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Abstract

Due to the inaccessibility of the cranial vault, it is difficult to study cerebral blood flow dynamics 

directly. A mathematical model can be useful to study these dynamics. The model presented here 

is a novel combination of a one-dimensional fluid flow model representing the major vessels of 

the circle of Willis (CoW), with six individually parameterized auto-regulatory models of the 

distal vascular beds. This model has the unique ability to simulate high temporal resolution flow 

and velocity waveforms, amenable to pulse-waveform analysis, as well as sophisticated 

phenomena such as auto-regulation.

Previous work with human patients has shown that vasodilation induced by CO2 inhalation causes 

12 consistent pulse-waveform changes as measured by the Morphological Clustering and Analysis 

of Intracranial Pressure algorithm. To validate this model, we simulated vasodilation and 

successfully reproduced 9 out of the 12 pulse-waveform changes.

A subsequent sensitivity analysis found that these 12 pulse-waveform changes were most affected 

by the parameters associated with the shape of the smooth muscle tension response and vessel 

elasticity, providing insight into the physiological mechanisms responsible for observed changes 

in the pulse-waveform shape.
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1. Introduction

Assessing cerebral blood flow (CBF) dynamics for the care of brain injury patients is critical 

in order to titrate treatment, monitor brain states, and offer prognostic insights. Due to the 

inaccessibility of the cranial vault, it is difficult to directly study in humans the physiologic 

changes in response to different stimuli, in particular, the distal cerebrovascular changes. For 

example, differentiating between distal cerebral vasodilatation and vasoconstriction can 

potentially help establish a correct diagnosis of the causes of acute intracranial 

hypertension1, acute neurological deterioration due to cerebral vasospasm2, 3, and cerebral 

metabolic crisis4.

Recently, we conducted a series of investigations on how intracranial pressure (ICP) and 

cerebral blood flow velocity (CBFV) pulse-waveforms change when the cerebrovascular 

system is exposed to different stimuli. These studies considered changes in metrics derived 

from the heights and latencies of the sub-peaks of the pulse-waveform. One product of these 

investigations is an algorithm that can use continuously acquired ICP or CBFV pulses to 

detect cerebral vascular changes5. This algorithm is based on a key finding from our early 

work that particular intracranial pulse-waveform metrics consistently change, across patients 

and normal subjects6, as the distal vasculature constricts or relaxes in response to carbon 

dioxide (CO2) changes. This finding was based on the analysis of experimental data but it 

remains unexplained why the pulses behave in such a way. While a number of models of 

cerebral vasculature and autoregulation have been published7-10, no model to our knowledge 

has simulated pulse-waveform trends as affected by cerebrovascular phenomena. The 

objective of this work is to develop a mathematical model and to investigate if it can 

reproduce the consistent pulse-waveform changes observed experimentally.

A wealth of literature describes models of CBF and ICP in terms of ordinary differential 

equations11-16. These models, by Ursino et al, account for the compliance and resistance 

created by blood vessels, the inward force of the cerebral spinal fluid as well, the ability of 

the vasculature to auto-regulate blood flow and the changes effected by varying blood CO2 

concentration. While this model is sufficiently sophisticated to describe the phenomena we 

are interested in, the output cannot be analyzed at a pulse-waveform level.

Another model, described by Alastruey et al. in 2007, does simulate the cerebral blood flow 

on the pulse-waveform level17. This model represents the major vessels of the circle of 

Willis (CoW) as a one-dimensional deformable pipe network with axial blood flow. 

However, it uses a simplified three-element lumped parameter outflow model as a boundary 

condition for the terminal (outlet) vessel segment. This boundary condition addresses the 

viscous resistance of the blood moving through the vasculature and the compliance of the 

arterial walls, while ignoring the influence of ICP and the autoregulatory response of the 

distal vasculature to the changes of CBF. A subsequent model by Alastruey et al. did 
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incorporate an autoregulatory boundary condition, but lacked a shared ICP model and the 

analysis focused on mean flow through the major cerebral vessels, not the specific pulse-

waveform patterns.

In this paper, we present a novel combination of the pipe network model from Alastruey 

where the outlet boundary conditions are substituted with a modified version of the Ursino 

autoregulatory model and the ICP component of the autoregulatory model shared between 

all outlet vessels. This combination is advantageous in that it is sophisticated enough to 

simulate pulse-waveform changes in response to cerebrovascular dynamics, and by benefit 

of the one dimensional CoW model, reduces the computational requirement without a 

significant compromise in accuracy18. To validate this model, we utilized a sensitivity 

analysis to identify the model parameters with the most control over the transient pulse-

waveform changes observed in CO2 rebreathing experiments, and used these results to 

reproduce the vasodilation in the model.

