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Abstract

The determination of membrane protein (MP) structures has always trailed that of soluble proteins 

due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent 

structure determination. The percentage of MP structures in the protein databank (PDB) has been 

at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only 

highlighting how little we understand about drug-specific effects in the human body. To reduce 

this gap, researchers have attempted to predict structural features of MPs even before the first 

structure was experimentally elucidated. In this review, we present current computational methods 

to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane 

spans, and topology. Even though these methods generate reliable predictions, challenges such as 

predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to 

be addressed. We describe recent developments in the prediction of 3D structures of both α-helical 

MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular 

dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative 

modeling due to availability of more and better templates, and (2) improved the statistics for 

knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of 

correlated mutations as restraints. Finally, we outline current advances that will likely shape the 

field in the forthcoming decade.
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Introduction

Experimental structure determination of MPs remains difficult

It is estimated that up to 30% of the human genome encodes membrane proteins1,2. Since 

MPs function as transporters, receptors, and enzymes, and since they are involved in critical 

functions such as cell adhesion, immune response, and signaling, it is not surprising that 

over 50% of drugs on the market target them3. However, knowledge of how these drugs 

operate at the molecular level remains sparse, chiefly due to a lack of atomic resolution 

structural information on the interaction of drugs with their target proteins. In fact, MPs are 

vastly under-represented in the protein databank (PDB): of the ∼100,000 protein structures 

currently in the PDB (May 2014) only ∼2,100 are MPs (FIG. 1). This scarcity is due to the 

challenges that are faced when trying to determine MP structures experimentally. Over-

expression of sufficient amounts of protein often fails due to toxicity to the host cells or 

misfolding of the protein4. Expression in yeast, insect cells (baculovirus expression system), 

eukaryotic strains or cell-free expression are viable alternatives, but are far less commonly 

used than expression in E. coli. After expression, reconstitution into a suitable membrane 

mimetic that avoids structural perturbations of the protein and, at the same time, is ideal for 

structural studies, is required. Detergent micelles, bicelles, and recently also nanodiscs or 

amphipols are typically used for NMR studies5, whereas crystallographers typically use 

detergent micelles or lipids6 for protein reconstitution. Since a priori knowledge of the best 

membrane mimetic is unavailable for any particular protein, a laborious and time-consuming 

screening process is often required. Even then, protein engineering, such as deletion of long, 

flexible loops or insertion of other protein fragments - like Fab or T4-lysozyme for the 

crystallization of G-protein coupled receptors (GPCRs)7 - may be required to obtain crystals. 

Additionally, screening of suitable buffer conditions may be needed to enhance crystal 

quality and improve the resolution of the protein structure. For NMR studies the tumbling 

time of the protein-detergent complex sets an upper limit to the protein size that can be 

studied.

As a result of these limitations, it can take years or even decades to determine structures of 

MPs with NMR or crystallographic methods. For example, NMR structure determination of 

DAGK, a homo-trimeric enzyme with 9 trans-membrane spans and a molecular weight of 39 

kDa (adding up to 110 kDa with the detergent micelle), took 13 years to complete8. 

Comparably long time scales were required for the breakthroughs in GPCR structure 

determination, which started with the crystal structure of β-AR9, after many years of failed 

crystallization trials. In a recent example, the structure determination of a presenilin family 

aspartate protease required 160,000 crystallization trials to succeed10.

Advances in MP structure determination in the past two decades

The possibility to determine protein structures of this size and difficulty is owed to technical 

advancements over the past two decades. For crystallography, these include high-throughput 

crystallization and liquid handling robots. Recent structural highlights are the crystal 

structures of the 536 kDa proton pump complex 1 with 64 TM helices in 16 different 

subunits11, the sub-Angstrom resolution structure of aquaporin detailing interactions of the 

channel with individual water molecules12, the structure of the nine trans-membrane span 
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presenilin homologue that provided insight into the function of aspartate protease implicated 

in Alzheimer's disease10, and the structure of the usher β-barrel FimD through which several 

other β-barrel subunits pass to elongate fibers during pilus biogenesis13.

