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Abstract

Composites incorporating two-dimensional nanostructures within polymeric matrices hold 

potential as functional components for several technologies, including gas separation. 

Prospectively, employing metal-organic-frameworks (MOFs) as versatile nanofillers would 

notably broaden the scope of functionalities. However, synthesizing MOFs in the form of free 

standing nanosheets has proven challenging. We present a bottom-up synthesis strategy for 

dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and 

nanometer thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant 

composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together 

with an unusual and highly desired increment in the separation selectivity with pressure. As 

revealed by tomographic focused-ion-beam scanning-electron-microscopy, the unique separation 

behaviour stems from a superior occupation of the membrane cross-section by the MOF 

nanosheets as compared to isotropic crystals, which improves the efficiency of molecular 

discrimination and eliminates unselective permeation pathways. This approach opens the door to 

ultrathin MOF-polymer composites for various applications.

High-aspect-ratio nanostructured materials with extended lateral dimensions and 

(sub)nanometer thickness often exhibit exotic physicochemical properties radically different 
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from those of their isotropic (bulk) counterparts. As a result, two-dimensional nanostructures 

are highly interesting components for advanced structures[1] and functional materials for 

applications including (opto)electronics[2], energy storage and gas separation[3,4]. This has 

stimulated keen interest in devising innovative synthesis routes towards two-dimensional 

(2D) nanostructured materials. Essentially, these methodologies can be grouped in two 

categories. On one hand, top-down exfoliation approaches rely on the disintegration of 

three-dimensional layered solids[5,6,7]. However, shortcomings such as fragmentation, 

morphological damage[4] and re-aggregation of the detached sheets are often associated with 

these methods. On the other hand, although scarce, bottom-up strategies which produce 

ultrathin materials at their genesis are preferred. In this case, 2D nanostructures might be 

achieved by either imposing anisotropic crystal growth[8] or restricting thermodynamically 

favoured layer stacking processes [9].

Metal-organic-frameworks are crystalline coordination polymers in which a hybrid array of 

metallic nodes interconnected by organic linkers defines a regular and porous 

structure[10,11,12]. MOFs display pores and cavities in the range of molecular dimensions 

whose size, connectivity and dynamic interaction with target guest molecules can be 

regulated by the judicious selection of the organic and inorganic building blocks among a 

virtually unlimited number of possibilities[13,14]. These properties endow MOFs with an 

enormous application potential where molecule discrimination via preferential adsorption or 

molecular sieving is important, e.g. drug delivery, catalysis, and gas separation[15,16,17]. 

Specifically, the use of MOF-based membranes to selectively remove specific components 

from gas mixtures holds the promise to cause a breakthrough in several processes of 

economic and environmental significance[17,18].

All-MOF membranes built upon the packing of discrete crystals[19] face challenges which 

limit their applicability, e.g. complex manufacture and processing, often alongside 

suboptimal mechanical stability[20]. As a trade-off between the selective host-molecule 

interactions of MOFs and the mechano-chemical stability and easy processing of polymers, 

MOF-polymer composite materials have been proposed for gas separation processes[21,22]. 

However, conventional MOF synthesis procedures render agglomerated powders consisting 

of isotropic micron-sized crystals or barely dispersible nano-particles. This complicates their 

subsequent incorporation within a polymer matrix and restricts the integration of the two 

components in the ultimate composite, e.g. by promoting phase segregation. As a result, the 

benefits of incorporating MOF fillers within polymer matrices for gas separation 

applications have remained modest and manifested at relatively high MOF loadings, where 

the mechanical integrity of the composite is often compromised[23]. Encouraging results 

have been recently reported using sub-micron sized MOF filler crystals[24,25]. Intuitively, 

the availability of high-aspect-ratio, ideally ultrathin, MOF nanostructures would represent 

an advanced solution to improve the integration between both components in the composite 

materials, thereby circumventing the aforementioned hurdles. Bidimensional MOF 

structures have been manufactured on solid substrates via layer-by-layer or epitaxial growth 

approaches[18,26]. However, the synthesis of free-standing MOF nanosheets, which is central 

to intimately blend them into polymers and produce spatially uniform composites, has as yet 

remained a challenge. Here we present a bottom-up synthesis strategy leading to highly 
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crystalline, intact MOF nanosheets that can be readily dispersed into a polymer matrix 

rendering composite materials with superior performance when applied as membranes in gas 

separation.