2. Methods and Materials

2.1 Overview of the multi-scale model

An electrical circuit analog of the model is presented in Figure 1A. The corresponding 

equations for this model are presented in the supplementary materials. The model is 

composed of 3 sub-models: The pipe-flow model of the arteries of the neck and CoW, the 

autoregulatory model of the distal vascular beds, and the ICP model.

The arteries of the neck and CoW are modeled as a deformable pipe network, consisting of 

major cerebral vessels, with one dimensional flow in the axial direction of each vessel 

segment of interest. The temporal evolvements of the velocity and cross sectional area of 

each pipe (vessel) segment along its axial direction are numerically calculated based on flow 

dynamics equations. To construct the vascular network for the purpose of flow dynamics 

simulation, each segment's nominal cross-sectional area, length, and a β term, representing 

the vessel compliance, are defined; these parameters might be obtained from clinical 

measurements and with appropriate assumptions. The vessel parameters used for this model 

were adapted from Alastruey's work and are detailed in Table 117, 19. The vascular model 

has three types of boundary conditions: Inlets, junctions between multiple vessel segments, 

and outlets. The input to this model is the volume flux through the vessel segments that 

represent the carotid and the vertebral arteries. This flux is calculated by multiplying the 

velocity measured via TCD by the nominal cross sectional area of the vessel. The 

measurable data from the model is the velocity of blood through the left and right: anterior 

cerebral arteries (ACAs), posterior cerebral arteries (PCAs) and middle cerebral arteries 

(MCAs).

The terminal flux from each outlet vessels is extrapolated and used as the input into its 

respective outlet model of the distal vascular bed. Similarly, the pressure at the entry to the 

outlet model is the pressure at the exit of the vessel. All of the outlet models are connected 

by a single ICP model. Parameters in Table 2
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This model uses 24 vessel segments to describe the connectivity of the CoW (Figure 1B), 

each with three parameters, and the six outlet models are defined by 20 parameters that 

interact non-linearly. Lastly the single ICP model has three parameters and serves to couple 

the outlet models. All parameter values for the outlet and ICP model were based on previous 

work by Ursino12. The coupling of these components gives this model 195 degrees of 

freedom.

2.2 Consistent pulse-waveform changes during CO2 challenge

To validate this model we attempted to reproduce the pulse-waveform response of the MCA 

CBFV associated with hypercapnic vasodilation. To study this process quantitatively, we 

utilized our recently developed MOCAIP algorithm5. MOCAIP is a framework for 

analyzing pulsatile signals such as CBFV and ICP. The algorithm works by extracting the 

individual pulses from a continuous signal and identifying the three sub peaks (P1, P2, and 

P3) and the respective valleys (V1, V2, V3) (Figure 2). From these landmarks 128 pulse-

waveform metrics are derived (Table 3).

A previous study by Asgari et al. examined the CBFV pulse-waveform changes that 

occurred when patients inhaled a 5% CO2 mixture20. TCD was recorded during inhalation 

and after while they returned to normocapnia. For these two phases, a robust least-weighted 

squares line was fit to the pulse-waveform metrics and, if the trend was significant, 

determined to be either increasing or decreasing. The magnitude of the slope was not taken 

into account. The analysis found that 12 pulse-waveform metrics had significant trends that 

had opposite trends between both phases (Table 4).

The 12 pulse-waveform metrics for which we attempted to reproduce increases in the model 

were dP2 and dV2 (the heights of P2 and V2, respectively), mCBFV (the mean velocity over 

a pulse), diasV (the diastolic CBFV), K1/RC2 (the slope of the systolic upstroke of the pulse 

divided by the descending slope of P2), RC3/RC1 (the ratio between the descending slopes 

of P3 and P1), and LV1P1/LV1P3, LV1P1/LP1P3, LV1P3/LP1P3 (each the ratio of latencies 

between two landmarks in the pulse. e.g. LV1P1/LV1P3 is the time between V1 and P1 

divided by the time between V1 and P3). The pulse-waveform metrics for which we 

attempted to reproduce decreases were dV1/dV2 (the ratio between V1 and V2), dP1/dV2 

(the ratio between P1 and V2), and RC1/RC2 (the ratio between the descending slopes of P1 

and P2).

2.3 Model-based reproduction of consistent pulse-waveform changes

In order to simulate vasodilation in this model we increased the flow into the carotid and 

vertebral vessels without changing the shape of the waveform.

