959 0.001 NA regulation of cytokine-mediated signaling pathway

GO:0042113 0.001 NA B cell activation

GO:0042110 0.001 NA T cell activation

GO:0043923 0.001 NA positive regulation by host of viral transcription

GO:0019080 0.001 NA viral genome expression

GO:0048524 0.001 NA positive regulation of viral process

GO:0007259 0.001 NA JAK-STAT cascade

GO:0002573 0.001 NA myeloid leukocyte differentiation

GO comparison between the Differentially Expressed gene list and MT-SDREM gene list for top 500 genes. The enrichment was performed using the FuncAssociate tool
[64]. Only categories with MT-SDREM adjusted p-value of ƒ0:001 and DE genes p-value of §0:01 are presented. If a p-value for DE genes is NA, that means that that
category was not enriched for in the DE genes list. Only select immune response related categories are presented. The full list of the 114 immune-related categories is
available in S45 Table on the Supporting Website.
doi:10.1371/journal.pcbi.1003943.t003
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SDREM results we ranked proteins based on the total number of

paths weighted by their score going through them. See Supplemen-

tary Methods in S1 Text for details. For Endeavour, we configured it

to use only BioGRID and HPRD as data sources as those are the

only sources we use to construct our PPI network. The expression

data is not used by Endeavour. We gave the source proteins as the

seed genes to Endeavour. We further compared these three methods

with a baseline method that is condition-independent: ranking nodes

by their weighted degree in the PPI network. The results are

presented in Figure 3. For H1N1, the top 100 genes in the

Endeavour ranking include only 20 screen hits (p-value is 4.9E-7).

For I-SDREM the number increases to 35 (p-value 2.0E-19) whereas

MT-SDREM obtains the highest number of protein in the overlap

39 (p-value 1.7E-23). The baseline comparison where we rank by

degree has an overlap of 30 genes (p-value 9.4E-15). For H5N1, the

top 100 genes for Endeavour and for ranking by degree include only

5 screen hits (p-value 1.2E-6) whereas both I-SDREM and MT-

SDREM have an overlap of 9 screen hits (p-value 1.7E-13). See also

S1 Text for comparison of RNAi screen hits using GSEA.

We also compared MT-SDREM, I-SDREM with GeneMania

[68,69] and concluded that MT-SDREM greatly improves upon the

GeneMania results. See Supplementary Results in S1 Text for details.

Conclusions and future work
We developed MT-SDREM a multi-task learning framework

that simultaneously reconstructs signaling and dynamic regulatory

networks across related conditions. Given the small number of

condition-specific samples that are often available (i.e. time series

expression data and host-pathogen interaction data) sharing

parameters across related conditions allows the reconstruction of

more accurate networks while still retaining the ability to explain

condition-specific signaling and regulation.

We applied MT-SDREM to reconstruct networks for 3 related

influenza A virus infections – H1N1, H3N2, and H5N1. The

resulting signaling and regulatory networks were able to identify

several known and novel regulators of immune and viral response.

Many of these were shared between all condition including

PPARG, FOS, ATF, and JUN. Similarly, we identify key signaling

proteins, some shared by all conditions while others are unique to

one or two of the conditions. Specifically, we identified the

signaling protein SUMO1 as part of pathway from UBE2I for all 3

conditions. This agrees with recent findings that UBE2I interacts

with SUMO1 to degrade influenza A’s virus, NS1 which is present

in all three strains [70]. We also identified the AKT1 gene, part of

the PI3K/AKT pathway that is activated by NS1 in all conditions.

MT-SDREM is the first method to jointly reconstruct such

dynamic networks. Comparing MT-SDREM with methods that

have been suggested to integrate gene expression data or with

methods reconstruct such networks independently for each condi-

tion highlighted the advantages of multi-task network learning. MT-

SDREM outperformed previous methods in identifying a set of TFs

controlling immune response, a set of functionally relevant proteins

and a set of proteins whose knockdown affects viral loads.

While MT-SDREM can successfully utilize experiments from

similar conditions to reconstruct signaling and regulatory net-

works, there are still issues we would like to improve in future

work. One direction we intend to explore is extending MT-

SDREM to allow time based (as opposed to global) sharing of TFs

across conditions so that splits representing the same time will be

more likely to share TFs compared to other splits. We would also

like to improve on the models by using additional types of data,

including epigenetic data which can help improve the priors for

TF binding at specific time points by making them a function of

the epigenetic code.

Table 4. GO categories enriched in DE genes that are not enriched as significantly in MT-SDREM.

