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Abstract

The optimal medium for cardiac differentiation of adult primitive cells remains to be established. 

We quantitatively compared the efficacy of IGF-1, dynorphin B, insulin, oxytocin, bFGF, and 

TGF-β1 in inducing cardiomyogenic differentiation. Adult mouse skeletal muscle-derived Sca1+/

CD45-/c-kit-/Thy-1+ (SM+) and Sca1-/CD45-/c-kit-/Thy-1+ (SM−) cells were cultured in basic 

medium (BM; DMEM, FBS, IGF-1, dynorphin B) alone and BM supplemented with insulin, 

oxytocin, bFGF, or TGF-β1. Cardiac differentiation was evaluated by the expression of cardiac-

specific markers at the mRNA (qRT-PCR) and protein (immunocytochemistry) levels. BM+TGF-

β1 upregulated mRNA expression of Nkx2.5 and GATA-4 after 4 days and Myl2 after 9 days. After 

30 days, BM+TGF-β1 induced the greatest extent of cardiac differentiation (by morphology and 

expression of cardiac markers) in SM− cells. We conclude that TGF-β1 enhances cardiomyogenic 

differentiation in skeletal muscle-derived adult primitive cells. This strategy may be utilized to 

induce cardiac differentiation as well as to examine the cardiomyogenic potential of adult tissue-

derived stem/progenitor cells.
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Introduction

Results from numerous studies in animals indicate that therapy with adult stem/progenitor 

cells can ameliorate left ventricular (LV) remodeling and improve LV function after 

myocardial infarction [9, 18, 25]. Based on this phenomenological evidence, several clinical 

trials of cell therapy for cardiac repair have been completed or are in progress [1]. Although 

controversial, differentiation of transplanted cells into cells of cardiac lineages has been 

proposed as one of the mechanisms underlying these beneficial effects. Therefore, it is 

crucial to determine the cardiomyogenic potential of transplanted cells in vitro prior to 

transplantation in vivo. In this regard, it is important to formulate culture conditions that can 

predictably induce cardiomyocytic differentiation in candidate cells for cardiac repair in 

vivo. However, the impact of different growth factors/cytokines on the cardiomyogenic 

differentiation of adult stem/progenitors in vitro has not been systematically investigated.

We have previously reported that specific subsets of adult skeletal muscle-derived primitive 

cells can undergo cardiomyocytic differentiation in vitro [35]. In this study, we 

quantitatively examined the ability of six specific growth factors/cytokines in five 

combinations to induce cardiomyocytic differentiation in two subsets (Sca-1+/CD45-/c-kit-/

Thy-1+ [SM+] cells and Sca-1-/CD45-/c-kit-/Thy-1+ [SM−] cells) of skeletal muscle-

derived adult primitive cells in vitro. These factors (insulin-like growth factor [IGF]-1 [5], 

dynorphin B [32], insulin [29], oxytocin [22], basic fibroblast growth factor [bFGF] [28], 

and transforming growth [TGF]-β1 [6, 21] were selected because of their known 

involvement in cardiac development and/ or their ability to induce cardiac differentiation in 
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various stem cell lines. To our knowledge, this is the first systematic comparison of the 

ability of different growth factors and cytokines to induce cardiomyocytic differentiation in 

adult primitive cells in vitro in a controlled setting.

Materials and methods

The investigation conforms to the principles of laboratory animal care according to the 

Guide for the Care and Use of Laboratory Animals (Department of Health and Human 

Services, NIH Publication No. 86-23, revised 1996).

Animals

Adult C57BL/6 mice (age 6–10 weeks, body wt 20– 25 g) were used. Mice were bred and 

maintained at Indiana University according to protocols approved by the laboratory animal 

research facility (LARC) of the Indiana University School of Medicine. Each experimental 

group of donor C57BL/6 mice was obtained from the same litter.

Isolation of skeletal muscle-derived primitive cells

Cells were isolated according to previously published methods [35]. Briefly, following 

euthanasia, the hind limbs were removed and placed in Dulbecco’s Modified Eagle Medium 

(DMEM, Invitrogen). Adipose tissue and large vasculature were removed carefully with fine 

forceps and discarded. Skeletal muscle (sartorius, quadriceps, adductors, soleus, and 

gastrocnemius muscles) was carefully dissected, excised from tendons, and placed in 15 ml 

of fresh medium. Muscle tissue was triturated by repeated gentle pipetting and centrifuged at 

500 rpm for 10 min. The pelleted muscle tissue was digested in collagenase I (220 U/ml, 

Worthington Biochemical) and Dispase (33 U/ml, BD Biosciences) in 50 ml of DMEM for 

45 min at 37°C with gentle agitation [35]. Cells were then filtered through a 40-µm cell 

strainer into a sterile 50-ml conical tube. Viability was assessed by Trypan blue (Sigma) 

staining. Approximately 4 × 106 cells were obtained from each donor mouse.