Incredible progress has also been made in the field of NMR spectroscopy with the 

developments of higher field strengths, the TROSY technique14, perdeuteration15, selective 

labeling strategies16,17, multi-dimensional NMR18 up to 4 dimensions or higher, non-linear 

sampling18, cryo-probes19, Paramagnetic Relaxation Enhancements20 (PREs), and Residual 

Dipolar Couplings20 (RDCs). These methods allowed the determination of MP structures of 

up to 40 kDa. Most notable NMR structures are the previously mentioned DAGK8, the 7-

trans-membrane span rhodopsin structures: sensory rhodopsin21, proteorhodopsin22, and 

bacteriorhodopsin23, the KcsA channel24, the mitochondrial uncoupling protein 225, and the 

voltage-dependent anion channel26. Notable are also the solid-state NMR structures of the 

YadA autotransporter β-barrel27 and the sensory rhodopsin trimer28.

The recent progress in image acquisition and processing for cryo-electron microscopy 

(Cryo-EM) continuously improved the resolution during the past decade down to 3-4 Å, 

even for single-particle reconstruction. Cryo-EM allowed the complete structure 

determination of the TRPV1 channel at 3.4 Å29 and of the Sec61 translocon engaged in 

membrane insertion of a nascent peptide at 6.9 Å30.

The need for faster MP structure determination also initiated the formation of 11 MP 

structure determination consortia as part of the Protein Structure Initiative31. For example, 

the GPCR network deposited 27 MP structures in the PDB since 2007, the Center for 

Structures of Membrane Proteins deposited 27 structures, 19 of which were non-

homologous, and the New York Consortium for Membrane Protein Structure deposited 34 

structures (14 non-homologous). The techniques developed or advanced through these 

initiatives have recently been used in a high-throughput manner to determine structures of 6 

MPs (from 15 initial targets) within an 18 month time frame32. Even though this work did 

not rely on any ‘magic’ new techniques, the combination of larger-scale screening and the 

latest state-of-the-art techniques such as cell-free expression, combinatorial dual-labeling 

strategies, static light scattering, and PRE NMR enabled the structure determination of these 

proteins within such a short amount of time. The authors also screened another 150 MP 

candidates and identified 38 suitable targets for structure determination. Developments like 

these are truly exciting, especially in light of recent estimates from the same group of 

authors that stated that 100 well-picked MP targets for structure determination would 

increase the coverage of targets for homology modeling from currently 26% to 58%33.

Computational prediction aids in structure determination efforts

Since experimental structure determination of MPs is such a major endeavor, scientists have 

repeatedly tried to predict MP structures computationally. And in contrast to the challenges 

that are faced for experimental structure elucidation, prediction of MP structures has certain 

advantages over the prediction of soluble proteins. The major advantage for MPs is the 

smaller conformational search space that needs to be sampled since the membrane imposes 

strong folding constraints, with only two structural motifs allowed in the bilayer: α-helices 
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and β- sheets. This advantage is somewhat offset by the larger size of the proteins. The 

challenge for MP structure prediction is the derivation of accurate scoring functions and 

molecular force field parameters to model the membrane, which are still under active 

development.

In the following paragraphs, we review methods currently available for MP structure 

determination (see Table I). We will start with sequence-based tools for prediction of 

secondary structure, trans-membrane spans, and topology, as well as surface accessibility 

and helix interaction motifs. Then, we discuss 3D structure prediction techniques such as 

homology modeling, fold-recognition, and de novo prediction methods. Since previous 

reviews have focused exclusively on either α-helical bundles34 or β-barrels35, we have 

decided to give a brief overview over the entire field. We will also report on recent 

successes, and discuss unsolved questions in this field.

