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Downregulation of PI3Kcb utilizing adenovirus-mediated 
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Abstract: Phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in intracellular signal transduction 
pathways involved in chronic pain states. PI3K is implicated in pathomechanisms of enhanced synaptic strength, 
such as wind-up and central sensitization in the spinal dorsal horn. The PI3Kcb gene encoding the class 1A PI3K 
catalytic subunit p110beta is one of the most important molecular of the P13K signaling pathway. Here, we used 
small interfering RNA (siRNA) targeted to PI3Kcb by adenovirus-mediated transfer, to determine whether inhibition 
of PI3Kcb was a potential therapeutic target for bone cancer pain (BCP). In this study, treatment of BCP model in 
rats with PI3Kcb-specific siRNA resulted in inhibited pain-related behavior. Depletion of PI3Kcb decreased the pro-
tein levels of spinal PI3Kcb and phospho-Akt (P-Akt)-downstream targets of PI3K. Knockdown of PI3Kcb by siRNA 
also induced decreased expression of GFAP and OX42, suggesting that the upregulation of spinal PI3Kcb may 
increase glia excitability, at least in part by regulating glia message. Our findings suggest that siRNA-mediated gene 
silencing of PI3Kcb may be a useful therapeutic strategy for BCP.
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Introduction

Pain associated with cancer that metastasizes 
to bone results in very poor quality of life, and 
its mechanisms are still not completely under-
stood [1-3]. To clarify the pathomechanisms of 
bone cancer pain, rat models of bone cancer 
pain (BCP) using mammary gland carcinoma 
cells (MADB-106 cells) have been established 
[4, 5], and increasing evidence indicated that 
some signal pathways were involved in BCP 
[6-8].

The phosphatidylinositol kinase-3(PI3K) family 
of lipid kinases has been implicated in the 
transduction and regulation of pain signal act-
ing as secondary messengers [9-15]. 
Mammalian PI3Ks are categorised into three 
classes, with the class-IA PI3Ks comprising a 
110-kDa catalytic subunit (p110α, p110β or 
p110δ, encoded by the genes Pik3ca, Pik3cb 
and Pik3cd, respectively) coupled to a regula-
tory subunit (p85) [16-21]. These subtypes are 
thought to be relative to the activation of the 
receptors possessing protein-tyrosine kinase 

activity or the receptors coupling to Src-type 
protein-tyrosine kinases by phosphatidylinosi-
tol (3,4,5)-trisphosphate [22, 23]. Several lines 
of evidence suggested that PI3K and PI3K-
PKB/Akt signal pathway activation contributed 
to the development of neuropathic pain [10, 24, 
25]. So, development of knockdown for PI3K 
pathways to target neurons and glial cells may 
lead to new therapeutic strategy for pain 
management.

The small interfering RNA (siRNA) strategy is a 
better gene therapy technique and could be a 
useful tool for the study of endogenous gene 
regulation [26-28]. Recently, shRNA for p110β 
induced apoptosis and proliferation arrest in 
tumor cell lines [26, 29, 30]. Because targeted 
disruption of p110β caused death at the early 
embryonic stage [31, 32], this isoform of PI3K 
in signaling is poorly understood. Roles for PI3K 
catalytic beta polypeptide (PI3Kcb) in mediat-
ing chronic refractory pain have not been 
addressed. Thus, we pursued PI3Kcb as a 
potential therapeutic target for bone cancer 
pain. In this study, we used siRNA against 
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was selected. The recombinant eukaryotic 
expression vector pDC316-PI3KcbsiRNA-EGFP 
was identified by using restriction endonucle-
ases digestive reaction and DNA sequencing. 
The HEK 293 cells were cotransfected by the 
shuttle plasmid of pDC316-PI3KcbsiRNA and 
the skeleton plasmid of pBHG35, and the 
recombinant plasmid of Ad5F35-PI3KcbsiRNA 
was obtained. The expression of the transfect-
ed genes was evaluated by PCR and immunocy-
tochemical stain. Virus was purified by double 
CsCl centrifugation and subsequently dialysed 
as described previously [37-39]. Final yields as 
assessed by plaque assays on 293 cells were 
approximately 1 × 1012 plaque forming units 
(pfu)/ml [31]. Ad5F35 and Ad5F35-PI3KcbsiRNA 
stock solutions were stored in aliquots at 
-80°C.