To determine the parameters necessary to simulate our clinical results we first identified the 

parameters that were physiologically plausible to represent vasodilation associated with CO2 

inhalation. Next, a fractional factorial experiment was used to determine which parameters 

have a significant effect on the pulse-waveform metrics being investigated. The top n most 

sensitive parameters were then analyzed using a full factorial experiment that considered all 

possible two-level combinations of parameter changes. Using the parameter-metric 
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sensitivities obtained from the full factorial analysis, a sensitivity matrix was constructed 

representing the rate of change for each metric as a linear combination of each parameter's 

rate of change. This matrix was then used to solve a constrained optimization problem to 

determine the smallest local magnitude and direction each parameter must shift to replicate 

the desired changes in the TCD metrics. The workflow is described below and summarized 

in Figure 3.

2.3.1 Identifying physiologically relevant parameters and changes—While the 

total model has 195 different parameters, not all are relevant when studying the effects of 

CO2 induced vasodilation. Vasodilation occurs mainly in the distal vascular beds at the level 

of the resistance arterioles. While there is some evidence of a vasodilation response to CO2 

in the major cerebral arteries, these reports are still controversial21. Therefore, for the 

purpose of this analysis we have excluded the parameters affecting the cross-sectional area 

of the major vessels of the CoW. All parameter changes were made to each outlet boundary 

condition equally. Lastly, several of the parameters in the outlet model are biophysical 

constants, such as the density of blood, so they were omitted from the analysis.

The analysis focused on the parameters associated with the smooth muscle tension of the 

vessel wall described in Equation 1,

(1)

This equation describes the relationship between the radius (r) of the distal vascular bed and 

the tension (Tm), where M is an activation factor of cerebral autoregulation that responds to 

CBF fluctuations. M is controlled by three parameters: G, τ, and qn, where G and τ denote 

the gain and the time constant of the autoregulatory function, and qn is the value of blood 

flow at which the autoregulatory mechanism exerts its maximum strength. Also considered 

were the parameters associated with the elastic tension of the vessel wall (Equation 2) (see 

appendix).

(2)

The parameters controlling the active and elastic tension components combined with the 

assumption of uniform changes in each of the 6 distal vascular models left 12 parameters to 

be included in the sensitivity analysis.

2.3.2 Sensitivity analysis experiments—A fractional factorial experiment22 was used 

to determine the sensitivity of each pulse-waveform metric to changes in the parameter 

values. To test all possible parameter combinations would require 212 simulations and 

require an infeasible amount of time. The fractional factorial experiment works by 

increasing several parameters at a time from the ‘off’ value to the ‘on’ value in a single 

simulation, and averaging the difference between the ‘off’ and ‘on’ simulations for each 

parameter. The fractional factorial experiment used was of resolution IV (4), meaning that it 

is possible that two factor interactions were confounded by other two factor interactions. 
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This experimental design allowed us to estimate which subset of parameters had a more 

substantial effect on the twelve pulse-waveform metrics than the rest. With a reduced set of 

parameters, a full factorial experiment was performed to compute the sensitivities for each 

parameter.

The number of parameters used for the full factorial analysis was determined by the 

minimum set of the most sensitive parameters whose matrix could solve the convex problem 

(described in section 2.3.3).

Each simulation in the sensitivity analyses lasted for 10 cardiac cycles. The first three cycles 

allowed the system time to stabilize, and between each subsequent cycle the parameters 

being tested in the simulation were increased by 5% of their baseline value. This was done 

to obtain a more robust value for the change of each pulse-waveform metric in response to 

the parameter changes. Since the vasculature below the neck was not included in this model 

and the input was through the carotid and vertebral arteries, there could be no substantial 

increase in CBF caused by the vasodilation. To compensate for this, the input flow was also 

increased by 6% of its baseline value over the course of the simulation. The average effect 

of each parameter was calculated and scaled by the change in the parameter to obtain , 

where Φ is a pulse-waveform metric and P is a parameter.

2.3.3 Constrained Optimization

To determine the parameter changes necessary to elicit the TCD metric increases and 

decreases demonstrated clinically a sensitivity matrix was constructed

(3)

For the metrics that were expected to decrease, the respective sensitivities were negated, 

such that an increase would be the desired outcome and the objective was to find

(4)

where ≻ is the component-wise relational operator. This optimization problem was solved 

using CVX: Matlab Software for Disciplined Convex Programming23, 24.