Sequence-Based Prediction

Secondary structure prediction

The first step in studying protein structure both experimentally as well as computationally is 

the identification of membrane spanning regions (TMPred) and prediction of protein 

secondary structure (SSPred). Early attempts in secondary structure prediction attempted to 

correlate database-derived single residue statistics36 to the different types of secondary 

structure. Since these attempts emerged at the same time or even before the first protein 

structures were determined, their accuracies were only slightly better than random (for an 

excellent review about these early techniques see Rost and Sander36). Second generation 

predictors derived their statistics from longer segments (typically 11-21 residues) instead of 

single residues. The breakthrough, however, came with the utilization of evolutionary 

information from multiple sequence alignments (MSA) combined with artificial intelligence 

techniques. These third generation methods are still used to date. To our knowledge, the 

currently highest accuracy predictor is PsiPred37 from the Jones group, which uses Position-

Specific Scoring Matrix (PSSM) profiles as input to an Artificial Neural Network (ANN). 

The output of this network is then fed into a second layer network for noise reduction. 

Another method, Jufo38 also uses an ANN and has recently been adapted to predict 

secondary structure and trans-membrane spans at the same time39. Prediction accuracies are 

comparable to PsiPred and other highest-quality predictors such as Octopus (see below). 

Other methods are Prof PhD as part of the Predict Protein suite40 developed by the Rost 

group, and JPred41, which informs the user about homologous sequences that are found in 

the PDB to enhance SSPred. Except BCL∷Jufo9D39, all other secondary structure 

prediction methods were trained on soluble proteins.

Hydrophobicity scales as a basis for trans-membrane span prediction

Similar to the use of amino acid propensities in SSPred, early attempts to predict trans-

membrane (TM) spans relied on partitioning energies of amino acids from water into a non-

polar solvent (such as octanol or cyclohexane). These partitioning energies could be 

determined experimentally, for instance, by measuring antigenic sites on the protein 

surface42, by measuring partitioning energies of host-guest peptides43, or by considering the 
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energetics of helix-helix interactions44. Other hydrophobicity scales (reviewed by Koehler et 

al. 45) were derived by a consensus approach combining the advantages of several different 

scales46,47,48 or by using a knowledge-based approach from known protein 

structures45,49,50. The experimental scales, that previously used single residues or small 

peptides, were recently expanded by measuring partitioning energies of amino acids in fully 

folded proteins: (1) the biological hydrophobicity scale developed by White and von Heijne 

measures the partitioning of individual trans-membrane helices by the translocon51. This 

was accomplished by inserting helix segments into a helical MP with glycosylation sites on 

either side of the segment. The transfer free energies were computed from the ratio of singly 

glycosylated (membrane inserted helix segment) versus doubly glycosylated (translocated) 

helix segments. The authors also measured transfer free energies dependent on the position 

in the inserted helix segment. (2) Moon and Fleming derived a side-chain hydrophobicity 

scale for amino acids in the folded β-barrel OmpLA52. Guanidine hydrochloride unfolding 

curves were measured for all mutants of a residue at the center of the membrane. It was 

known from the structure of the protein that the particular side-chain faces the lipid bilayer. 

The penalty of burying an arginine residue at the center of the membrane was smaller than 

MD simulations initially suggested. Further, burial of two adjacent arginine residues led to 

cooperative effects with an even smaller penalty than for two separate arginines.

Different hydrophobicity scales were typically compared based on their ability to predict 

TM helices. A recent comparison53 has shown that von Heijne's biological scale and 

knowledge-based scales such as the Universal Hydrophobicity Scale (UHS) have highest 

prediction accuracies. Interestingly, the UHS performs well in predicting protein topology 

(inside/outside orientation) even though topology information was ignored when this scale 

was derived. Performance differences of the various scales in different publications 

(comparing to reference45) are likely due to distinct parameter sets such as window size, 

window function, datasets used, and choice of quality measures.