Animals and intrathecal catheter implantation

Adult female rats weighing 250-300 g were 
housed on a 12-h light/12-h dark cycle and 
controlled temperature with free access to food 
and water. Efforts were made to minimize ani-
mal discomfort and reduce numbers of animals 
used. All experiments were carried out accord-
ing to the National Institute of Health Guide for 
the Care and Use of Laboratory Animals [40], 
and the Institutional Animal Care and Use 
Committee of Tongji Hospital, Tongji Medical 
College, Huazhong University of Science and 
Technology University approved this study 
protocol.

The implantation technique of the intrathecal 
catheter was modified and performed [41-43]. 
A polyethylene-10 catheter was inserted into 
the subarachnoid space under pentobarbital 
anesthesia (50 mg/kg, i.p.). The catheter was 
passed 8.5 cm caudally to the level of the lum-
bar enlargement through an incision in the 
atlanto-occipital membrane. The external part 
of the catheter was tunneled subcutaneously 
to exit at the top of the head. The skin was 
closed with 3-0 silk sutures. After surgery, rats 
were housed in individual cages. To avoid occlu-
sion of the catheter, 10 μl of normal saline was 
injected via a catheter on alternate days until 
the end of the experiment. The marker of suc-
cessful catheterization was that rats showed 
no impaired movement or lower limb paralysis 
within 30 s after 2% lidocaine (10 μL) was 
injected intrathecally.

PI3Kcb to clarify whether specific down-regula-
tion of PI3Kcb induced antinociception proper-
ties in bone cancer pain and to identify the 
downstream targets of this molecule.

Materials and methods

Cell preparation and intra-tibial injection

MADB-106 mammary gland carcinoma cells 
were donated by Page GG and LY Liu and pre-
pared as described previously [5, 33]. Briefly, 
cells were grown in 75 cm2 flasks containing 
RPMI 1640 (Gibco, Invitrogen Ltd.) with 10% 
fetal bovine serum, 1% L-glutamine and 2% 
penicillin/ streptomycin (Gibco, Invitrogen Ltd.). 
By creating a cell suspension with trypsin 
(0.1%w/v), they were then quenched with an 
equal volume of 10% fetal calf serum and cen-
trifuged for 3 min at 1200 rpm. The resulting 
pellet was washed twice with 10 ml of Hank’s 
balanced salt solution (Gibco, Invitrogen Ltd.) 
without Ca2+, Mg2+, and finally suspended in 1 
ml Hank’s solution. Cells were diluted in Hank’s 
medium to the required concentration for injec-
tion and kept on ice. Rats were anesthetized 
and 3 μL solution was injected into the tibial 
cavitas medullaris of the left hind paw using an 
insulin syringe with a 29.5 gauge needle, as 
described previously [33, 34].

Recombinant adenoviral vectors

Construction of recombinant adenoviruses was 
described previously [35, 36]. Briefly, A speci-
ficity target sequence (5’-AAACTGCCGTATATG- 
AGGAAC-3’) from PI3Kcb mRNA sequence was 
designed according to the principle of design 
on siRNA, and PI3Kcb gene primer sets 
(Si-sense: 5’-GATCCAAACTGCCGTATATGAGGA- 
ACGAGTACTGGTTCCTCATATACGG CAGTTTTTTTTA- 
3’; Si-anti: 5’-AGCTTAAAAAAAACTGCCGTATATG- 
AGGAACCAGTA CTCGTTCCTCATATACGGCAGTT- 
TG-3’) were designed via GenBank accession 
number NM_053481. PI3Kcb cDNA was cloned 
by PCR technique, and then the correspond 
hairpin-shaped DNA fragment was synthesized 
in vitro,annealed and handled with added A 
(adenosine acid). The product was cloned into 
siRNA vector pDC316-EGFP-U6. The insertion 
plasmid pDC316-PI3KcbsiRNA-EGFP was iden-
tified by PCR, and then DNA sequencing dem-
onstrated the correct orientation and sequence. 
The reaction product was transformed into E. 
col i (DH5α), and the positive bacterial colony 
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Briefly, RNA was extracted from frozen spinal 
segments. RNA was isolated using RNeasy col-
umns (Qiagen), including an on-column DNase 
step. Reverse transcription was carried out on 
1 μg RNA using the iScript kit with random prim-
ers (BioRad, Hercules, CA). Q-PCR was per-
formed with an iCycler (BioRad) using the iQ 
SYBR supermix (Biorad). The Q-PCR primers 
were used: Rat PI3Kcb, 5’-GAAGATTGCAAGCA- 
GTGATAGTGC-3’ (forward) and 5’-CCTATCCTC- 
CGATTACCAAGTCGTC-3’ (reverse); rat GAPDH, 
5’-AC-CACAGTCCATGCCATCAC-3’ and 5’-TCCA- 
CCACCCTGTTGCTGTA-3’. Quantitative PCR was 
carried out with an ABI Prism 7900HT Sequence 
Detection System (Applied Biosystems, Foster 
City, CA, USA). The PCR reactions were pre-
pared using the components from the Platinum 
qRT-PCR kit and assembled according to the 
manufacturer’s instructions (Qiagen). The 
threshold cycle, CT, which correlates inversely 
with the levels of target mRNA, was measured 
as the number of cycles at which the reporter 
fluorescence emission exceeds the preset 
threshold level. The amplified transcripts were 
quantified using the comparative CT method 
[48], with the formula for relative fold change = 
2-DDCT. Each run was completed with a melting 
curve analysis to confirm the specificity of 
amplification and lack of primer dimmers. Each 
experiment was run three times and each sam-
ple was run in triplicate. 