Synthesis of free-standing MOF nanosheets

To illustrate our synthesis approach we have selected the copper 1,4-benzenedicarboxylate 

(CuBDC) MOF as showcase. This material, initially synthesized by Mori et al.[27], shows a 

layered crystalline structure and holds promise for the separation of polar gas molecules, 

such as CO2, via selective adsorption[28,29]. Its crystalline structure consists of CuII dimers 

with a square-pyramidal coordination geometry interconnected by benzenedicarboxylate 

anions, constituting layers which stack along the  crystallographic direction (Fig. 

1a)[30]. The network of metal nodes and organic linkers defines nanopores which run along 

the stacking direction. The conventional solvothermal synthesis protocol yields 

predominantly well-defined cubic MOF crystals with edge dimensions ranging from 2 to 10 

μm (Supplementary Fig. S1). Close-up inspection of the crystals reveals that they actually 

consist of multiple, closely packed lamellae (Fig. 1b).

Our bottom-up synthesis strategy to produce MOF nanosheets relies on the diffusion-

mediated modulation of the MOF growth kinetics. As schematically illustrated in Fig. 1c, 

the synthesis medium consists of three liquid layers composed of mixtures of DMF and a 

suitable miscible co-solvent in appropriate ratios, that are vertically arranged according to 

their different densities, i.e. a topmost solution of Cu(NO3)2 and a bottom solution of 1,4-

benzenedicarboxylic acid (BDCA), separated by an intermediate solvent layer. Under static 

conditions, diffusion of Cu2+ cations and BDCA linker precursors into the spacer segment 

causes a slow supply of the MOF nutrients to an intermediate region where the growth of 

MOF crystals occurs locally in a highly diluted medium. No immiscible liquid phases are 

involved in the proposed synthesis method, as opposed to interfacial reaction strategies 

where the extent of an organic/aqueous interface determines the surface available for MOF 

growth[31]. The nascent MOF crystals are naturally removed from the reactive front by 

sedimentation, after which further growth is inhibited in the Cu2+-depleted underlying 

organic phase. X-ray diffraction of the solid product showed only three reflections which 

can be indexed as the ,  and  crystallographic planes of the CuBDC 

structure, all perpendicular to the stacking direction of the layers in the bulk MOF crystals 

and to the pore openings (Fig. 1d). None of the additional Bragg diffractions of the bulk 

counterpart were detected, indicative of the successful synthesis of MOF structures showing 

a strong preferential orientation along the basal plane. Scanning electron and atomic-force 

microscopies showed square lamellae displaying lateral dimensions of 0.5-4 μm and 

thicknesses in the range of 5-25 nm, i.e. aspect ratios exceeding 20 (Fig. 1e,f and Fig. S1). 

Transmission electron microscopy (Supplementary Fig. S2) verified the highly regular 

morphology and the absence of internal structural defects in the obtained MOF nanosheets.

The versatility and scope of the MOF nanosheet synthesis strategy was further investigated 

by assessing the impact of relevant reaction parameters and exploring alternative MOF 
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building units. Under otherwise identical synthesis conditions, omission of the intermediate 

buffer layer resulted in CuBDC crystals displaying notably smaller aspect ratios as a result 

of their up to micrometer scale thickness along the stacking direction (Supplementary Figure 

S3). As illustrated in Figure 2, control of the crystal growth kinetics, via adjustment of the 

synthesis temperature, enables variation of the thickness of the CuBDC MOF nanosheets. 

Upon increasing the synthesis temperature, the MOF crystal morphology evolved from 

ultrathin nanosheets (with average thickness <10 nm) at 298 K to thicker platelets at 323 K. 

At a higher temperature of 333 K, the anisotropic crystal growth was not preserved, and the 

synthesis yielded primarily CuBDC nanometric crystals, with aspects ratios close to unity 

and sizes in the range of 30-500 nm, coexisting with few bulkier crystals and platelets. The 

nature of the co-solvent employed serves also to modify the crystal growth behavior to 

obtain CuBDC crystals with different aspect ratios (Supplementary Figure S4). In addition, 

the same synthesis methodology can be successfully extended to produce high-aspect-ratio 

sheet crystals of a variety of layered MOF structures via either substitution of Cu2+ for 

alternative metal nodes, e.g. Co2+ and Zn2+ (Fig. 2e,f), or BDC for alternative dicarboxylate 

linkers (Fig. 2g,h), which represent powerful strategies to tune the MOF porosity and 

functionality. No surfactants or tensioactive additives are employed to modify the crystal 

growth pattern. Thus, application of the three-layer synthesis strategy to MOFs with 

propensity to more isotropic growth modes essentially preserved their crystal morphology, 

although modulation of the crystal growth resulted in sub-micron sized MOF crystals 

(Supplementary Figure S5). Collectively, these results underscore the versatility of the 

synthesis methodology to produce free-standing, 2D nanocrystals of several metal-organic-

frameworks.