2.3.4 Time varying simulation of vasodilation—The constrained optimization 

provided the smallest parameter shifts in the linearized model that could elicit the pulse-

waveform changes consistent with clinical results. The next step was to determine whether 

these parameter changes could replicate these pulse-waveform changes in the full non-linear 

model. As the changes observed in the CO2 rebreathing test took place over roughly one 

minute, the parameter shifts were applied incrementally between each of 60 cardiac cycles 

of 0.9 seconds each including 4 cycles with no changes to allow the system to reach steady 

state. The parameter shift between each pulse was 1/60th X, the value found during the 

constrained optimization. The input blood flow was increased by 60% of its baseline value 
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to account for the increase in flow through the system. The trends of the relevant MOCAIP 

metrics were then computed for the simulation. Since the model is fit based on the direction 

of pulse-waveform metric changes (Eqs. 3-4) and not the magnitude, only the pulse-

waveform metric trend direction were compared between the model predictions and clinical 

data.

2.3.5 Verification of signal quality—Two tests were performed to ensure that the pulse-

waveform metric trends produced by the vasodilation simulation met the same criteria as 

those in found in clinical experiments. To ensure that the pulse-waveform metric trends of 

the 12 metrics were as significant as the trends found in the CO2 rebreathing test, the metrics 

were fit to a line using a weighted least squares algorithm25, and the p-value describing the 

significance of the trend was compared to the 90th percentile of trends found in the clinical 

data.

The additional criteria was that the metric trends are opposite during vasodilation and 

vasoconstriction. To simulate this, after vasodilation the model was allowed to stabilize 

while no changes were made to the parameters or flow. This was followed by an incremental 

decrease in flow and parameter opposite change in parameter shifts. The slopes of the metric 

trends during this vasoconstriction were compared to those obtained during the vasodilation.

3. Results

3.1 Sensitivity Analysis

The resolution IV fractional factorial analysis of the 12 parameters provided the sensitivities 

of each metric to each parameter. The relative sensitivities for each metric are shown in 

Figure 4. The table inset in Figure 4 shows the sets of parameters greater than a minimum 

sensitivity threshold. The most sensitive parameters for the 12 pulse-waveform metrics were 

rt and G. The three least sensitive parameters were σcoll, τ, and qn, which affect the passive 

elastic tension of the vessel wall, the time delay of autoregulation, and the baseline flow 

through the distal vasculature, respectively. A full factorial experiment was performed for 

the 6 most sensitive parameters (σe0, rt, rm, G, Ke and n ) and the resultant sensitivity matrix 

 was used to solve the convex optimization problem in Eq. 4, solution in Table 5. The 

solution for the 6 most sensitive parameters showed a decrease in nm and G (0.3% and 

95%), and an increase in σe0, rm, rt, and Ke (50.7%, 7.5%, 4.2%, 33%). The optimization 

problem was unsolvable for the 5 most sensitive parameters.

3.2 Simulation of Vasodilation

3.2.1 Flow Characteristics—Over the vasodilation simulation the mean CBFV increased 

from 0.29m/s to 0.50 m/s (58%). The radius of the distal vasculature increased from 0.016m 

to 0.0175m. Solving Equation 1 for the initial and final parameter values shows a decrease 

in active tension of 0.045mmHg for the maximum radius obtained during the simulation

3.2.2 Pulse-Waveform Changes—The fit of the 12 pulse-waveform metrics showed 

that 9 out of the 12 metrics exhibited trends consistent with clinical findings (Figure 5). The 

three metrics that did not correspond with the clinical indicators of vasodilation were 
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dV1/dV2, dP1/dV2 and K1/RC2. The metrics dP2, dV2, mCBFV and diasV all monotonically 

increased over the simulation. RC3/RC1 also increased monotonically. The last three 

metrics, LV1P1/LV1P3, LV1P1/LP1P3 and LV1P3/LP1P3, show distinct discontinuities around 

the 60th cardiac cycle. Figure 6 shows the evolution of the MCA pulse-waveform for every 

5th cardiac cycle aligned at the diastolic point.

3.2.3 Significance of simulated metric trends—The p-values obtained from the 

weighted least squares fit were lower than those obtained from clinical data for all 12 

metrics, indicating that the metric trends obtained from the simulation were more significant 

than those obtained from clinical data. Furthermore, out of all 128 metrics, 109 had 

significant trends.

The vasoconstriction simulation showed that all 12 pulse-waveform metrics had opposite 

trends than in the vasodilation simulation.