GO Category DE p-value ƒ MT-SDREM p-value GO Category Description

GO:0045071 0.001 NA negative regulation of viral genome replication

GO:0048525 0.001 0.019 negative regulation of viral process

GO comparison between the joint DE gene list and the joint MT-SDREM for the top 500 genes. The enrichment was performed using the FuncAssociate tool [64]. Only
categories with DE genes adjusted p-value of ƒ0:001 and MT-SDREM genes p-value of §0:01 are presented. If a p-value for MT-SDREM is NA, that means that that
category was not enriched for in the MT-SDREM list. All immune response related categories are presented.
doi:10.1371/journal.pcbi.1003943.t004

Table 5. GO categories enriched in MT-SDREM TFs that are not enriched as significantly in oPossum TFs.

GO Category MT-SDREM p-value ƒ oPossum p-value GO Category Description

GO:0009607 0.001 NA response to biotic stimulus

GO:0045089 0.001 0.02 positive regulation of innate immune response

GO:0071357 0.001 NA cellular response to type I interferon

GO:0019048 0.001 NA modulation by virus of host morphology or physiology

GO:0016032 0.001 NA viral process

GO:0019221 0.001 NA cytokine-mediated signaling pathway

GO:0032481 0.001 NA positive regulation of type I interferon production

GO:0046332 0.001 NA SMAD binding

GO comparison between the joint oPossum TF list and the joint MT-SDREM TF list for the top 50 TFs. The comparison was performed using the FuncAssociate tool [64].
A subset of the categories for which the MT-SDREM list p-value is v0:001 and that of the oPossum list is §0:01 or which are not enriched for the oPossum list
(represented by NA as the p-value) and which are immune response related are presented. Note that only a subset of the 40 immune-related categories are presented.
The rest of the categories are available in S46 Table on the Supporting Website.
doi:10.1371/journal.pcbi.1003943.t005
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Materials and Methods

MT-SDREM simultaneously investigates and infers regulatory

networks and signaling pathways for several biologically related

conditions. For this, it uses both condition-specific gene expression

and interaction data and general interaction data. We first discuss

the input data that the method utilizes and then present the

modeling and learning frameworks.

Input Data
We use C to denote the set of conditions that are jointly

modeled by MT-SDREM. Below we list the datasets used by MT-

SDREM.

1. Condition-specific: Time series gene expression data for each of

the conditions that are modeled by MT-SDREM.

2. Condition-specific: Sources Sc - the set of sources or host

proteins which are known experimentally to interact with the

pathogen/treatment applied when studying condition c.

3. Condition-specific (optional): Screen hits A list of proteins for

each condition whose removal is known to phenotypically

impact the response of the cells in that condition.

4. General and/or condition-specific: TF-gene binding data: A list

of potential TF-gene interactions with an optional probabilistic

prior/likelihood for the interaction. If data is available for the

specific condition/cell type being studied these can be used,

otherwise general data can be used as well. We denote by pt,g

the interaction prior for TF t binding with gene g.

5. General: Protein interaction network: A list of protein-protein

interactions which may be directed or undirected. The method

can also use information regarding the confidence in each

interaction. We denote such confidence in edge e by pe and by

E the set of all edges.

Protein-protein and protein-DNA interactions. We ob-

tained a list of protein-protein interactions from BIOGRID [71]

and HPRD [72]. We also use Post-translational Modification

Annotations from the HPRD dataset. General Protein-DNA

Table 6. GO categories enriched in oPossum TFs that are not enriched as significantly in MT-SDREM TFs.

GO Category oPossum p-value ƒ MT-SDREM p-value GO Category Description

GO:0045084 0.001 NA positive regulation of interleukin-12 biosynthetic process

GO comparison between the joint oPossum TF list and the joint MT-SDREM TF list for the top 50 TFs. The comparison was performed using the FuncAssociate tool [64].
Categories for which the oPossum list p-value is v0:001 and that of the MT-SDREM list is §0:01 or which are not enriched for the MT-SDREM list (represented by NA as
the p-value) and which are immune response related are presented. Note that all immune related categories are presented.
doi:10.1371/journal.pcbi.1003943.t006

Figure 3. Screen hits overlap for top 100 ranked genes for both H1N1 and H5N1. 925 H1N1 and 32 H5N1 screen hit proteins were
present in our network.
doi:10.1371/journal.pcbi.1003943.g003
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interactions are from [73] were processed as described in [74].

The top 100 threshold was used for both the interaction network

and when analyzing the temporal expression data. As the TF

binding predictions are not cell type-specific and as the H1N1 data

was aggregated from multiple cell types, we assigned these

predictions a relatively low score of 0.3 in the interaction network.

For the PPI network, a probability for every PPI edge was

obtained by combining the various types of experimental evidence

(Affinity-capture, Yeast 2-Hybrid). See Supplemental Methods in

S1 Text for details. The PPI network we construct has 16,671

nodes and 228,159 edges. For 58,322 of these edges we have

direction information in the database (most of those edges are TF-

gene binding interactions and for the rest, the direction

information primarily comes from phosphorylation studies).