Prediction of trans-membrane spans and protein topology

For the early methods of TM span identification, the transfer free energies were summed 

over a number of residues (typically 10-25), and stretches with high hydrophobicity were 

predicted to be in the membrane. This simple method worked only for helical proteins, 

where all residues in the TM spanning region have the same sign on the hydrophobicity 

scale. For TM β-strands with alternating signs of hydrophobicities (i. e. β-barrels), this 

scheme was bound to fail45. Using this simple window averaging scheme, per-residue 

prediction accuracies on helical bundles were below 60% in the three state scenario that 

includes an interface region45.

Similar to the developments in SSPred, the inclusion of evolutionary information from 

multiple sequence alignments and the use of machine learning approaches increased 

prediction accuracies drastically. However, since the sequence features of TM helices and 

TM strands differ, prediction algorithms typically specialized on either one, but not both. An 

exception to the rule is the recently improved SSPred tool Jufo that has been extended to 

predict TM spans of both helical and strand nature in BCL∷Jufo9D39. To our knowledge, 

this is the first method that provides predictions irrespective of secondary structure type 
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(helix or strand) and protein type (soluble or MP). Prediction accuracies are over 70% in the 

nine-state scenario (compare to 11.1% for a random prediction), 73% for three-state 

secondary structure, and almost 95% for three-state TM span. BCL∷Jufo9D is also able to 

predict some higher-resolution features such as kinks and re-entrant helices.

Predicting TM spans and topology of α-helical bundles

Several tools are available for predicting TM helices and topologies (i.e. defining the inside/

outside orientation of residues in MPs). For OCTOPUS54, four separately trained ANNs for 

the membrane, interface, loops, and globular residues were combined globally using a 

Hidden Markov Model (HMM), and it achieves accuracies above 90% in the two-state 

scenario (residue is or is not part of a TM helix). Other TM helix prediction methods use 

HMMs (TMMOD55, TMHMM56) or SVMs (Memsat-SVM57) with varying accuracies. The 

principle however, is typically the same: the evolutionary information from the MSA serves 

as a basis to extract sequence features that are used to build models (for HMMs), to train 

networks (ANNs), or for classification (for SVMs). The structural information from a 

database of protein structures serves as a comparison to the predicted output for supervised 

learning. Topology prediction methods additionally use the “positive-inside” rule58 (that 

states that there is a positive charge bias on the cytosolic part of the protein) to classify the 

protein topology for training. Alternatively, databases that collect experimental information, 

such as protein fusion with reporter enzymes, glycosylation studies, accessibilities to 

proteases, and immunolocalization techniques, to pinpoint protein topology (such as 

TOPDB59 or ExTopoDB60) or that identify sequence motifs consistently located only on 

one side of the membrane (TOPDOM61), are useful resources.

Predicting TM spans and topology of β-barrels

For TM β-barrels, the group that developed OCTOPUS developed a method called 

BOCTOPUS62. It uses an SVM for local predictions that are then combined into an HMM 

for global prediction. The method is trained on 36 structures with 10-fold cross-validation 

and the authors report an accuracy of 87% in the three-state prediction (inside, outside, 

membrane). Other TM β-barrel predictors are the recently developed method 

BETAWARE63, TMBetaNet64 (an ANN trained on 13 outer membrane proteins), 

TMBHMM65 and ProfTMB66 (which is a profile-based HMM that is part of the Predict 

Protein40 server developed by the Rost group).

Predicting TM spans: What are we missing?

Even though these tools provide reliable predictions, several improvements related mostly to 

higher-resolution predictions would be useful and are likely to be implemented in the near 

future:

1. The prediction of re-entrant helices as seen in voltage-gated potassium channels, 

chloride channels, SecY and other proteins. Several tools such as OCTOPUS, 

Memsat-SVM, and BCL∷Jufo9D are able to predict some of them, but prediction 

accuracies well below 50% highlight the challenges that are faced. As more MP 

structure are determined, larger training datasets will likely facilitate the predictions 

and provide more statistics on these helices' different amino acid compositions.
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2. A similar issue is the prediction of half-helices that insert into the membrane as in 

peripheral MPs, or the prediction of helices that differ from the “standard” TM 

helix length of 19 or 21 residues. Prediction tools such as OCTOPUS use fully 

spanning TM helices for their training, remove shorter helices in a post-processing 

step, or output only TM helices of a defined length. However, given the structural 

diversity of MPs with helix and strand lengths that span or insert into the 

membrane with different lengths, prediction algorithms need to be able to identify 

these features.