4. Discussion

*A list of relevant terms is provided in Table 6

In this paper we utilized a model to study the relationship between the physiological state of 

the cerebral circulatory system and the CBFV pulse-waveform trends. This model was a 

novel approach, combining a one-dimensional pipe-flow model of the CoW with 

autoregulatory outlet boundary conditions and an attached model of cerebrospinal fluid 

circulatory system. To analyze and validate this model, a series of sensitivity analyses were 

employed to determine the model parameters that most significantly affected the 12 pulse-

waveform metrics associated with vasodilation in clinical studies. The sensitivity analysis 

identified 6 such parameters (Figure 4), which involved the elastic tension caused by 

collagen and elastin fibers (σe0), the shape of the curve describing the tension applied by the 

arterial smooth muscle for a given arterial radius (rm, rt, nm), as well as the gain of the 

autoregulatory feedback response to changes in blood flow (G), and the intracranial 

compliance (Ke). With this information a linearized model was constructed and constrained 

optimization was used to calculate the minimum shifts for these parameters necessary to 

replicate the pulse-waveform metric trends reported during vasodilation (Table 5). These 

parameter shifts were incrementally applied to the full non-linear model during a simulation 

to simulate vasodilation, resulting in 9 out of the 12 pulse-waveform metrics trending 

consistently with clinical findings (Figure 5).

4.1 Sensitivity Analysis

The sensitivity analysis focused on determining how sensitive each pulse-waveform metric 

associated with vasodilation was to each parameter of the model. This analysis showed that 

the parameters exerting the most control over these pulse-waveform metrics were those 

related to the active tension (rm, rt, nm), and the intracranial compliance (Ke). This agrees 

with the physiological changes that occur during the vasodilation process – as the demand 

for blood increases, the arterial smooth muscles that regulate CBF relax, increasing arterial 

compliance allowing for a dilation of the vessel radius and increasing blood flow. 

Furthermore, the increased blood volume will cause an increase in pressure and a decrease 
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in intracranial compliance. The pulse-waveform metrics were also sensitive to the gain of 

the autoregulatory feedback equation (G), which controls the magnitude of the smooth 

arterial muscle resistance to increases in CBF. Lastly, the pulse-waveform metrics were also 

sensitive to changes in the elastic tension parameter (σe0).

4.2 Constrained Optimization

The constrained optimization produced the smallest possible parameter vector that could 

reproduce the desired changes in the linearized model. The minimization allowed us to 

observe the actual changes in the nonlinear model within the local parameter space. This 

was successful as the calculated parameter changes were small enough they did not cause 

the model to reach an unlikely physiological state (negative tension, etc). Furthermore, it is 

clear that the most significant changes were made to the parameters associated with the 

tension of the distal vasculature, an expected result as the autoregulatory response is 

primarily mediated by the arteriole tone26.

4.3 Pulse-waveform metric trends during vasodilation simulation

Of the pulse-waveform metrics whose changes over time matched clinical observations, the 

four metrics dP2 (the amplitude of P2), dV2 (amplitude of the valley between P2-P3), mean 

CBFV, and diastolic CBFV all increase during the simulation. These metrics are all directly 

related to an increase in velocity during different phases of the waveform. This can best be 

explained by a relaxation of the vessel wall. While the change in pressure (0.045mmHg) was 

small, the purpose of the constrained optimization was to find the minimum parameter shift 

necessary to cause an increase or decrease in the pulse-waveform metrics.

The pulse-waveform metrics RC3/RC1 and RC1/RC2 describe the ratios between the P3 and 

P1 descending slopes, and the P1 and P2 descending slopes, respectively. The RC3/RC1 

increase and RC1/RC2 decrease implies a sharpening of the last two peaks relative to the 

first peak, best explained by the decrease in intracranial compliance, affected by increase in 

parameter Ke. During the course of vasodilation, the additional cerebral blood volume may 

decrease the craniospinal compliance and shift the bandwidth of frequencies of arterial 

blood pressure pulses that are attenuated. This would shorten the duration between 

individual peaks and increase the absolute value of the descending slopes, providing the 

results seen both clinically and in our simulation.

The last three metrics that agree with previous clinical results, LV1P1/LV1P3, LV1P1/LV1P3, 

and LV1P3/LP1P3 all show spikes during the 60th cardiac cycle. These metrics describe the 

relative differences between the latencies of the peaks and valleys of the waveform. The 

sudden shift in these metrics can be attributed to changes in the point identified as V1.

The noticeable change in the waveform at points V2 and P2 is likely an effect created by the 

changing dynamics of the system. Throughout the vasodilation simulation, the inputs are 

always the same other than scaling to account for the flow increase. This change in pulse-

waveform shape may be related to the aforementioned change in intracranial compliance. 