Microporous MOFs containing coordinatively unsaturated (cus) copper sites, including 

CuBDC [28], but also related frameworks such as copper hydroxyterephthalate (Cu(OH-

BDC))[32], and copper 1,3,5-benzenetricaboxylate (Cu(BTC))[33,34], show potential for gas 

separation applications owing to their preferential CO2 adsorption over apolar molecules 

such as CH4 and N2. Figure 3a shows the N2 sorption isotherms (77 K) for the herein 

synthesized bulk-type and nanosheet CuBDC MOFs.

The MOF nanosheets feature a specific surface area (SBET) of 53 m2 g−1, which is mostly 

external, as deduced from the corresponding t-plot analysis, and is ca. fivefold higher than 

that of the bulk material (SBET 11 m2 g−1). Effective blockage of N2 and Ar from the 

microporous structure in both cases indicates that effective pore apertures smaller than the 

crystallographic value of 5.2 Å [35,36] are obtained following the herein adopted synthesis 

and activation procedures. The N2 uptake observed at high relative pressures (P/P0>0.7) in 

the nanosheet material, featuring a H1-type hysteresis loop, and which is totally absent in 

the bulk solid, is characteristic of the “house-of-cards” interparticle porosity previously 

described for other delaminated materials[5,8,37,38]. Figure 3b displays the CO2 and CH4 

adsorption isotherms for CuBDC in both crystal morphologies. The isotherms show a type I 

shape, characteristic of microporous materials[39], with CO2 uptakes at 1 bar (750 torr) of 

1.29 and 0.82 mmol g−1 for b-CuBDC and ns-CuBDC, respectively. The obtained values are 

in good agreement with previous reports on the bulk material[28,36]. The slightly higher gas 

uptake determined for b-CuBDC over ns-CuBDC might be ascribed to the contribution of 
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inter-lamella voids to adsorption in the former. Analysis of the CO2 adsorption isotherms 

with the Dubinin-Radushkevich formalism[40] revealed analogous micropore specific 

surface areas of 288 and 267 m2 g−1 for the bulk and nanosheet MOF crystals, respectively. 

Irrespective of the crystal morphology, the materials show a significant preference for CO2 

adsorption over CH4. Ideal CO2/CH4 selectivities, determined as the ratio of the single 

component sorption capacities at every pressure, are similar for both crystal morphologies 

(3.9±0.5), comparable to those reported for related MOF structures comprising cus copper 

sites such as Cu(BTC)[34] and Cu(OH-BDC)[32]. The obtained results for ns- and b-CuBDC 

demonstrate the similar intrinsic sorption properties of both MOF crystal morphologies and 

demonstrate the suitability of the CuBDC framework for the selective removal of CO2 from 

CO2/CH4 gas mixtures.

MOF-polymer composites assembly and structure

The structural and physicochemical properties of the CuBDC MOF nanosheets, alongside 

their free-standing and dispersible nature, represent promising features for their integration 

in advanced composites for gas separation applications. To test this potential, MOF-polymer 

composites were prepared by incorporating CuBDC nanosheets within a polyimide (PI) 

matrix at different filler loadings (2-12 wt%). The nanosheets were dispersed in a solution of 

commercially available PI. Next, the composites were cast as thin membranes with a 

thickness of 30-50 μm (Supplementary Fig. S7) and activated under dynamic vacuum at 453 

K. The same procedure was employed to prepare comparative composites incorporating 

either bulk-type or sub-micron sized (nanoparticle) isotropic CuBDC MOF crystals as 

fillers, as well as a MOF-free polymeric film. The resulting composites are hereafter labelled 

as x-CuBDC(y)@PI, where x is ns, b or nc for CuBDC nanosheet, bulk and nanoparticle 

crystals, respectively, and y indicates the MOF weight-loading. The internal structure of the 

composite membranes was studied with tomographic focused-ion-beam scanning-electron-

microscopy (FIB-SEM)[41,42] as illustrated in Fig. 4 for ns-CuBDC(8)@PI and b-

CuBDC(8)@PI. A trench was carved on the upper surface of the membranes using a FIB 