Flow cytometric cell sorting

Freshly isolated cells were pelleted in PBS containing 1% FBS (HyClone), and FITC-

conjugated monoclonal antimouse Sca-1 (E13–161.7, BD Pharmingen), allophycocyanin 

(APC)-conjugated monoclonal antimouse CD45 and c-kit (30-F11 and 2B8, respectively, 

BD Pharmingen), and biotin-conjugated antimouse Thy-1.2 (53-2.1, BD Pharmingen) 

primary antibodies were added simultaneously. PE-conjugated streptavidin (Caltag 

Laboratories) was added subsequently. All staining was performed at 4°C for 20 min, and 

cells were washed with PBS supplemented with 1% FBS after staining. Flow cytometric cell 

sorting was performed using a MoFlo (Dako) and a FACS Vantage SE [35]. The sorting 

strategy is summarized in Fig. 1. Sorted cells were collected into tubes containing 2 ml 

DMEM with 10% FBS. Isolated cells were reanalyzed immediately after sorting to 

determine purity of sorting. The viability of sorted cells always exceeded 90%.

Cell culture

Freshly isolated SM+ and SM− cells were seeded at 5,000 cells/plate in gelatin-coated 22-

mm diameter plates. The basic medium (BM) consisted of DMEM supplemented with 10% 
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FBS, IGF-1 (25 nM [2]; R&D Research), and dynorphin B (1 µM [32]; NeoMPS). IGF-1 

and dynorphin B, both of which have been shown to induce cardiac differentiation [2, 32], 

were added to the BM to synergistically augment the overall cardiomyogenic effects of these 

media. To determine the impact of specific supplements on cardiomyogenic differentiation, 

cells were cultured in BM alone and BM supplemented with insulin (10 µg/ ml [3]; Sigma), 

oxytocin (0.1 µM [22]; Becham California), bFGF (20 ng/ml [23, 30]; R&D Research), or 

TGF-β1 (2.5 ng/ml [6]; R&D Research). These concentrations were based on our careful 

review of the literature. We specifically avoided using a higher dose of TGF-β1 to obviate 

the induction of osteoblastic features [14]. Half of the medium was changed twice a week 

and cells were allowed to differentiate for 30 days.

Phenotypic analysis

Cells in each of 10 groups were evaluated on a daily basis under light microscopy and 

images were acquired using a digital camera (MRC5, Carl Zeiss, Inc., Thornwood, NY) and 

the Axiovision software (Carl Zeiss) to document changes in cellular morphology.

Assessment of mRNA expression by real-time qRT-PCR

For the analysis of mRNA expression of markers of cardiac differentiation (Nkx2.5, 

GATA-4, and Myl2), total mRNA was isolated from freshly isolated cells SM+ and SM− 

cells and after 4 and 9 days of culture (RNeasy, Qiagen), and reverse-transcribed (TaqMan, 

Applied Biosystems). Quantitative assessment of mRNA expression of all of the genes of 

interest and β2-microglobulin was performed by real-time qRT-PCR using an ABI PRISM® 

7000 System [35].

All of the primer sequences are provided in supplemental Table 1. Primers were designed 

with the Primer Express software. A 25-µl reaction mixture containing 12.5 µl of SYBR 

Green PCR Master Mix and 10 ng of forward and reverse primers was used. The threshold 

cycle (Ct), i.e., the cycle number at which the amount of amplified gene of interest reached a 

fixed threshold, was subsequently determined. Relative quantitation of mRNA expression 

was calculated with the comparative Ct method. The relative quantitative value of target, 

normalized to an endogenous control β2-microglobulin gene and relative to a calibrator, was 

expressed as 2−ΔΔCt (−fold difference), where ΔCt = (Ct of target genes [Nkx2.5, GATA-4, 

and Myl2]) – (Ct of endogenous control gene [β2-microglobulin]), and ΔΔCt = (ΔCt of 

samples for target gene) – (ΔCt of calibrator for the target gene). To avoid the possibility of 

amplifying contaminating DNA (1) all of the primers for real-time RT-PCR were designed 

to contain an intron sequence for specific cDNA amplification; (2) reactions were performed 

with appropriate negative controls (template-free controls); (3) a uniform amplification of 

the products was rechecked by analyzing the melting curves of the amplified products 

(dissociation graphs); and (4) the melting temperature (Tm) was 57–60°C with the probe Tm 

at least 10°C higher than the primer Tm [35]. Three independent experiments were 

performed for each set of genes.

Immunocytochemistry

The expression of cardiac-specific transcription factors (cTFs) and structural proteins (cSPs) 

was examined by immunocytochemical staining after 30 days of differentiation [35]. 
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Briefly, cells were fixed (4% paraformaldehyde), permeabilized (0.2% Triton X-100), 

blocked (10% donkey serum) and incubated with primary antibodies against Nkx2.5 (Santa 

Cruz), GATA-4 (Santa Cruz), cardiac myosin heavy chain (cMyHC, Novus Biologicals), α-

sarcomeric actin (Sigma), and a panel of primary antibodies against specific markers of 

noncardiac lineages (as described below) at a concentration of 1:100–1:200 for 16 h at 4°C. 

