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Skeletal muscle unloading and disuse
in humans can occur for a variety of
reasons. Numerous models of muscle
unloading exist in humans including
bed rest (Paddon-Jones et al. 2004,
2005, 2006; Symons et al. 2009), limb
immobilization/suspension (Gibson et al.
1987, 1988; de Boer et al. 2007; Glover
et al. 2009), and even imposed inactivity,
which is a model of relative muscle disuse
(Krogh-Madsen et al. 2010; Breen et al.
2013). In all these situations there are
varying degrees of hypodynamia and
muscle atrophy.

There are a range of techniques and
models used to delineate the cellular
and molecular mechanisms that underpin
disuse skeletal muscle atrophy. However, in
our opinion, the answer to the question of
what mechanism is primarily responsible
for simple disuse muscle atrophy in humans
cannot be obtained from measurements
made in disease states (i.e. sepsis, burns,
cancer cachexia, starvation, uraemia).
Nor can this question be addressed
merely through measurement of static
protein and gene abundances and inferring
mechanisms, particularly in rodent models.
In fact, we propose that there are inherent
species-specific differences between rodents
and humans that have had a direct bearing
on the confusion in this area (Phillips
et al. 2009). A conspicuous methodological
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problem relates to the use of ex vivo
muscle preparations to estimate protein
turnover that do not appropriately mimic
the in vivo situation since they fail to
sustain a positive protein balance and so
are inherently biased toward showing a
dominant effect of proteolysis (Phillips et al.
2009). In addition, rodents (and many
other species) have markedly higher (2.5
times) rates of muscle protein turnover and
sensitivity to disuse (Thomason et al. 1989)
versus humans. Moreover, rodents exhibit
marked fibre-type-dependent differences in
rates of protein turnover (type I fibres
being twice as great as type II fibres)
(Garlick et al. 1989), but such fibre-type
differences are of a smaller magnitude
in humans (Mittendorfer et al. 2005;
Koopman et al. 2011). Thus, for the
purposes of concision and relevance to
the human disuse model the focus of our
commentary is on data from humans, in
non-disease states, that is evidenced by
dynamic in vivo measurements of skeletal
muscle protein turnover. Naturally, with
atrophy there is an imbalance between the
rates of muscle protein synthesis (MPS) and
muscle protein breakdown (MPB), which
during net muscle protein balance are in
equilibrium.

One of the first studies supporting the
notion that decreased rates of protein
synthesis drive disuse atrophy was provided
by Gibson et al. (1987) who showed that
young men who had their leg immobilized
had a lower rate of MPS at rest in the fasted
state by �30% compared to their contra-
lateral non-immobilized limb. The same
team of investigators went on to show that
a minimum (10–15 min day−1) of local
muscle electrical stimulation completely
ablated the disuse-induced fall in MPS
and the decline in muscle cross-sectional

area (CSA) (Gibson et al. 1988). A
number of studies have subsequently shown
reductions in MPS of �50% compared
either to pre-disuse levels in bed rest
(Ferrando et al. 1996; Paddon-Jones et al.
2004) or to a non-immobilized limb with
casting/bracing (de Boer et al. 2007; Glover
et al. 2009). Thus, the fall in resting
MPS is a reproducible consequence of
disuse; however, muscle contraction, even
at remarkably low levels (Gibson et al. 1988;
Oates et al. 2010), can offset the decline in
MPS and in doing so markedly attenuate
or completely ablate atrophic declines in
muscle CSA whether involuntary (Gibson
et al. 1988) or voluntary (Symons et al. 2009;
Oates et al. 2010).

In addition to contraction, a known potent
stimulus for MPS is hyperaminoacidaemia
(Bohe et al. 2001; Fujita et al. 2007). Since
humans spend a significant portion of
their waking hours in a post-prandial
state an important question is how
does disuse affect MPS in response to
amino acid provision? Glover et al.
(2009) provided the first evidence that
disuse induces a marked blunting of the
normal hyperaminoacidaemia-stimulated
rise in MPS with varying degrees of
hyperaminoacidaemia. While hyper-
aminoacidaemia was induced by an amino
acid infusion in that study (Glover et al.
2009) the findings of a reduced response
of MPS to protein ingestion have recently
been corroborated using intrinsically
labelled proteins (Wall et al. 2013). The
approximate decline in fed-state MPS in
these papers (Glover et al. 2009; Wall et al.
2013) was �50–60%. The mechanism for
this disuse-induced blunting of amino
acid-stimulated anabolism is not apparent
but may involve reductions in amino acid
transport capacity and protein signalling
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which have been shown to be reduced with
disuse (Drummond et al. 2012). Thus, in
humans disuse induces not only a reduction
in resting MPS of �50% but also a reduction
in the meal-induced rise in MPS of �50%.