Condition-specific data. We obtained time series gene

expression data for each of the 3 viruses under consideration -

H1N1 [30], H3N2 [32], and H5N1 [31] with 10, 6, and 5 time

points respectively. The expression data was generated using

whole genome microarray. To reduce the level of noise in the gene

expression data, for every condition, we only used the top 3000

most differentially expressed genes in the time series dataset for

that condition as input to MT-SDREM (see Supplementary

Methods in S1 Text for details on how the genes were selected).

We collected the sources (human proteins experimentally

determined to interact with the 3 viruses’ proteins) from

VirHostNet [33]. There are 200 sources for H1N1, 153 for

H3N2, and 41 for H5N1. In addition, we included TLR3, TLR7,

TLR8, RIG-I and NLRP3 [75–77] – proteins that either detect

influenza viral RNA or influenza infection via other means – as

sources for H1N1 and H5N1.

SDREM
MT-SDREM extends the Signaling and Dynamic Regulatory

Events Miner (SDREM) which has so far only been applied to

reconstruct response networks for a single condition at a time [8].

Prior to discussing the multi-task learning procedures we first

briefly discuss the SDREM method. SDREM is an iterative

procedure that combines regulatory and signaling network

reconstruction to model response pathways. For the regulatory

part, SDREM uses time series gene expression data with protein-

DNA interaction data to identify bifurcation events in a time series

(places where the expression of previously co-expressed set of genes

diverges – see Figure 2), and the transcription factors (TFs)

controlling these split events. While some TFs are transcriptionally

activated, others are only activated post-translationally via

signaling networks. To explain these TFs, the second part of

SDREM links sources (host proteins that directly interact with the

virus/treatment) to the TFs determined to regulate the regulatory

network. This part of SDREM uses protein-protein interaction

(PPI) and protein modification data to infer such pathways – while

imposing the constraint that the direction of PPI in the inferred

pathways is consistent. These two parts (regulatory and signaling

reconstruction) iterate a fixed number of times until the final

network is obtained. See [8] for complete details.

Application of multi-task learning to the inference of

signaling and regulatory networks. As mentioned above, we

can run SDREM individually on the expression data for different

infections to infer regulatory and signaling cascades for each of

these conditions. However, several shared attributes can be jointly

learned for these conditions and given the scarcity of data

compared to the number of variables (very few time points for

each expression experiment with thousands of genes in each

model) such an approach can improve the accuracy of the

reconstructed networks for each condition. Specifically, the

direction of (the originally undirected) PPIs is likely to be similar

for all conditions since several pathways are likely used by multiple

conditions. Similarly, TFs that are active in response to one virus

are more likely to be active in response to other viruses as well.

MT-SDREM defines an optimization function that captures these

expected similarities while still allowing for a condition-specific

response component.

The multi-task learning objective function. The objective

function commonly used for multi-task learning combines two

related goals: First, similar to standard machine learning

applications (for example, classification) it tries to minimize the

loss (i.e. error) for each task while at the same time regularizing the

parameters used by each task to avoid overfitting. Second, it

further regularizes the parameters across tasks so that the final

parameters are similar. A typical objective function is the following

[78]

argmin
w1,...,wC

XC

i~1

L(yi,f (wT
i xi))zl1

:jjwijjp

( )"
z

l2
:
XC

i~1

XC

j~iz1

jjwi{wj jjp

( )#

where C is the number of tasks, L is the loss function, f is a

function of the dot product of the task-specific weight vector and

the data for the task, and p is the Lp norm for the regularization.

The part in the left curly braces, T1 is the task-specific part of the

objective function while the part in the right curly braces, T2 is the

regularization across tasks.

Multi-task objective for MT-SDREM. In MT-SDREM,

the loss minimizing part, T1, is achieved by the regulatory network

learning procedure which learns parameters for a IOHMM that

uses a logistic regression classifier to compute transition probabil-

ities (Supplementary Methods in S1 Text). The logistic regression

classifier is regularized using Lasso to reduce the number of active

TFs inferred for each split. Thus in terms of the multi-task

objective, yi corresponds to the prediction regarding a gene

trajectory at any split and xi is the TF-gene binding information.

wi is the set of logistic regression weights learned for each split.

Note that the TF-gene binding information xi is not specific to

each split but is the same for the entire times series.