Following washing with PBS, appropriate fluorochrome-conjugated secondary antibodies 

(Jackson Immunoresearch) were added at a concentration of 1:100. Following staining with 

DAPI, cells were washed with PBS and a coverslip was applied for microscopic 

examination. Appropriate negative and specific positive controls were employed for each 

antigen to ensure the specificity of staining.

Quantitative assessment of cardiomyocytic differentiation

All images were acquired using a LSM 510 (Zeiss) confocal microscope. For quantitative 

assessment of the expression of cardiac-specific antigens, 500 cells/plate on average were 

systematically evaluated in multiple fields from all four quarters of the plate [35]. As 

previously reported [12, 33, 35], cardiac-specific transcription factors (Nkx2.5 [12, 35] and 

GATA-4 [33, 35]) were noted both in cytoplasm and in the nucleus. Cells with nuclear 

staining with or without cytoplasmic staining were counted as positives. For the purpose of 

exclusion, we also stained cells for markers specific for several noncardiac lineages (skeletal 

muscle [myogenin and Myf5]; neuron [nestin and GFAP]; fibroblast [PDGFR-α and -β]; 

chondrocyte [collagens I and II]; epithelial cell [cytokeratin 17]; macrophage [CD68]; and 

others) [35]. This rigorous approach enabled us to specifically identify cells with a 

cardiomyocytic phenotype. Cells that were positive for cardiac-specific markers and 

negative for noncardiac lineage markers were counted as positive, and the total number of 

cells in each field was calculated based on nuclear staining with DAPI. The percentage of 

cells differentiating into cardiomyocytes was calculated as the number of positive cells 

divided by the total number of nuclei in the field [35]. These experiments were performed in 

triplicate.

Statistical analysis

Data are mean ± SEM. The percentage of cells with a cardiac phenotype and quantitative 

mRNA data (-fold changes in mRNA levels) for cardiac-specific markers was analyzed with 

one-way or two-way (time and group) ANOVA. If the ANOVA showed an overall 

difference, post hoc contrasts were performed with Student’s t tests for unpaired data, and 

the resulting probability values were adjusted according to the Bonferroni correction 

(SPSS). A P < 0.05 was considered statistically significant.

Results

Isolated skeletal muscle-derived primitive cells

Skeletal muscle-derived primitive cells were isolated by FACS. Based on the expression of 

Sca-1, CD45, c-kit, and Thy-1, cells were sorted into Sca-1+/CD45-/ c-kit-/Thy-1+ (SM+) 

and Sca-1-/CD45-/c-kit-/Thy-1 + (SM−) populations according to the protocol summarized 

in Fig. 1.
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Impact of media composition on cell morphology during culture

Within the first 48 h after plating, both SM+ and SM− cells adhered to the gelatin-coated 

surface. During culture, SM+ cells cultured in all five different media exhibited greater 

morphological heterogeneity compared with SM− cells (Fig. 2a – e). During the 2nd–4th 

weeks, SM+ cells cultured in BM alone gradually differentiated into a combination of large 

flat cells with epithelial morphology and positive immunostaining for cytokeratin 17 (Fig. 

2f), isolated spindle-shaped cells, oval cells with endothelial morphology, and scattered 

cellular aggregates with an adipocytic phenotype (Fig. 2a). Addition of insulin (Fig. 2b) or 

oxytocin (Fig. 2c) to the BM resulted in markedly greater differentiation into adipocytes. 

Although BM+bFGF (Fig. 2d) and BM+TGF-β1 (Fig. 2e) induced differentiation into varied 

phenotypes, the frequency of spindle-shaped cells was less compared with SM− cells in 

respective media. In addition, SM+ cells cultured in BM+bFGF (Fig. 2d) and BM+TGF−β1 

(Fig. 2e) exhibited greater predisposition to differentiate into myotubes (Fig. 2g – j). 

Overall, SM+ cells exhibited greater propensity to differentiate into an adipose phenotype in 

all media.

Compared with SM+ cells, SM− cells cultured in all five media combinations exhibited 

greater morphological homogeneity (Fig. 3a – e). SM− cells cultured in BM alone 

differentiated into cells with epithelial and endothelial phenotypes with isolated spindle-

shaped cells (Fig. 3a). SM− cells in BM+insulin (Fig. 3b) and BM+oxytocin (Fig. 3c) 

differentiated into similar combinatorial phenotypes with predominant epithelial cells. In 

contrast, a greater fraction of SM− cells cultured in BM+bFGF (Fig. 3d) and BM+TGF–β1 

(Fig. 3e) showed predominantly spindle-shaped morphology. However, a fraction of these 

SM− cells cultured in BM+bFGF gradually acquired the phenotype characteristic of 

myotubes, while the mononucleate spindle-shaped SM− cells in BM+TGF–β1 

predominantly remained isolated with formation of occasional small clusters. Spontaneous 

rhythmic contractions were observed in both single cells and clusters of small cells in BM

+TGF-β1 medium.