3. The prediction of amphipathic helices (helices that are lying flat on the membrane 

surface) from sequence information, even though one of most used methods in 

bioinformatics by the experimental community, still seems to be ‘stuck’ in the 20th 

century. The very few tools available still use a sliding window approach67 and 

hydrophobic moments to identify amphipathic helices. Some methods rely solely 

on helical wheel plots or wenxiang diagrams68. Servers like Amphipa Seek69 or 

HELIQUEST70 are either error-prone or lack user-friendliness. Moreover, none of 

the few methods state accuracies for predicting amphipathic helices.

4. The prediction of TM helix kinks: The Bowie lab trained an ANN, TMkink71, 

specifically for this task and they report a prediction sensitivity of 70% and 

specificity of 89%. Depending on the dataset and the kink definition, this prediction 

can drop to about 50%39. Interestingly, in proline-induced kinks the proline residue 

may not be conserved even if the kink is72. Again, larger structural databases will 

promote higher quality predictions in this area.

5. Most of the MP β-barrel predictors are exclusively trained on outer membrane 

proteins (OMPs) where the barrel is formed by a single chain. The performance of 

these tools on β-barrel porins, such as hemolysins and other pore-forming toxins, 

where the barrel is formed by multiple chains, is questionable.

Prediction of surface accessibility and membrane-facing regions

The few available methods that predict surface accessibility of MPs from sequence are 

mostly SVM classifiers. ASAP73, a method for both MP helical bundles as well as β-barrels 

has reported accuracies of 70-80%, depending on the type (helical or barrel) and probe 

radius. According to the reduced specificity, the method likely over-predicts accessibility. 

Similarly, the methods aTMX and bTMX74 are SVM classifiers that predict the burial status 

of residues in α-helical bundles as well as β-barrels with accuracies of almost 80%. Both 

methods for helical bundles, however, exclude pore-forming proteins or cap the pores such 

that they are inaccessible to the spherical probes used for estimation of solvent-accessible 

surface area. Therefore, it is unclear how these methods would perform on these types of 

proteins. Another recently developed SVM classifier, PRIMSIPLR75, has been trained on 90 

helical MPs proteins specifically to predict pore-lining residues. The article shows an 

accuracy of 86% with possible under-prediction of residues. A different approach was used 

by Adamian & Liang who developed a lipophilicity scale76 that was later used for 

lipophilicity prediction (i. e. lipid accessibility) by their LIPS server77. The scoring function 

is based on the Shannon entropy and combines the average entropy and lipophilicity of 
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different helical faces into a single score. The algorithm predicts lipid-exposed sides of TM 

helices with an accuracy of 88%. Other predictors are available for surface accessibility 

prediction, but are not trained on MPs (such as NetSurfP78 or SABLE79 as part of Predict 

Protein40).

Identifying helix interactions and other motifs from sequence

The first and most well known trans-membrane helix interaction motif, the GxxxG motif, 

was found at the beginning of the 1990's by studying the interaction surface in glycophorin 

A80. Since then, more interaction motifs between TM helices have been described. Senes et 

al. 81 examined over- and underrepresentation of residue pairs and triplets in sequences and 

found that the GxxxG motif frequently occurs with β-branched amino acids such as Val or 

Ile. Other motifs that were found typically involve small amino acids such as Gly, Ser, and 

Ala in the first and fourth position whereas Ile, Leu, and Val are in neighboring positions. 

Excellent reviews about trans-membrane helix interaction motifs with corresponding 

examples are Curran & Engelman82 and Langosch & Arkin83.