The rate of muscle loss in simple disuse
atrophy is rapid in the early stages of
disuse and then slows reaching a nadir
(Adams et al. 2003). The estimated rate
of muscle loss over the initial disuse
(i.e. the period during which muscle loss
is most rapid) shows that muscle CSA
declines at a net rate of �0.6% day−1

(Adams et al. 2003). Knowing the rate of
disuse-induced loss of muscle CSA provides
a testable scenario in which measured
in vivo rates of muscle protein turnover
should quantitatively predict the decline in
muscle mass. When considered together the
reproducible decline in resting MPS and the
decline in hyperaminoacidaemia-mediated
stimulation of MPS completes a picture
of what happens within many different
types of disuse models. As we have pre-
viously discussed (Phillips et al. 2009),
in a person with stable muscle mass, the
rates of MPS and MPB must be equal at
�0.055% h−1 or 1.32% day−1 (Wilkinson
et al. 2013). With disuse, as detailed above,
the fasting rate of MPS is depressed by
�50% and the fed rate of MPS is also
depressed by �50%. Thus, the estimated
diurnal average (with 14 h in a true
fasting and 10 h in a fed-state condition)
of MPS is reduced to �0.035% h−1

or �0.84% day−1. Assuming, as is our
stance here, that breakdown remains at the
pre-disuse rate, then the rate of loss of
protein or net protein balance is defined by:
ksynthesis − kbreakdown = 0.84 – 1.32 � −0.48%
day−1 which is close to the net rate of muscle
CSA loss of �0.6% day−1 as reported by
Phillips et al. 2009. Thus, if breakdown
were a predominant, or even substantial,
contributor to muscle atrophy during disuse
then the loss of muscle mass would be
far greater than what is observed during
the period of greatest muscle loss. Thus,
contrary to our opponent’s thesis, it appears
when measured in humans with simple
disuse there is minimal elevation in muscle
protein breakdown (Symons et al. 2009).

What is not occurring to an appreciable
degree in the disuse models (bed rest,
limb immobilization, reduced activity) is
a concomitant hypercortisolaemia, hypo-
androgenaemia, or hypercytokinaemia.
Such systemic states are present to varying
degrees in hypercatabolic models of muscle
wasting (Pasini et al. 2008). In muscle

wasting due to, for example, cancerous
cachexia, sepsis, burns, uraemia, or critical
illness, muscle unloading often occurs but
is accompanied by the aforementioned
hormonal and cytokine perturbations and
often hypocaloric feeding and under-
nutrition. As such, pathophysiological states
in which ‘markers’ of proteolysis have
been shown to be increased (Lecker
et al. 2004) are inappropriate models
on which to base conclusions about the
importance of mechanisms that under-
pin non-disease disuse muscle atrophy.
In fact, in uncomplicated disuse (bed
rest) models, to simulate hypercatabolic
disease-state stress subjects have been given
hydrocortisone (Paddon-Jones et al. 2005).
Nonetheless, we acknowledge that bed rest is
often a consequence of hospitalization that
may well be related to some of the diseased
states as described above.

Whether reductions in MPS or accelerated
rates of MPB in non-pathophysiological
states of disuse drive human muscle atrophy
is an important issue since the choice
of a primary countermeasure to attenuate
atrophy would rest on the mechanism
that predominates. In this regard, based
on examination of existing data from
uncomplicated disuse atrophy in humans,
it is our opinion that declines in MPS
are the predominant mechanism, under-
pinning the decline in muscle CSA in
non-diseased models of disuse human
skeletal muscle atrophy. Thus, future work
should focus on strategies to enhance the
sensitivity of skeletal muscle in response to
stimuli of MPS during disuse.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘Last Word’. Please
email your comment to journals@physoc.org.
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