Analysis of mRNA expression of cardiac markers

The expression of Nkx2.5 was greater in all media at 4 days of culture as compared with 9 

days, and greater in SM− cells compared with SM+ cells (Fig. 4). In SM− cells, the 

expression of Nkx2.5 was greatest in cells cultured in BM+TGF–β1, and to a lesser extent in 

BM alone and BM+bFGF (Fig. 4). The expression of GATA-4 followed a similar pattern 

except that the greatest expression was in SM− cells cultured in BM+bFGF, followed by 

BM+TGF-β1, and BM alone (Fig. 4). Compared with SM+ cells, Myl2 expression was 

uniformly greater in SM− cells, particularly in presence of bFGF and TGF-β1. Importantly, 

Myl2 expression was greater after 9 days compared with levels after 4 days of culture. These 

observations are consistent with the paradigm that the expression of transcription factors 

would logically precede the expression of structural proteins during lineage commitment. 

Although SM+ cells expressed low levels of Myl2 (a structural protein) at 4 and 9 days, the 

expression of Nkx2.5 and GATA-4 (transcription factors) was clearly detectable in SM+ cells 

at these time-points (Fig. 4). Cell type-specific differences in the time-course of antigen 

expression may be responsible for the differential expression levels of Myl2 in SM− and SM

+ cells at these earlier time-points.
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Impact of media composition on cardiomyogenic differentiation

Freshly isolated SM+ and SM− cells were allowed to differentiate in five different media 

combinations. After 30 days, cells were immunostained for cardiac-specific transcription 

factors (Nkx2.5 and GATA-4) and cardiac-specific structural proteins (cMyHC and α-

sarcomeric actin). Fig. 3f – i demonstrates cardiomyocytic differentiation of SM− cells 

cultured in medium containing BM+TGF-β1. After 30 days, BM alone, BM+insulin, BM

+oxytocin, BM+bFGF, and BM+TGF-β1 induced cardiac differentiation in 11.1 ± 1.0%, 6.2 

± 0.4%, 7.1 ± 1.0%, 9.7 ± 0.8%, and 13.1 ± 1.5% of SM+ cells, respectively (Fig. 5). In 

cultured SM− cells, BM alone, BM+insulin, BM+oxytocin, BM+bFGF, and BM+TGF-β1 

induced cardiac differentiation in 14.0 ± 1.3%, 9.3 ± 1.0%, 10.1 ± 0.2%, 14.0 ± 1.1% and 

21.6 ± 1.6% cells, respectively (Fig. 5). Addition of insulin or oxytocin to BM significantly 

attenuated cardiac differentiation. BM+TGF-β1 was most effective in inducing 

cardiomyogenic differentiation of SM− cells. Compared with insulin, oxytocin, and bFGF, 

addition of TGF-β1 also resulted in greater cardiac differentiation of SM+ cells. These 

findings are consistent with data from mRNA analysis, which showed that addition of TGF-

β1 enhanced the expression of both cardiac-specific transcription factors and structural 

proteins. In addition, we observed spontaneous rhythmic contractions in SM− cell-derived 

cardiomyocytic cells (supplemental Video 1) confirming their cardiomyocytic nature. 

Overall, compared with SM+ cells, SM− cells exhibited greater predisposition to undergo 

cardiomyocytic differentiation (Fig. 5). The myotube differentiation rate was not determined 

because cells were cultured in cardiomyogenic media, and because these myotubes 

frequently fused to form syntitia, thereby precluding an accurate cell count.

Discussion

In order to improve the outcomes of cell therapy for cardiac repair, it is imperative to 

critically evaluate the ability of the candidate cell to differentiate into cardiac lineages in 

vitro. However, little consensus exists regarding the most effective medium composition for 

inducing cardiac differentiation in vitro. Our results demonstrate that: (1) the addition of 

TGF-β1 to medium containing IGF-1 and dynorphin B significantly enhances 

cardiomyogenic differentiation of adult skeletal muscle-derived primitive cells; (2) the 

addition of insulin or oxytocin reduces cardiac differentiation and promotes adipocytic 

differentiation; and (3) SM− cells exhibit greater predisposition to differentiate into a 

cardiomyocytic phenotype, indicating that this specific cell type is inherently more 

amenable to cardiac differentiation. These results have considerable implications for the 

selection of media for in vitro experiments aimed at identifying the most suitable cell 

population for cardiac repair in vivo.

Members of the TGF-β superfamily play important roles in cardiac development during 

embryogenesis [27, 31] as well as in various cardiac pathologies [24, 34]. TGF-β1 has been 

shown to induce cardiac differentiation in vitro in embryonic explants and stem cells [6, 21] 

as well as in adult bone marrow-derived cells [14]. Our results show that compared with 

other combinations, the BM+TGF-β1 combination is most effective in inducing 

cardiomyocytic differentiation of SM− cells in vitro, an effect that was verified by 

morphological examination as well as expression of cardiac-specific transcription factors 
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and structural proteins at the mRNA and protein levels. TGF-β1 enhanced the expression of 

Nkx2.5 and GATA-4 at 4 days of culture, which was followed by increased expression of 

structural proteins (Myl2 at day 9, and cMyHC and α-sarcomeric actin at later stages). 