(Fig. 4a) and a series of SEM micrographs were recorded of cross-sections exposed upon 

successive FIB milling of thin slices (Figs. 4b,c). After alignment of the stack of 

micrographs, the imaged volumes were reconstructed in 3D. The full tomograms are 

provided as Supplementary Videos 1 and 2, while Figs. 4e,f display surface-rendered views 

after segmentation of different phases. The MOF content in the examined volume was very 

close to the overall loading (Supplementary Methods). Despite the identical filler content, 

striking differences in the nanostructure were immediately evident. Whereas the regular 

MOF crystals leave a significant fraction of the composite volume unoccupied in b-

CuBDC(8)@PI, due to their bulky nature, the MOF lamellae are uniformly distributed over 

the inspected volume for ns-CuBDC(8)@PI.

Image analysis of the FIB-SEM tomograms allowed quantification of a number of structural 

parameters of the composite membranes (Fig. 5). The MOF nanosheets in ns-

CuBDC(8)@PI exposed ca. one order of magnitude larger surface area than the bulk-type 

crystals incorporated to b-CuBDC(8)@PI (2.2·10−3 vs. 2.9·10−4 nm2/nm3 MOF), 

enormously increasing their interaction with gas molecules. Of particular relevance for the 

separation performance is the extent to which the MOF filler occupies the membrane cross-
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section perpendicular to the gas flux, i.e. perpendicular to the pressure gradient established 

over the membrane during the separation process. Such flux direction is normal to the basal 

plane of the membranes, corresponding to the y-axis in the tomograms depicted in Fig. 4. 

Fig. 5 shows the 2D projections of the reconstructed FIB-SEM tomograms as well as the 

evolution of the MOF surface coverage as a function of the membrane depth along the y-

axis.

Significant variations in the local MOF coverage at different membrane depths are observed 

for b-CuBDC(8)@PI, corresponding to alternating regions with high and low MOF content 

due to the bulky character of the crystals. In sharp contrast, the MOF nanosheets occupy 

very uniformly the membrane cross-section at all depths. As a result, the effective MOF 

surface occupation, accumulated over an identical sampled depth of 5 μm, is almost three 

times higher, i.e. 94% versus 36%, for the composite membrane incorporating CuBDC 

nanosheets. An intermediate case, with 51% accumulated coverage, is realized with CuBDC 

isotropic nanocrystals as fillers at the same MOF loading (Supplementary Figure S8). The 

statistical orientation of the MOF nanosheets in ns-CuBDC(8)@PI was also investigated. 

Notably deviating from a random orientation, the histogram shows a strong prevalence of 

lamellae oriented at angles close to 90° with respect to the gas flux direction (Fig. 5e). 

Similar preferential orientations of nanosized two-dimensional objects within viscous 

matrices have been previously encountered under external shear forces[43] as those applied 

during the casting of the membranes investigated here, suggesting their relevance for the 

ultimate nanosheet orientation in the MOF nanosheet-polymer composite films. The 

preferential orientation of the MOF nanosheets means that the efficiency with which the 

lamellae cover the membrane cross-section, exposing their pore system in the direction of 

the gas flux, is close to maximum (Fig. 5f), thereby minimizing the filler content and the 

membrane thickness required for an effective coverage. In summary, image analysis results 

directly prove how the incorporation of CuBDC nanosheets results in a notably superior 

occupation of the membrane cross-section perpendicular to the gas flux by the molecular 

sieve, increasing the likelihood of repeated molecule discrimination events and efficiently 

eliminating MOF-free diffusion pathways.

Gas separation application

To assess their technological relevance, the MOF-polymer composite membranes were 

tested in the separation of CO2 from CO2/CH4 mixtures. The selective recovery of CO2 

from gas mixtures is central for a number of energy-related processes as well as to reduce 

the emissions of greenhouse gases to the atmosphere[44]. Exemplary, CO2 is a main impurity 

in most natural and shale gas wells. Its separation from CH4 is mandatory for the processing 

and transport of these carbon resources as it decreases significantly the calorific power and 

contributes to pipeline corrosion. While conventional amine absorption technologies are 

energy intensive and employ hazardous chemicals, the development of membranes for the 

selective separation of CO2 holds the promise for an energy-efficient and environmentally 