Since the vessels of this model are connected through the communicating arteries, the CBFV 

waveform for the MCA is actually a weighted sum of the time-delayed flows and reflected 

Connolly et al. Page 9

Med Eng Phys. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



waves from the rest of the vasculature. As the craniospinal compliance decreases during 

vasodilation, the change in capacitance may alter the attenuation range or phase shift of 

these frequencies. However, there is little literature to our knowledge on the effect of 

intracranial compliance and the frequency spectrum of the CBFV pulse-waveform.

Of the three pulse-waveform metrics that did not match the clinical results, dV1/dV2 and 

dP1/dV2 increased when a decrease was observed in human patients, while K1/RC2 

decreased when an increase was observed in human patients. These first two metrics 

describe an increase in the first peak and valley relative to the second valley in the 

simulation. Similarly, the third metric shows that the descending slope of the second peak 

increased in magnitude faster than the ascending slope of the first peak. These changes 

indicate that the first peak increased relative to the rest of the pulse during the simulation, 

while the opposite effect was seen during the CO2 rebreathing test.

To understand why three of the pulse-waveform metric trends did not agree with clinical 

data, we must consider the effects of a linear analysis of a nonlinear model. While the single 

level full factorial sensitivity analysis took into account all possible interactions between the 

seven most sensitive parameters, only the single parameter effects were utilized in the 

constrained optimization prediction. Furthermore the sensitivity analysis was a single level 

while these parameters all have non-linear effects on the model. The effects predicted for a 

10% change in two parameters does not scale to predict the effects of changing one 

parameter by 5% and the other by 15%. As a result, the constrained optimization used to 

predict the parameter changes necessary to replicate clinical data did not cover the entirety 

of the parameter space.

The discrepancy between the clinically observed and simulated pulse-waveform metric 

changes can also be explained by the limitations of the model. In this simulation the input 

was a waveform with constant shape except for a shifting mean. However, this does not take 

into account the physiological changes that may occur extracranially in response to CO2 

inhalation and affect the pulse-waveform of the flow entering the CoW27, 28. Another factor 

that may contribute to the changing pulse-waveform observed in response to CO2 is a 

changing elasticity of the vessels of the CoW, not identified in previous studies21. It is 

accepted that as arterial elasticity decreases with age29-32 the reflected wave arrives earlier 

in the cardiac cycle33. A change in the elasticity of the major vessels of the CoW could alter 

the timing of the reflected wave in the cardiac cycle and substantially affect the pulse-

waveform of the MCA.

4.4 Comparison of Pulse-waveform Metrics during Vasodilation and Vasoconstriction

Another important result obtained from this model is the identification of 109 pulse-

waveform metrics that exhibited opposite trends during the vasodilation and 

vasoconstriction phases of the simulation. In agreement with our result, it was shown by 

Asgari et al.2025 that for any single patient, approximately 100 metrics produced this pattern. 

However, as more patients were included in the model, the number of metrics changes that 

were consistent across all patients decreased, resulting in the set of 12 pulse-waveform 

metrics considered in this analysis. As this analysis took into account a single set of initial 

conditions representative of a single patient, there was no inter-subject variability due to 
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anatomical variations in the CoW, state of autoregulation, intracranial compliance etc. 

Therefore, this modeling result may indicate that an individualized template of pulse-

waveform changes during vasodilation or vasoconstriction may offer better sensitivity in 

detecting those changes in a given patient.

4.5 Clinical Implications

TCD is routinely used in the diagnosis and monitoring of patients with intracranial diseases 

including vasospasm,34, 35 sickle cell,36 and others. However, these established techniques 

are based on relatively simple morphological features of the TCD pulse-waveform, such as 

diastolic, systolic, and mean CBFV. Work by Asgari et al. has demonstrated that more 

sophisticated pulse-waveform metrics can be used to assess other physiological changes, 

particularly vasodilation and vasoconstriction6. The model presented here provides insight 

into the difficult to measure physiological mechanisms affecting these additional pulse-

waveform metrics. Specifically, the sensitivity analysis and validation has suggested several 

factors that play a role in how the hypercapnic vasodilation response is represented in TCD 

monitoring. As additional relationships between TCD pulse-waveform metrics and clinical 

state are identified, this model will be invaluable in understanding the underlying 

mechanisms.

With the addition of patient-specific vascular geometry and waveforms, it will be possible to 

fit the model to an individual patient and investigate the state and response to different 

procedures. Based on the positive results obtained by validating the model based on pulse-

waveform trends, we can expand on our previous work using a hidden state estimation 

approach on a simpler model of the cerebral circulatory system to estimate unobserved 

variables.37

4.6 Limitations

The sensitivity analysis of this model was limited by the single level fractional factorial 

analysis. As many of the parameter changes have non-linear effects on the pulse-waveform 

shape, a sensitivity analysis that uses a multiple level design will further detail the specific 

relationship between the state of the cerebrovascular system and the CBFV pulse-waveform.