Following TGF-β1 receptor binding, the receptor-regulated Smads (R-Smads: Smad2 and 

Smad3) are phosphorylated and form a complex with the common-mediator Smad (Co-

Smad: Smad4) that migrates to the nucleus and binds to specific DNA sequences leading to 

transcriptional activation [31]. Importantly, the regulatory region of the Nkx2.5 gene, an 

early [17] and essential [19] transcription factor for cardiomyogenesis, contains several 

Smad [16] as well as GATA [7] binding sites. Notwithstanding the complex and poorly 

understood interaction between Nkx2.5, GATA-4, and other factors during cardiac 

development, it is plausible that TGF-β1-induced cardiac differentiation is triggered via 

Smad activation of Nkx2.5 and GATA-4, which is followed by the expression of cardiac 

structural proteins.

In a recent study by Li et al. [15], TGF-β1 induced differentiation of bone marrow-derived 

CD117+ cells into immature cardiomyocytes in vitro. Importantly, in a previous study [14], 

transplantation of TGF-β1-primed CD117+ cells into infarcted hearts resulted in myocyte 

regeneration and improvement in LV function. In our study, while a rigorous assessment of 

the cardiomyocyte phenotype via a combinatorial approach (morphology, transcription 

factor, structural protein, spontaneous contraction) enabled an accurate assessment of the 

comparative efficacy of different growth factors in cardiac differentiation induction, whether 

these cardiomyocytic cells achieved the status of mature cardiomyocytes in vitro remained 

unclear. Therefore, to address this issue of maturity from a translational standpoint, future 

studies will be necessary to investigate whether TGF-β1-pre-differentiated SM− cells can 

improve LV structure and function in vivo following transplantation into the infarcted heart.

bFGF (FGF-2) also induced expression of Nkx2.5 and GATA-4; however, 

immunocytochemical quantitation revealed significantly less cardiac differentiation. 

Although bFGF is expressed in the developing heart [28], its role on cardiac specification 

vs. proliferation is unclear [21, 29]. In the study by Hidai et al. [10], FGF-2 suppressed the 

expression of retinoic acid-induced GATA-4 expression, and promoted skeletal muscle 

differentiation in embryonal P19 cells. Interestingly, inhibition of FGFR-1, which serves as 

a receptor for both FGF-1 and FGF-2, was able to block the expression of GATA-4 without 

affecting α-MyHC expression. In the study by Barron et al. [4], transient exposure to FGF-2 

with continuous BMP-2 presence was able to induce a contractile phenotype in non-

precardiac mesoderm. However, longer exposure to FGF-2 was necessary to achieve Nkx2.5 

induction. Our results are consistent with this dichotomy between the induction of cardiac 

transcription factors vs. structural proteins by bFGF, and its role in skeletal myogenesis. 

Further studies will be necessary to determine the signaling machinery activated by bFGF in 

adult primitive cells.

IGF-1 receptor is expressed in the developing heart [5] and IGF-1 has been shown to induce 

cardiac differentiation of transplanted embryonic stem cells [13]. Similarly, the P19 

embryonal cells express prodynorphin, and dynorphin B can induce cardiac differentiation 

in these cells [32]. In our study, although BM (containing IGF-1 and dynorphin B) alone 

upregulated the expression of Nkx2.5 and GATA-4 in SM− cells, cardiomyocytic 
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differentiation was considerably less than that achieved with the addition of TGF-β1. These 

differences from previous reports could be accounted for by the differences in substrates, 

embryonic cells vs. adult primitive cells.

The addition of insulin to BM negatively impacted the expression of cardiac markers. In 

addition, insulin induced marked adipocytic differentiation. In previous studies, insulin has 

been shown to induce contractility in embryonic explants [29] and promote cardiac 

differentiation in embryonic neural precursors [3]. Similar observations have been made in 

adult bone marrow-derived mesenchymal stem cells [26]. It is plausible that adding insulin 

to a medium containing IGF-1 and dynorphin B negatively impacted cardiac differentiation. 

Similarly, the addition of oxytocin also reduced cardiac differentiation compared with BM 

alone and promoted an adipocytic phenotype. Oxytocin is expressed in the developing heart 

[11], and the evidence supporting a role of oxytocin in cardiac differentiation comes 

primarily from studies that used the embryonal P19 cells [8, 22]. Interestingly, amongst 

adult cells, the cardiomyogenic properties of oxytocin has been documented in Sca-1+ 

cardiac progenitors [20]. However, in our study, the effects of oxytocin in Sca-1+ (SM+) 

and Sca-1-(SM−) cells were similar. Thus, the role of oxytocin in cardiac differentiation of 

non-cardiac adult primitive cells remains to be established.