benign alternative[45,46]. As shown in Fig. 6, the incorporation of bulk-type CuBDC crystals 

into the polyimide matrix slightly worsens the separation selectivity as compared to a neat 

polyimide reference membrane. This result is illustrative of the discouraging separation 

performances previously encountered for composite membranes incorporating bulky, 
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isotropic filler crystals[23]. It can be attributed to the disruption of the polymer chains due to 

the presence of the bulky filler particles, which worsens the intrinsic separation properties of 

the polymeric matrix and favors the generation of unselective nano- or micro-voids at the 

filler-matrix boundary. The use of smaller, sub-micron sized CuBDC crystals results in a 

slight improvement in the separation selectivity, which nevertheless underperforms the neat 

polymeric membrane. However, the beneficial role of the MOF nanosheets as filler material 

is immediately apparent. At every studied trans-membrane pressure difference, the 

separation selectivity for ns-CuBDC(8)@PI is 30-80% higher than for the polymeric 

membrane and 75% to 8-fold higher than for the b-CuBDC(8)@PI counterpart in the range 

of operation conditions investigated. The similar intrinsic sorption properties of bulk-type 

and nanosheet CuBDC crystals cannot account for such remarkable differences in separation 

performance, which are therefore attributed to the different MOF crystal morphology, which 

is in turn key for the filler-polymer integration and the occupation of the gas permeation 

pathways by the molecular sieve. Most remarkably, the selectivity achieved with ns-

CuBDC(8)@PI is retained or even increases slightly upon increasing the upstream pressure. 

This significant finding is completely opposite to the general observation for both polymeric 

and conventional MOF-polymer membranes[47], that the separation selectivity drops on 

incrementing the partial pressure of CO2. Such classical behavior is exemplified here by the 

performance of the neat polymer (PI), but also composites containing isotropic filler 

particles such as nc-CuBDC(8)@PI and most notably b-CuBDC(8)@PI, incorporating 

bulkier MOF crystals. This phenomenon, which represents a notorious challenge to the 

state-of-the-art membranes, has been associated to the swelling of the polymer matrix upon 

increasing the uptake of the highly sorbing CO2, which promotes the formation of less 

selective pathways for the permeating gases.

The superior occupation of the membrane cross-section by the nanosheet filler, uniformly at 

different depth levels, has two positive effects on the separation performance. First, it results 

in repeated gas discrimination events, contributing to higher separation selectivity, albeit at 

lower gas permeabilities. This is exemplified by a relationship found for ns-CuBDC(x)@PI 

membranes between the filler cross-section coverage and the selectivity increment - and 

CO2 permeability decrease - with respect to the neat polymer (Supplementary Figure S9). 

Second and most remarkably, it effectively counteracts the undesired plasticization effect, as 

the depletion of MOF-free permeation pathways enables the intrinsic separation properties 

of the MOF nanosheets to sustain the separation performance at higher operation pressures, 

when the separation capacity of the polymeric matrix deteriorates. Additionally, the near-

optimal orientation of the ultrathin nanofiller permits a reduction in the MOF content and 

membrane thickness, resulting in incremented CO2 permeability without significant 

penalties in the separation selectivity (Supplementary Table S1). Preliminary results indicate 

that an additional approach to increase gas permeability, though at the expense of separation 

selectivity, is to employ nanosheets of a wider-pore MOF as filler material (Supplementary 

Figure S10). Overall, these results emphasize the potential technological significance of the 

MOF nanosheet-polymer composite materials.

Our findings underline the relevance of structuring the metal-organic-framework component 

in the form of high-aspect-ratio nanosheets to design advanced composite membranes, 
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providing a direction to reduce the thickness required to meet a given separation 

performance. Next to gas separation, we envisage the versatile synthesis route and the 

advanced structural diagnostics strategy presented here, to enable the rational development 

of a variety of MOF-based and other composite materials for technological applications 

where integrating a functional component in ultrathin devices is essential, such as light-

emitting diodes, solar-light harvesting, sensing, food packaging and functional coatings and 

textiles.