Western blots

Spinal tissues were collected in the same way 
as the procedure of quantitative PCR. Tissues 
were homogenized in extraction buffer contain-
ing protease and phosphatase inhibitors 
(Sigma, St. Louis, MO, USA), 0.5% Triton X-100, 
50 mM Tris-HCl, 150 mM NaCl, 1 mM ethylene-
diaminetetraacetic acid (EDTA), and 3% sodium 
dodecyl sulfate (SDS). The homogenate was 
centrifuged at 14,000 rpm for 15 min at 4°C, 
and the supernatant was used for Western 
immunoblotting. The protein concentration of 
the supernatant was determined using a bicin-
choninic acid (BCA) kit (Pierce Biotechnology 
Inc., Rockford, IL, USA). Equivalent amounts 
(20 µg) of protein from each sample were load-
ed into a Nu-PAGE 4-12% Bis-Tris Gel (Invitrogen, 
Carlsbad, CA, USA) and transferred onto a nitro-
cellulose membrane. The membrane was 
blocked with 5% nonfat milk in Tris-HCl buffer 
containing 0.1% Tween 20, pH 7.4 (TBS-T) for 1 
h at room temperature and then incubated 

Rats were randomly assigned to five groups (10 
in each). Group 1 received neither intra-tibial 
operation nor intrathecal catheter implanta-
tion, and served as Naive group. Group 2 
received between intra-tibial injection of 3 μL 
Hank’s solution and intrathecal injection of 10 
μl artificial cerebrospinal fluid (aCSF), and 
served as Control group. Group 3 received 
between intra-tibial injection of 3 μL MADB-106 
(7.2 × 109 cells μL) and intrathecal injection of 
10 μl aCSF, and served as the BCP group. While 
rats in group 4 and 5 received intra-tibial injec-
tion of 3 μL MADB-106 as well as im- 
planted intrathecally with Ad5F35, Ad5F35-
Pik3cbsiRNA (10 μl), which served as Ad5F35 
and PI3KcbsiRNA group, respectively. All groups 
received intra-tibial injection 5 days after intra-
thecal catheter implantation. From the 7th day 
of intra-tibial injection, Ad5F35 and Ad5F35-
PI3KcbsiRNA were injected intrathecally into 
group 4 and 5 respectively, and injections were 
given daily for six consecutive days.

Behavioral testing

Animals were acclimated to the testing room 
for 30 min in individual Plexiglass test cham-
bers with wire mesh floors. Tactile sensitivity 
was evaluated with von Frey filaments 
(Stoelting, Wood Dale, IL, USA) having buckling 
forces between 0.4 and 15 g, and applied per-
pendicularly to the mid-plantar surface of the 
ipsilateral hind paws of intra-tibial injection in 
rats, with sufficient force to bend the filament 
slightly for 5 s. The threshold was determined 
using the up-down testing paradigm. Rapid lift-
ing of the hindpaw or licking and vigorously 
shaking in response to stimulation were regard-
ed as a positive responses [44]. The 50% paw 
withdrawal threshold (PWT) was calculated 
using the nonparametric Dixon test [45, 46]. 
Any rat with a basal paw withdrawal threshold 
below 10 g on either paw was excluded from 
the study. All testing was performed by an 
experimenter who was blinded to the contents 
of the intrathecal injection.