The current results also expand our previous observations regarding the impact of Sca-1 

expression on cardiac differentiation of CD45-/c-kit-/Thy-1 + adult skeletal muscle-derived 

cells [35]. Compared with SM− cells, SM+ cells consistently exhibited lower levels of 

cardiac-specific gene and protein expression in response to the various growth factors used, 

indicating that the negative influence of Sca-1+ expression on cardiac differentiation of 

skeletal muscle-derived CD45-/c-kit-/Thy-1+ primitive cells [35] is independent of the 

culture medium. The greater cardiomyocytic differentiation of SM− cells vs. SM+ cells with 

the same growth factors implies cell type-specific differences. Therefore, these results also 

underscore the importance of carefully selecting the candidate cell for cardiac repair.

Our study has several limitations. First, we did not demonstrate calcium transients in 

differentiated cells. Instead, we documented spontaneous rhythmic contractions in 

cardiomyocytic cells in culture (supplemental Video 1). Second, the cardiomyogenic effects 

of insulin and oxytocin might have been influenced by the presence of IGF-1 and dynorphin 

B in the BM. However, both IGF-1 and dynorphin B are known to induce cardiomyogenesis 

[2, 32], and their presence was therefore more likely to synergistically augment the 

cardiomyogenic effects in all arms. Since the composition of BM was constant in all groups, 

our comparison remains valid. Finally, we did not fully assess whether these SM− cell-

derived cardiomyocytes in vitro attained features consistent with mature adult 

cardiomyocytes, a question that may perhaps be addressed better in a more conducive milieu 

in vivo following transplantation into the infarcted heart.

In conclusion, our results indicate that TGF-β1 enhances cardiomyogenic differentiation of 

skeletal muscle-derived adult primitive cells. This influence was achieved via the 

upregulation of Nkx2.5 and GATA-4 expression. These results may have considerable 

implications for the formulation of optimal medium for the induction of cardiac 
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differentiation in vitro, and selecting the candidate cell population for therapeutic cardiac 

repair in vivo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We gratefully acknowledge Barbara Turgeon for expert secretarial assistance. This study was supported in part by 
NIH grants R01 HL-72410, HL-55757, HL-68088, HL-70897, HL-76794, HL-78825, and R21 HL-89737.

References

1. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-
Mallah M, Dawn B. Adult bone marrow-derived cells for cardiac repair: a systematic review and 
meta-analysis. Arch Intern Med. 2007; 167:989–997. [PubMed: 17533201] 

2. Antin PB, Yatskievych T, Dominguez JL, Chieffi P. Regulation of avian precardiac mesoderm 
development by insulin and insulin-like growth factors. J Cell Physiol. 1996; 168:42–50. [PubMed: 
8647921] 

3. Bani-Yaghoub M, Kendall SE, Moore DP, Bellum S, Cowling RA, Nikopoulos GN, Kubu CJ, Vary 
C, Verdi JM. Insulin acts as a myogenic differentiation signal for neural stem cells with 
multilineage differentiation potential. Development. 2004; 131:4287–4298. [PubMed: 15294865] 

4. Barron M, Gao M, Lough J. Requirement for BMP and FGF signaling during cardiogenic induction 
in non-precardiac mesoderm is specific, transient, and cooperative. Dev Dyn. 2000; 218:383–393. 
[PubMed: 10842364] 

5. Bassas L, Lesniak MA, Serrano J, Roth J, de Pablo F. Developmental regulation of insulin and type 
I insulin-like growth factor receptors and absence of type II receptors in chicken embryo tissues. 
Diabetes. 1988; 37:637–644. [PubMed: 2966086] 

6. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzic A, Puceat M. Stem cell 
differentiation requires a paracrine pathway in the heart. Faseb J. 2002; 16:1558–1566. [PubMed: 
12374778] 

7. Brown, CO3rd; Chi, X.; Garcia-Gras, E.; Shirai, M.; Feng, XH.; Schwartz, RJ. The cardiac 
determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel 
upstream enhancer. J Biol Chem. 2004; 279:10659–10669.

8. Danalache BA, Paquin J, Donghao W, Grygorczyk R, Moore JC, Mummery CL, Gutkowska J, 
Jankowski M. Nitric oxide signaling in oxytocin-mediated cardiomyogenesis. Stem Cells. 2007; 
25:679–688. [PubMed: 17138963] 

9. Dawn B, Bolli R. Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue 
commitment. Basic Res Cardiol. 2005; 100:494–503. [PubMed: 16237509] 

10. Hidai C, Masako O, Ikeda H, Nagashima H, Matsuoka R, Quertermous T, Kasanuki H, Kokubun 
S, Kawana M. FGF-1 enhanced cardiogenesis in differentiating embryonal carcinoma cell cultures, 
which was opposite to the effect of FGF-2. J Mol Cell Cardiol. 2003; 35:421–425. [PubMed: 
12689822] 

11. Jankowski M, Danalache B, Wang D, Bhat P, Hajjar F, Marcinkiewicz M, Paquin J, McCann SM, 
Gutkowska J. Oxytocin in cardiac ontogeny. Proc Natl Acad Sci USA. 2004; 101:13074–13079. 
[PubMed: 15316117] 