Methods summary

Synthesis of CuBDC MOF nanosheets

CuBDC metal-organic-framework nanosheets were synthesized in a glass test tube. A linker 

solution composed of 30 mg of H2BDC dissolved in a mixture of 2 mL of DMF and 1 mL of 

CH3CN was poured to the tube bottom. Over this solution, a mixture of 1 mL of DMF and 1 

mL of CH3CN was carefully added to prevent premature mixing of the two solutions 

containing the precursors. Finally, a metal precursor solution composed of 30 mg of 

Cu(NO3)2·3H2O dissolved in a mixture of 1 mL of DMF and 2 mL of CH3CN was also 

carefully added to the tube as the top layer. The synthesis proceeded at 313 K for 24 h in 

static conditions, and the resulting precipitate was collected by centrifugation and 

consecutively washed 3 times with DMF (1 mL each step) followed by another 3 times with 

CHCl3 (1 mL each step). The resulting material was left suspended in CH2Cl2 until the 

synthesis of the composite materials.

Synthesis of MOF-polymer composites, thin membrane casting and gas separation 
experiments

The polymer Matrimid 5218 (0.4 g), was stepwise added to a MOF suspension to obtain a 

final mass ratio solvent/(MOF+polymer) of 90/10. The MOF/polymer mass ratio was 

selected to achieve the desired final MOF loading in the composite materials. For the casting 

of membranes, the viscous suspension was poured on a flat surface and shaped as a thin film 

under shear forces by a doctor Blade knife. Next, the solvent was removed by evaporation, 

first by natural convection at room temperature for 8 hours, followed by a treatment in a 

vacuum oven at 453 K (75.01 torr) for 12 h. Gas permeation experiments were performed 

with an equimolar CO2/CH4 mixture as feed. In all cases, separation selectivity and gas 

permeability values are reported after a steady operation regime was reached 

(Supplementary Figure S11).

FIB-SEM tomography

Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) experiments were performed 

in a DualBeam Strata 235 (FEI) and an AURIGA Compact (Zeiss) microscopes. Slices with 

nominal thickness of 52 nm were milled away by the FIB, operating at 30 kV and 7·103 pA. 

Between 124 and 150 individual SEM micrographs of the consecutive cross-sections 

exposed upon milling were recorded, at magnifications of 12000-25000, with a Secondary 

Electron Detector operated at 5 kV. The stack of images was aligned to an external feature 

on the membrane surface using a cross-correlation algorithm, and a stretching operation in 

the y-direction was performed to correct the foreshortening caused by the tilt angle between 
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the specimen cross-section and the SEM detector. To quantify parameters of interest from 

the reconstructed FIB-SEM tomograms, segmentation of the different phases, i.e. polymer 

matrix, MOF particles and internal voids, was performed in Avizo (FEI Visualization 

Sciences Group).

Further details on the experimental methods can be found in the Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Synthesis and structure of metal-organic framework nanostructures
a, 3D crystalline structure of CuBDC MOF. Copper, oxygen and carbon atoms are shown in 

blue, red and grey respectively. The insets on the right hand side display views along the b 

(top) and c (bottom) crystallographic axis showing the stacking direction and the pore 

system, respectively. Hydrogen atoms and N,N,-dimethylformamide solvate molecules 

coordinated to Cu2+ ions have been omitted for clarity. b, Scanning electron micrograph of 

bulk-type CuBDC MOF crystals. c, Picture showing the spatial arrangement of different 

liquid layers during the synthesis of CuBDC MOF nanosheets. Layers labeled as i, ii, and iii 

correspond to a benzene 1,4-dicarboxylic acid (BDCA) solution, the solvent spacer layer 

and the solution of Cu2+ ions, respectively. To enhance visualization, 2-amino 1,4-

benzenedicarboxylic acid, which shows a yellow color shade, has been employed as phase i 

to produce the illustrative picture presented. A close-up schematic representation of the 

concentration gradients established for Cu2+ and linker precursors at the spacer layer is also 

depicted. d, X-ray diffractograms (CuKα radiation) for bulk-type and nanosheet CuBDC 

metal-organic-framework. Panels e and f, show a scanning electron micrograph and an 

atomic-force micrograph (with corresponding height profiles), respectively, for CuBDC 