This study was also limited by the use of a generalized model of the cerebral vasculature and 

input flows. To take advantage of the full potential of this model, data such as 

angiographically measured vascular geometry and simultaneously measured CBFV can used 

to produce patient specific simulations.

4.7 Conclusions

Despite the limitations of this initial analysis, it shows that this model of cerebral blood flow 

is capable of replicating many of the pulse-waveform changes observed during a CO2 

inhalation on human patients. Furthermore, by identifying the parameters that most affect 

the specific pulse-waveform characteristics and how they relate to the state of the 

cerebrovascular system as a whole, we gain insight into the specific mechanisms of changes 

in the brain. These results pave the way for subsequent model analysis and modifications 

that can further improve our understanding of cerebral circulatory system.
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Figure 1. 
A) A schematic diagram of the model of the cerebral vasculature. The input into the model 

is the flow through the left and right internal carotid and vertebral arteries (LICA, RICA, 

LVERT, RVERT). The flow is then computed through a 1 dimensional model of the circle 

of Willis. The six great vessels, the left and right middle, anterior, and posterior cerebral 

arteries all employ the Ursino autoregulatory models to represent the downstream vascular 

beds emanating from these vessels. In this diagram, G1 is the resistance of the capillary 

beds, Ca is the compliance of the vessel wall, Gf the conductance for the formation of CSF, 
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Go the outflow conductance of CSF, Gpv is the conductance from the capillary to the 

location of collapse when the venous bed is modeled as a Starling resistor, Pic the 

intracranial pressure, Ci the intracranial compliance, and Ps the pressure of the sagittal sinus. 

B) The physiological diagram of the circle of Willis with the following segments 

represented in this model: 1 and 2 are the left and right internal carotid arteries. 3 and 4 are 

the left and right vertebral arteries. 5 and 8 are the distal segments of the left and right 

internal carotid arteries. 6 and 7 are the left and right posterior communicating arteries. 9 is 

the basilar artery. 10 and 11 are the left and right middle cerebral arteries. 12 and 13 are the 

left and right anterior cerebral arteries. 14 and 15 are the proximal segments of the left and 

right posterior cerebral arteries. 16 and 17 are the distal A2 segments of the left and right 

anterior cerebral arteries. 18 is the anterior communicating artery. 19 and 20 are the distal 

segments of the left and right posterior cerebral arteries. Common and external carotid 

arteries not shown.
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Figure 2. 
A clinical CBFV pulse with the peaks, valleys and selected metrics identified.
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Figure 3. 
The flow diagram detailing the process of reducing the parameter space and replicating 

vasodilation
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Figure 4. 
Each line shows the sorted parameters sensitivities for each metric. The value of each 

parameter sensitivity is divided by the maximum sensitivity for that metric, giving the most 

sensitive a value of 1. The inset table shows the thresholds at which the number of 

parameters that have a greater relative sensitivity increases (e.g. rt, G, and rm are the only 

parameters that have a relative sensitivity greater than 0.28 for any metric).
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Figure 5. 
The value of each MOCAIP metric, calculated for each pulse for 55 pulses. The jagged line 

is the value of the metrics, while the straight solid line is the least squares fit of the actual 

data. The dashed line (if shown) is the direction the metric was expected to change in 

according to the clinical data. This line does not necessarily have the slope or intercept of 

the actual data
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Figure 6. 
The change in CBFV from diastolic for every 5th cardiac cycle
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Table 1

The cross-sectional area, length, elasticity of each vessel in the 1D pipe flow model. As the model is 

symmetrical, each vessel is only listed once. Physiologic data based on previous modeling results by 

Alastruey17.

Vessel Area (cm2) Length (cm) Beta (m pa)

Common Carotid Artery 0.196 17.70 595.24

Internal Carotid Artery (prox) 0.126 17.70 944.83

Internal Carotid Artery (dist) 0.126 0.50 1889.66

External Carotid Artery 0.071 17.70 718.07

Middle Cerebral Artery 0.064 11.90 1360.56

Anterior Cerebral Artery (prox) 0.043 1.20 1096.00

Anterior Cerebral Artery (dist) 0.045 10.30 1133.80

Anterior Communicating Artery 0.017 0.30 718.07

Posterior Communicating Artery 0.017 1.50 680.28

Vertebral Artery 0.058 14.80 642.49

Basilar Artery 0.082 2.90 1511.73

Posterior Cerebral Artery (prox) 0.036 0.50 1020.42

Posterior Cerebral Artery (dist) 0.035 8.60 982.62
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Table 2