12. Kodama H, Hirotani T, Suzuki Y, Ogawa S, Yamazaki K. Cardiomyogenic differentiation in 
cardiac myxoma expressing lineage-specific transcription factors. Am J Pathol. 2002; 161:381–
389. [PubMed: 12163362] 

13. Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, Swijnenburg RJ, Tanaka M, Weissman 
IL, Robbins RC. Insulin-like growth factor promotes engraftment, differentiation, and functional 
improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells. 2004; 
22:1239–1245. [PubMed: 15579642] 

Abdel-Latif et al. Page 10

Basic Res Cardiol. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



14. Li TS, Hayashi M, Ito H, Furutani A, Murata T, Matsuzaki M, Hamano K. Regeneration of 
infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-
beta-preprogrammed bone marrow stem cells. Circulation. 2005; 111:2438–2445. [PubMed: 
15883211] 

15. Li TS, Komota T, Ohshima M, Qin SL, Kubo M, Ueda K, Hamano K. TGF-β induces the 
differentiation of bone marrow stem cells into immature cardiomyocytes. Biochem Biophys Res 
Commun. 2008; 366:1074–1080. [PubMed: 18158919] 

16. Liberatore CM, Searcy-Schrick RD, Vincent EB, Yutzey KE. Nkx-2.5 gene induction in mice is 
mediated by a Smad consensus regulatory region. Dev Biol. 2002; 244:243–256. [PubMed: 
11944934] 

17. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP. Nkx-2.5: a novel murine homeobox gene 
expressed in early heart progenitor cells and their myogenic descendants. Development. 1993; 
119:419–431. [PubMed: 7904557] 

18. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP. Cardiac regeneration by resident stem and 
progenitor cells in the adult heart. Basic Res Cardiol. 2007; 102:101–114. [PubMed: 17216393] 

19. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and 
morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5 . 
Genes Dev. 1995; 9:1654–1666. [PubMed: 7628699] 

20. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, 
Sato T, Nakaya H, Kasanuki H, Komuro I. Adult cardiac Sea-1-positive cells differentiate into 
beating cardiomyocytes. J Biol Chem. 2004; 279:11384–11391. [PubMed: 14702342] 

21. Muslin AJ, Williams LT. Well-defined growth factors promote cardiac development in axolotl 
mesodermal explants. Development. 1991; 112:1095–1101. [PubMed: 1935698] 

22. Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J. Oxytocin induces 
differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci USA. 2002; 
99:9550–9555. [PubMed: 12093924] 

23. Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T. FGF-2 controls the 
differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest. 2005; 
115:1724–1733. [PubMed: 15951838] 

24. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL. Transforming 
growth factorbeta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-
restricted overexpression of tumor necrosis factor. Basic Res Cardiol. 2008; 103:60–68. [PubMed: 
18034274] 

25. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008; 451:937–942. [PubMed: 
18288183] 

26. Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, Sin YK, Lim CH, Chua T, Teh M, Liu TC, 
Sim E. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like 
cells. Biochem Biophys Res Commun. 2004; 324:481–488. [PubMed: 15474453] 

27. Solloway MJ, Harvey RP. Molecular pathways in myocardial development: a stem cell 
perspective. Cardiovasc Res. 2003; 58:264–277. [PubMed: 12757862] 

28. Spirito P, Fu YM, Yu ZX, Epstein SE, Casscells W. Immunohistochemical localization of basic 
and acidic fibroblast growth factors in the developing rat heart. Circulation. 1991; 84:322–332. 
[PubMed: 1711938] 

29. Sugi Y, Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on 
terminal cardiac myogenesis in vitro. Dev Biol. 1995; 168:567–574. [PubMed: 7729588] 

30. Ulloa-Montoya F, Verfaillie CM, Hu WS. Culture systems for pluripotent stem cells. J Biosci 
Bioeng. 2005; 100:12–27. [PubMed: 16233846] 

31. Valdimarsdottir G, Mummery C. Functions of the TGF-β superfamily in human embryonic stem 
cells. Apmis. 2005; 113:773–789. [PubMed: 16480449] 

32. Ventura C, Maioli M. Opioid peptide gene expression primes cardiogenesis in embryonal 
pluripotent stem cells. Circ Res. 2000; 87:189–194. [PubMed: 10926868] 

33. Winitsky SO, Gopal TV, Hassanzadeh S, Takahashi H, Gryder D, Rogawski MA, Takeda K, Yu 
ZX, Xu YH, Epstein ND. Adult murine skeletal muscle contains cells that can differentiate into 
beating cardiomyocytes in vitro. PLoS Biol. 2005; 3:e87. [PubMed: 15757365] 

Abdel-Latif et al. Page 11

Basic Res Cardiol. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



34. Wollert KC. Growth-differentiation factor-15 in cardiovascular disease: from bench to bedside, 
and back. Basic Res Cardiol. 2007; 102:412–415. [PubMed: 17546529] 