In addition to expression data, we use signaling network

information to infer TFs that are reachable from the infection

sources. Such TFs are more likely to explain how the infecting

agents affects gene expression and so their weights are increased in

our framework. To find such TFs we need to orient the undirected

edges and determine a weight for the paths leading to these TFs

from sources. These two procedures (edge orientation and TF re-

weighting) are shared across tasks and both affect the TF priors

used by the logistic regression function. Thus for MT-SDREM,

the objective function is:

argmin
w1,...,wC

L(yi,f (w(wi,B
i)T(xi)))zl1

:DDwi DDp
� �

{r(B1,:::,BC)

where B is the weight matrix learned for TFs for all tasks in the

signaling network and Bi are the weights determined for task i. r is

the similarity function used to constrain parameters across tasks

which is described below (hence the negative sign in front of it as

we are minimizing the objective but we want to maximize the

similarity).

T1

T2
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An important difference between the standard multi-task

learning framework and our method is that while we regularize

the within task parameters (wi’s), the between task parameters

(Bi’s) are not explicitly regularized. The reason is that the Bis are

already constrained by the input protein interaction network and

so are inherently bounded. See Supplementary Methods in S1

Text for details on the specific terms used in the multi-task

learning objective.

Given Bi, the above equation can be optimized by fitting

parameters to the IOHMM and logistic regression function as was

previously done in [79]. See Supplement Methods in S1 Text for

details.

Between task regularization. Next we discuss how we use

the signaling network to determine the values for , the TF weights

used to reconstruct the regulatory networks. While the main goal of

the regulatory network reconstruction method is to explain the

temporal gene expression trajectories using the dynamic activation of

TFs, the main objective when reconstructing the signaling network is

to explain how these TFs are activated by the infecting viruses. For

this, we attempt to link sources (protein interacting with the virus) and

targets (TFs controlling virus-specific expression response) using paths

in the network. The orientation is determined by specifying edge

directionality to optimize the following equation:

max
X
t[T

X
p[Pt

I(p):hp
:st

where T is the list of TFs predicted to regulate the time series for a

specific condition, Pt is the set of paths that start from a source of this

condition and end in TF t, hp is the weight of the path which is

defined as the multiplication of the probabilities of the edges in the

path, and st is the score of the TF t obtained from the regulatory

network reconstruction. I(p) is an indicator function indicating

whether path p is satisfied or not (a path is satisfied if all the edges in

the path are oriented in a direction that links the source to the target)

and thus optimizing the above equations requires the assignment of

directionality to the PPI edges (see [8,10] for details). Note that a

Breadth First Search or a Depth First Search are not enough to solve

this since we assume PPI edges may be undirected. Thus, certain

paths can contradict each other in terms of the specific edge direction

making this a non trivial optimization problem (in fact, it is NP

complete – see [79] for details and algorithm for solving this problem).

If we have multiple conditions we can simply run this function

independently for each of them leading to the following set of

optimization problems:

max
X
t[Tc

X
p[Pc

t

I(p):hp
:stc Vc[C

Here c goes over each of the conditions and the function is

optimized independently for that condition. However, such

independent optimization may lead to contradictory directionality

assignments. In addition, it does not utilize shared properties

between the conditions. Instead, we would like to -

1. Constrain the model to use shared parameters – thus the

direction of the edges in the signaling networks is constrained

to be the same in all models.

2. Favor pathways which end in TFs that are used in more than

one condition.

To achieve the first goal above we attempt to maximize the

objectives for each condition using a shared, directed, network.

For this we modify the search procedure by assigning edge

direction to maximize the sum of the objectives across all

networks. See Supplementary methods in S1 Text for details.

The second requirement is more involved since it requires us to

change node scores based on TF usage across the conditions. To

obtain more shared TFs we add an additional term to the objective

function. We introduce a new, global, parameter, a which is used

to increase the weight assigned to shared TFs. See Supplementary

methods in S1 Text for details. Also see Table S7 in S1 Text for

discussion on the impact of different values of a on the

performance of MT-SDREM.

Ranking proteins in reconstructed networks
Following the multi-task learning procedure we arrive at

directed, weighted networks for each of the conditions being

studied. To further select the key proteins from each of these

networks we rank the proteins based on the "path flow" going

through a node. The path flow f through a node n is defined as

follows –

f (n)~
X
p[P

I(p):hp

where P is the set of paths containing node n.

To combine the rankings from each condition into a single

ranking, we compute the total flow through all the nodes

Fi~
X
n[N

fi(n)

where N is the set of genes and i is the condition and then we

computed the % flow f̂fi(n)~
fi(n)

Fi

through a node. To get the

combined score for a gene across conditions, we sum up the

condition-specific % flows to get s(n)~
PC

i~1 f̂fi(n) where C is the

number of conditions. Then we rank the genes in descending

order of the final score s(n).
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(XLSX)

S45 Table Extension of Table 3 containing all immune-
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p-value $0.01 in DE genes for top 500 genes for the joint list.

(XLSX)

S46 Table Extension of Table 5 containing all immune-
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