Marsico et al. created the MeMotif database84 that describes different sequence motifs found 

in helical MPs. Characteristics such as protein-protein interaction motifs in TM complexes 

(30% of the motifs), helix-helix interaction motifs (15%), and specific lipid/cholesterol 

binding motifs (12%) are represented there. The database server can be used to identify 

motifs in a sequence of interest.

Walters et al. investigated helix-packing motifs by clustering techniques. They found that 

75% of helix interactions can be assigned to one of five clusters85 and that all of these 

clusters follow simple principles of helix-helix85 packing. For structure prediction, the 

MemBrain server86 combines correlated mutations with multiple machine learning 

classifiers to predict TM helix-helix contacts from sequence. The contact prediction 

accuracy is increased dramatically compared to other methods – it achieves 64%. These 

predicted helix contacts can also be used in conjunction with threading techniques, such as 

TASSER87, to predict 3D structures of the proteins. Another recently developed algorithm, 

PREDDIMER88, can predict structures of TM helix dimers (homo- as well as hetero-dimers) 

from the sequences of short helices. Alternatively, the tool can be used to analyze 

hydrophobic properties and contacting regions for a known structure.

A recent review from Li, Wimley, and Hristova89 challenges the notion of simple interaction 

motifs between TM helices. Since more and more MP structures become available, it has 

become clear that TM helix interactions are more complex and do not always follow the 

simple rules outlined above. The authors discuss examples that obey previously described 

interaction rules, and others that do not. Since it remains difficult to obtain high-resolution 

MP structures that are required for a deeper understanding of these interactions, we are just 

at the beginning to recognize these complex relationships between sequence and structure.

Going to Three Dimensions

Whereas the previous paragraphs have focused on sequence-based techniques that yield 

information about protein secondary structure and may be able to provide hints about 
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tertiary contacts, the second half of the review discusses methods for protein tertiary 

structure prediction. These are ordered by increasing difficulty (and decreasing accuracy 

achievable) and are highlighted in FIG. 2.

Homology modeling and fold recognition for membrane proteins

The past years have shown a steady increase in the use of homology modeling techniques, 

especially for MPs. Contributing factors are the increase of determined MP structures and 

therefore the availability of suitable templates, while at the same time experimental structure 

determination is still prohibitively slow or challenging. Critical drug targets for a wide 

variety of diseases, such as GPCRs and ion channels, are prime targets for homology 

modeling and heavily benefit from the increase in available template structures. For 

instance, according to PubMed, over 130 papers have been published on homology 

modeling of GPCRs, half of them published in the past 3 years.

Homology modeling requires a template structure with high sequence similarity to the target 

sequence: typically the higher the sequence similarity, the higher the accuracy of the 

resulting model. Sequence similarities of ∼70% can yield models with an RMSD of 1-2 Å 

whereas highest-quality models with sequence similarities of 25% to the template typically 

have RMSDs of 3-4 Å90. As a consequence, the quality of the sequence alignment also 

influences the accuracy of the resulting model. One of the alignment methods that have been 

developed specifically for MPs is PRALINETM91, which uses MP specific substitution 

matrices (PHAT matrices92) instead of BLOSUM or PAM and incorporates TM span 

prediction to improve sequence alignments. MP-T is a sequence-structure alignment tool93 

that also uses MP specific substitution matrices (JSUBST matrices94) and environment 

parameters such as secondary structure, accessibility, and membrane depth from the Coarse 

Grained DataBase95 of MD models for each template.

After a high-quality alignment has been obtained, the alignment and the template can be 

submitted to a homology modeling tool. For some tools, the alignment step is already 

included in the calculation and the target sequence and template structure are sufficient for 

modeling. Several tools are available, RosettaMembrane96,97 being one of the earliest and 

most reliable (FIG. 3). It has been used to model the open and closed states of the Kv1.2 and 

KvAP potassium channels98. Recently, RosettaMembrane was used to model the HERG 

potassium channel99 and docking simulations were used to identify possible binding pockets 

of inhibitors or activators. Another popular tool in the modeling and experimental 

community is MODELLER100 that predicts the structure by satisfaction of spatial restraints 

derived from the alignment. Even though MODELLER does not have a membrane mode per 

se, it has been used for modeling MPs as well101. MEDELLER102, is a coordinate-

generation tool designed for MPs that outperforms MODELLER for all types of targets from 

easy to difficult. It has been used in conjunction with other tools designed for MPs as the 

MEMOIR server103 that has been shown to outperform HHP red104 or Swiss Model105.