35. Zuba-Surma EK, Abdel-Latif A, Case J, Tiwari S, Hunt G, Kucia M, Vincent RJ, Ranjan S, 
Ratajczak MZ, Srour EF, Bolli R, Dawn B. Sca-1 expression is associated with decreased 
cardiomyogenic differentiation potential of skeletal muscle-derived adult primitive cells. J Mol 
Cell Cardiol. 2006; 41:650–660. [PubMed: 16938308] 

Abdel-Latif et al. Page 12

Basic Res Cardiol. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Representative dot-plots show the expression (in percentage) of Sca-1 (FITC), CD45 (APC), 

c-kit (APC), and Thy-1.2 (PE) in skeletal muscle-derived cells. Blue lines indicate regions 

included into the sorting logic. From region 1 (R1), CD45-/c-kit- cells positive for Thy-1.2 

are identified in region 5 (R5). Based on Sca-1 expression, cells from R5 are divided into 

Sca-1 +/CD45-/c-kit-/Thy-1 + (SM+) cells in region 7 (R7) and Sca-1-/CD45-/c-kit-/Thy-1+ 

(SM−) cells in region 6 (R6). The percentages in R6 and R7 relate to the total number of 

cells in R1. FSC forward scatter characteristics, SSC side scatter characteristics
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Fig. 2. 
Representative light microscopic images of SM+ cells after 30 days of differentiation 

demonstrating the effects of culture media composition on cellular morphology. Panels a–c 
show the heterogeneous (epithelial, endothelial, adipose, and others) morphology of SM+ 

cells cultured in basic medium (BM) containing IGF-1 and dynorphin B (a), and BM 

supplemented with insulin (b), or oxytocin (c). Exposure of SM+ cells to insulin or oxytocin 

increased differentiation into an adipose phenotype. Supplementation of BM with bFGF (d) 

or TGF-β1 (e) resulted in enhanced myotube formation from SM+ cells. Morphological 

observations were confirmed via immunostaining (f–j). Panel f shows differentiation of SM

+ cells cultured in BM supplemented with insulin into epithelial cells positive for the 

epithelial cytoskeletal marker cytokeratin 17 (red). Panels g–j show representative images of 

SM+ cells stained for the cardiac-specific marker cardiac myosin heavy chain (i,j red), and 

skeletal muscle-specific transcription factor myogenin (h–j, green). Nuclei are stained with 

DAPI (f,g,i,j, blue). Myogenin expression was localized to nuclei (H,l, exemplified by 

arrowheads). Nuclei expressing myogenin (h–j, exemplified by arrowheads) belonged to 

Abdel-Latif et al. Page 14

Basic Res Cardiol. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cells negative for cardiac marker in red fluorescence (h,j) and exhibited morphology 

characteristic of myotubes (j). Scale bar = 40 µm (f) or 20 µm (g–j)
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Fig. 3. 
Representative light microscopic images of SM− cells after 30 days of differentiation 

demonstrating the effects of culture media composition on cellular morphology. Panels a–c 
show the predominant epithelial morphology of SM-cells cultured in basic medium (BM) 

containing IGF-1 and dynorphin B (a), and BM supplemented with insulin (b), or oxytocin 

(c). Scattered cells with adipose morphology were noted throughout the culture plates. 

Panels d and e show the increased frequency of spindle-shaped cells when SM− cells were 

exposed to BM supplemented with bFGF (d) or TGF-β1 (e). Cardiomyogenic differentiation 

was verified via immunostaining. Panels f–i show representative confocal microscopic 

images of SM− cells after 30 days of differentiation in BM supplemented with TGF-β1. 

Mononucleate spindle-shaped cells are identified in the transmission image (f). Cardiac 

differentiation is evidenced by positivity for cardiac-specific transcription factor (Nkx2.5h–i, 
green) and structural protein (cardiac myosin heavy chain, g–i, red). Panels h–i identify 

cells positive for both cardiac-specific transcription factor (in green) and structural protein 

(in red) resulting in yellow fluorescence. Nuclei are stained with DAPI (f,g,i, blue). Scale 

bar = 20 µm
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Fig. 4. 
Quantitative assessment of mRNA expression by qRT-PCR of cardiac-specific markers in 

SM+ and SM− cells after 4 and 9 days of culture in 5 different media. mRNA level is 

expressed as -fold change compared with freshly isolated unfractionated skeletal muscle-

derived cells. Three independent experiments were performed. Data are mean ± SEM
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Fig. 5. 
Percentage of cells positive for cardiac-specific markers (Y axis), demonstrating the effects 

of different media (X axis) on cardiomyogenic differentiation of SM+ and SM− cells. Cells 

positive for cardiac transcription factors (cTFs) and/or structural proteins (cSPs) were 

counted and expressed as a percentage of total cells. The percentage of cells positive for 

cTFs is represented by solid bars, cSPs by white bars, and cells positive for both by cross-

hatched bars. Cardiomyocytic differentiation was noted in both SM+ and SM− populations. 

However, compared with SM+ cells, SM− cells exhibited greater cardiomyogenic potential 

in all media. Supplementation of BM with TGF-β1 resulted in cardiomyocytic 

differentiation in the greatest fraction of cells in both groups
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