Quantitative PCR

Following the last behavioural testing day (day 
14 after intra-tibial injection), animals (n = 6) 
were decapitated and L4-6 lumbar spinal seg-
ments were harvested and kept at -80°C. The 
methods for quantitative PCR (Q-PCR) were 
essentially as described previously [7, 47]. 
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overnight at 4°C with rabbit anti-P-Akt ser 473 
(1:1000). The membrane was washed with 
TBS-T and then incubated with goat anti-rabbit 
HRP (horse-radish peroxidase)-linked second-
ary antibody (Cell Signaling) for 1 h on the next 
day. After incubation the membrane was 
exposed to SuperSignal West Femto substrate 
(Pierce Biotechnology, Inc.) to enhance the sig-
nal. Following exposure to X-ray film, mem-
branes were stripped and reprocessed for one 
more protein of interest and then for β-actin 
(mouse anti-β-actin, 1:10,000, Sigma) as a 
loading control. Immunoblots were scanned 
and densitometric analysis performed using 
ImageQuant (AmershamBiosciences, Piscata- 
way, NJ, USA). Immunoblot density was normal-
ized to controls run on the same gel.

Immunohistochemistry

Following the last behavioural testing day, rats 
(n = 4) were deeply anesthetized and transcar-
dially perfused with room temperature heparin-
ized 0.9% saline, which contained phosphatase 
inhibitors (Sigma) followed by chilled 4% para-
formaldehyde in 0.1 M phosphate buffer. The 
lumbar (L4-6) spinal segments were removed 
and post-fixed in perfusate for 6 h and trans-
ferred, first to 20% sucrose for 4 hs and then to 
30% sucrose until they sank for cryoprotection. 
Tissue was kept at 4°C. The fixed lumbar 
enlargements were embedded in O.C.T. com-
pound (Tissue-Tek, Torrance, CA, USA) snap fro-
zen, and transverse sections (20 μm) from 
L3-S1 were cut on a Leica CM 1800 cryostat. 
Sections were mounted on Superfrost Plus 

glass slides (Fisher Scientific, Pittsburgh, PA, 
USA) and labeled with rabbit anti-OX-42 (microg-
lia, 1:100; BioSource International, Camarillo, 
CA, USA) and mouse anti-glial fibrillary acidic 
protein (GFAP) (astrocytes, 1:500; Chemicon). 
After a three-minute washing in PBS, sections 
were incubated for 2 h at R.T. with the second-
ary antibody, biotinylated goat anti-rabbit IgG 
(Vector Laboratories Inc., Burlingame, USA) for 
1 h at 4°C. Immunoreactive signals were fur-
ther amplified by ABC solution (1:100; Vector 
Laboratories Inc.) [49]. Control sections were 
processed similarly, except that primary anti-
bodies were omitted. Reported results were 
surveyed in a minimum of four animals under 
each condition and clearly immunopositive 
cells were counted, under blinded conditions. 
Cells were counted following staining five or 
more sections from each animal. A score was 
observed under low and medium magnifica-
tions based on the following scale: baseline 
staining (0), mild response (+), moderate 
response (++), and intense response (+++). The 
criteria for each score have been described in 
detail previously [50-52]. 

Statistical analysis

Paw data were expressed as means ± S.E.M. 
and subjected to statistic evaluation using two-
way analysis of variance (two-way ANOVA) fol-
lowed by post-hoc comparison (Student-
Newman- Keuls test) to confirm significant dif-
ferences between groups. Values of P < 0.05 
were considered as statistically significant.

Results

Intrathecal PI3Kcb siRNA reverses mechanical 
allodynia 

The functional consequence of knockdown of 
PI3Kcb was examined in BCP rats following 
local delivery of siRNA-PI3Kcb to spinal cord (n 
= 6 each group). No significant differences in 
PWT to tactile stimulation were found at all time 
points in Naive group and Control group, 
respectively. No significant differences in PWT 
were found at all time points in BCP group and 
Ad5F35 group. In first six days after intra-tibial 
operation, PWT in BCP group was not signifi-
cantly different from that in Control group (P < 
0.05), whereas on 8-14 day after operation, dif-
ferences were remarkable between the two 
groups (*P < 0.01). On 10-14 day after opera-

Table 1. Immunohistochemical results for 
GFAP and OX-42 activation in spinal cord 
from the tested rats on days 14 after opera-
tion
Group Astrocyte Microglia
Naive 0 0
Control 0 0
BCP +++ +++
Ad5F35 +++ +++
PI3KcbsiRNA + +
Note: Scoring is as follows: 0, normal unactivated tis-
sues; +, mild activation; ++, moderate activation; +++ 
intense activation. There was no significant difference for 
GFAP and OX-42 immunostaining both in spinal dorsal 
horns between rats from BCP group and Ad5F35 group, 
where there was significant difference for GFAP and OX-
42 immunostaining both in spinal dorsal horns between 
rats from BCP group and PI3KcbsiRNA group.
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Intrathecal PI3Kcb siRNA suppressed glial ac-
tivation in the bone cancer pain model

A low-power image showed that the activation 
of GFAP and OX-42 was observed between 
group BCP and group Ad5F35 at days 14 after 
operation (n = 4 each group). And activated 
astrocytes demonstrated profoundly cell prolif-
eration and hypertrophy, whereas the resting 
astrocytes displayed small round nuclei and 
slender processes. The result found that 
Pik3cbsiRNA treatment markedly inhibited the 
activation of GFAP and OX-42 at days 14 after 
operation. In terms of immunohistochemical 
scores (Table 1), there was no significant differ-
ence for GFAP and OX-42 immunostaining in 
spinal dorsal horns between BCP group and 
Ad5F35 group, where there was significant dif-
ference for GFAP and OX-42 immunostaining 
between BCP group and PI3KcbsiRNA group.