MOF nanosheets synthesized as illustrated in panel c.
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Figure 2. Versatility and scope of the three-layer synthesis strategy to produce two-dimensional 
MOF nanocrystals
a-d, Scanning electron microscopy (SEM) images of CuBDC crystals synthesized via the 

three-layer approach at a, 298 K, b, 313 K, c, 323 K and d, 333 K. e-h, SEM micrographs of 

two-dimensional crystals obtained by extending the same synthesis strategy to other metal-

organic-frameworks, i.e. e, cobalt 1,4-benzenedicarboxylate or CoBDC, f, zinc 1,4-

benzenedicarboxylate or ZnBDC, g, copper 1,4-naphthalenedicarboxylate or Cu(1,4-NDC) 

and h, copper 2,6-naphthalenedicarboxylate or Cu(2,6-NDC). Insets in panels e-h display 

the corresponding X-ray diffractograms recorded for the 2D MOF crystals.
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Figure 3. Sorption properties of CuBDC MOF crystals
a, N2 sorption isotherms at 77 K; b, CO2 (circles) and CH4 (diamonds) sorption isotherms at 

273 K; for bulk-like (red) and nanosheet (blue) CuBDC crystals after washing and 

evacuation at 453 K. The inset to panel a shows the Ar sorption isotherm at 87 K for the 

nanosheet crystals. Open symbols correspond to adsorption branches while closed symbols 

correspond to desorption branches.
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Figure 4. Tomographic FIB-SEM analysis of MOF-polymer composite membranes
a, Overview scanning electron micrograph of the trench carved with a focused-ion-beam 

(FIB) on the surface of an 8 wt.% MOF-polymer composite membrane. The yellow frame 

indicates a central region within the imaged cross-section, which was selected for further 

analysis. b,c, Representative SEM micrographs of cross-sections of composite membranes 

containing bulk-type (b) and nanosheet (c) CuBDC metal-organic-framework embedded in 

polyimide. MOF species appear as bright motifs on the dark grey polymer matrix. Cubic 

MOF crystals are perceived in panel b, while ultrathin MOF nanosheets are evident in panel 

c. d, Orthogonal cross-sections through the 3D reconstructed FIB-SEM tomogram of a 

MOF-polymer composite. e,f, Surface-rendered views of the segmented FIB-SEM 

tomograms for composite membranes containing bulk-type (e) and nanosheet (f) CuBDC 

metal-organic-framework embedded in polyimide. MOF particles are displayed in blue, 

while voids are represented in red. Given the different magnification required to image the 

features of interest for different composite membranes, the dimensions of the boxes shown 

in panels e and f along the x:y:z directions are 11.2:11.2:7.6 and 4.9:4.9:6.6 μm, 

respectively.
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Figure 5. Image analysis of FIB-SEM tomograms for MOF-polymer composite membranes
Full projections along the y-direction of the reconstructed volumes (a,c) and evolution of the 

coverage of the membrane xz cross-section by MOF particles, (b,d) for composite 

membranes containing bulk-type (a,b) and nanosheet (c,d) CuBDC metal-organic-

framework embedded in polyimide. In panels a and c, the MOF particles are depicted 

partially transparent to better perceive overlaps in the direction of the projection. Error bars 

in panels b and d correspond to the standard deviation (%). e, Angular histogram showing 

the orientation of MOF lamellae with respect to the gas flux direction (y axis) for a 

composite material containing MOF nanosheets embedded in polyimide. f, Histogram of the 

efficiency with which the individual MOF nanosheets cover the membrane cross-section, 

defined as the ratio between the area of the MOF lamellae (Alam) and that projected on the 

plane perpendicular to the gas flux (Aproj), as schematically depicted in the inset to the panel. 

In the same inset figure, α represents the angle of inclination of each MOF lamellae with 

respect to the y-axis. Green bars correspond to experimental data while the red line shows 

the exponential fit. See experimental methods in the Supplementary Information for more 

details on the tomogram image analysis procedures.
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Figure 6. Application of the MOF-polymer composites in a gas separation process
Separation selectivity, defined as the ratio between the permeability of CO2 and CH4, as a 

function of the pressure difference over the membrane for the MOF-polymer composites 

when employed as membranes in the separation of CO2 from an equimolar CO2/CH4 

mixture at 298 K. For comparison purposes, results for a neat polyimide membrane (PI) are 

also presented. The data correspond to steady operation conditions, after at least 8 hours on 

stream. CO2 permeabilities spanned in the range of 2.8-5.8 Barrer, while CH4 permeabilities 

were lower than 0.3 Barrer in all cases (see Supplementary Table S1). 1 Barrer = 10−10 cm3 

(STP) cm−1 s−1 cmHg−1. Error bars correspond to the standard deviations, as determined 

from three independent tests with selected membranes. When not displayed, error bars are 

smaller than the symbols.

Rodenas et al. Page 17

Nat Mater. Author manuscript; available in PMC 2015 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