The baseline parameters for the six outflow model and the one ICP model

Outlet Model Parameters

r0 0.015 cm

h0 0.003 cm

σ e0 0.143 mmHg

Kσ 10.0

σ coll 62.8 mmHg

T0 2.16 mmHg cm

rm 0.027 cm

rt 0.018 cm

nm 1.83 cm

η 232 mmHg s

Kg 1.43e6 (mmHg s cm)−1

Kv 4.64e3 cm

τ 10 s

G 0.02 mmHg−1

Gpv 1.14 mmHg−1 s−1 ml

Gf 4.2e-4 mmHg−1 s−1 ml

Pan 100 mmHg

qn 12.5 ml s−1

G0 1.9e-3 mmHg−1 s−1 ml

Ps 6.0 mmHg

Intracranial Pressure Model Parameters

Ke 0.11 ml−1

Cm 0.2 mmHg−1 ml

Picn 9.5 mmHg
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Table 3

The notation used for the 128 MOCAIP metrics. The top portion shows the 28 metrics in the upper portion are 

basic metrics. Those remaining 100 below are derived metrics calculated as ratios from the basic metrics.

Metric Notation Description

dV1, dV2, dV3, dP1, dP2, dP3 Amplitude of landmark relative to the minimum point prior to initial rise

LV1P1, LV1P2, LV1P3, LV2P2, LV3P3 Time delay along landmarks

CurveV1, CurveV2, CurvV3, CurvP1, ... Absolute curvature of each landmark

K1, K2, K3, RC1, RC2, RC3 K1, K2, K3 are the slope of each rising edge and RC1, RC2, RC3 are time-constants of each descending 
edge

mCBFV, diasV Mean CBFV and diastolic CBFV

LT Time delay of V1

mCurv Mean absolute curvature of the pulse

WaveAmp Maximum among dP1 and dP3

dP1/dP2, ... Ratio among landmark amplitudes

LV1P1/LT, ... Ratio among time delays

CurvV1/CurvV2, ... Ratio among curvatures

K1/RC1, ... Ratios among slopes/RCs

Med Eng Phys. Author manuscript; available in PMC 2014 December 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Connolly et al. Page 24

Table 4

The 12 consistent trends identified by Asgari et al.

Metric Trend (Vasodilation)

Positive

dP2

dV2

mCBFV

diasV

K1/RC2

RC3/RC1

LV1P1/LV1P3

LV1P1/LP1P3

LV1P3/LP1P3

Negative

dV1/dV2

dP1/dV2

RC1/RC2
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Table 5

The solution to the constrained optimization problem. ΔP is the minimum vector such that  for all 

elements of the product vector.

Parameter P0 ΔP

σe0 (mmHg) 0.14 0.071

rm (mmHg-cm) 0.03 0.00225

rt (cm) 0.02 0.000849

nm (cm) 1.83 −0.00651

G (mmHg−1) 0.02 −0.0191

Ke (mL−1) 0.11 0.0369
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Table 6

List of terms

Term Definition

Autoregulation The process by which the cerebral vasculature adjusts to maintain adequate blood flow

CBFV Cerebral blood flow velocity

Circle of Willis Circulatory structure that supplies blood to the brain

Constrained optimization Solving a convex problem using by minimizing a cost function within given constraints

Craniospinal Compliance The ability of the craniospinal system to accommodate additional volume

Fractional Factorial Experiment Uses a carefully chosen subset of the parameter combinations from a full factorial experiment to reduce 
the necessary number of experimental runs

Full Factorial Experiment An experimental design in which all combinations of parameters are tested. Requires 2^n experimental 
runs

Middle Cerebral Artery (MCA) One of the major cerebral arteries originating from the CoW.

Parameter sensitivity The degree to which a change in a parameter causes a change in the output

Pulse waveform shape Shape of a pulsatile signal such as arterial blood pressure or cerebral blood velocity. The MOCAIP 
algorithm calculates 128 descriptive metric for wach pulse

Vascular active tension The tension cerebral vasculature casued by the constriction or relaxation of smooth muscle cells in the 
vascular wall

Vascular elastic tension The cerebral vasculature's natural resistance to stretching caused by the elastin and collagen fibers in the 
vascular wall

Vasodilation/Vasoconstriction The increase/decrease in arteriole radius to maintain adequate cerebral blood flow. Effected by physical, 
chemical and neural stimuli
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