Discussion

This study investigates the utility of a vector-
based approach of siRNA to knockdown PI3Kcb 
in the spinal cord dorsal horn (SCDH) in adult 
rats of bone cancer pain. The PI3Kcb gene was 
selected because it is essential for PI3K family 
functions, and the PI3K and PI3K-PKB/Akt sig-
nal pathway may play very critical roles in the 
production and maintain of chronic pain, which 
makes it feasible to assess behaviorally the 
consequences of a decrease in PI3K-PKB/Akt 
signal function. 

Several recent reports have demonstrated the 
intrathecal utility of adenovirus vectors for anti-
nociceptive effect in the CNS [53] and the 
effective method for adenoviral-mediated deliv-
ery of siRNA to repair the diseased or injured 
tissue [54-56]. Adenovirus vectors can be pro-
duced in high titers, and have advantages of 
infection of both dividing and nondividing cells, 
reproducibility and safety, and can transduce 
postmitotic neurons in the brain and SCDH in a 
highly spatially localized manner [53]. This 
study demonstrated the utility of Ad5F35 vec-
tors for gene silencing in the CNS using siRNA 
technology.

In the present study, we investigated the 
expression both spinal PI3Kcb and P-Akt in 
bone cancer pain induced by intra-tibial injec-
tion of MADB-106 mammary gland carcinoma 
cells, and the results indicated the protein lev-

tion, PWT in PI3KcbsiRNA group was not signifi-
cantly different from that in Control group (P < 
0.05), whereas significant differences in PWT 
were found between PI3KcbsiRNA group and 
Ad5F35 group (*P < 0.05, **P < 0.01), and 
there were obvious differences in PWT between 
PI3KcbsiRNA group and BCP group (*P < 0.05, 
#P < 0.01). 

siRNA-mediated knockdown of PI3Kcb de-
creased bone cancer pain-induced PI3Kcb 
expression

The effect of Ad5F35-Pik3cbsiRNA on spinal 
Pik3cb protein expression was evaluated by 
quantitative PCR (n = 6 each group). No signifi-
cant differences in Pik3cb protein expression 
were found at day 14 after operation between 
Naive group and Control group, between BCP 
group and Ad5F35 group, respectively. At day 
14 after operation, Pik3cb protein in BCP group 
evidently augmented when compared with that 
in Control group (**P < 0.01), whereas Pik3cb 
protein in PI3KcbsiRNA group significantly 
decreased when compared with that in BCP 
group (*P < 0.01). Pik3cb protein in PI3KcbsiRNA 
group was not significantly different from that 
in Control group at day 14 after operation (P < 
0.05).

PI3Kcb siRNA inhibited bone cancer pain-
induced spinal P-Akt expression

In order to further determine the regulation of 
PI3Kcb siRNA on PI3K-PKB/Akt signal pathway 
in the spinal cord, western blot analysis was 
preformed to detect changes of downstream of 
PI3K (n = 6 each group). As PI3K is upstream of 
kinase Akt phosphorylation, we also used Akt 
phosphorylation as an indicator of the activa-
tion of PI3K-PKB/Akt pathway. Bone cancer 
pain produced a large increase of protein level 
of P-Akt in spinal cord at days 14 after opera-
tion (**P < 0.01, versus control group). We 
examined the effect of intrathecal administra-
tion of Ad5F35-Pik3cbsiRNA on protein expres-
sion by western blot analysis, and found that 
Pik3cbsiRNA treatment resulted in marked 
decreases of P-Akt protein levels at days 14 
after operation (*P < 0.01, versus BCP group or 
siRNAPI3Kcb group). The results confirmed that 
specific disruption of PI3Kcb led to the reduc-
tion of well-known PI3K downstream target, 
P-Akt.
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cancer pain increased glia excitability. Our 
results indicated that siRNA-mediated gene 
silencing of PI3Kcb reversed bone cancer pain 
hypersensitivity, and provided a useful thera-
peutic strategy for bone cancer pain.
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