Homology modeling is a powerful tool for high sequence similarities between the target and 

the template, but it is not suitable for low (∼25%) to very low (5-10%) sequence 

similarities. For these regions, fold-recognition methods (or ‘threading’) are the tools of the 

trade. Threading methods rely on the principle of aligning the target sequence to all template 
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structures in a database. The sequence-structure alignment is then scored with a knowledge-

based scoring function that contains terms like secondary structure, environment, 

mutatability, and residue pairing, among others. One of the best performing methods is 

iTASSER from the Zhang group106 for which unfortunately no ‘membrane mode’ is 

available. It has, however been used in conjunction with MemBrain86 to model 13 GPCRs. 

Comparing the models to the crystal structures, inclusion of MemBrain contact prediction 

led to a significant drop in RMSDs: on average by 3 Å, in three cases even up to ∼10 Å. 

The fold recognition method FUGUE94 was combined with membrane-specific substitution 

matrices JSUBST and the coordinate-generation method MEDELLER102. Models in the 

sequence identity range between 15-35% had average RMSDs of 3.4 Å to the crystal 

structure. Another method, TMFR107 has recently been published, which uses topology 

features in sequence profiles combined with solvent-accessibility. The group developed 

individual methods for MP helical bundles and β-barrels and report increases in accuracies 

of up to 10% compared to HH align108.

De novo structure prediction of α-helical MP bundles

It is estimated that about 80% of the integral MPs are α-helical bundles109,110. Even though 

a variety of sequence-based techniques exists for this subclass of proteins, de novo structure 

prediction remains challenging, especially for large MPs. One of the first successful 

approaches was the RosettaMembrane96 software that uses protein fragments assembled by 

a Monte-Carlo search and scored by knowledge-based scoring functions. The lipid bilayer is 

represented implicitly and the low-resolution scoring function contains energy terms probing 

residue-residue interactions, residue environment, packing density, and steric clashes. 

RosettaMembrane penalizes non-spanning TM helices and non-helical torsion angles within 

the membrane. An all-atom refinement protocol was later added with a high-resolution score 

function97 based on an implicit solvent potential for MPs, IMM1111. Rosetta uses 3 and 9 

residue fragments for assembly and was originally developed to fold small soluble proteins. 

For improved sampling of the extensive conformational search space of larger proteins, the 

fragment assembly approach of the BioChemicalLibrary112,113 used in BCL∷MP fold114 

uses complete secondary structure elements and outperforms Rosetta for most MPs and 

some large soluble proteins. Recently, the concept of correlated mutations (i. e. covaration 

of amino acid residues) has been applied to de novo MP structure prediction115. Even 

though covariation for protein structure prediction had been tested repeatedly in the past, 

contact prediction accuracies were rather limited. The reason for these low accuracies are 

transitive correlations, meaning that covariations between residues (A and B), and (B and C) 

do not necessarily imply a correlation between (A and C). Hopf et al. recently described 

EVfold_membrane that uses a maximum entropy approach that is based on the inverse Ising 

problem, to eliminate this noise of false positives. Restraints derived from the covariation 

patterns were used in conjunction with the structure calculation software CNS, which lead to 

substantial improvements in prediction accuracies and consistently achieved RMSDs below 

∼5 Å for proteins up to ∼360 residues115. Residue covariance has also been applied by 

Nugent & Jones in their FILM3 software116 that uses secondary structure prediction and 

topology prediction to guide fragment selection and assembles these fragments using 

correlated mutations.FIG. 3 shows the RMSDs vs. sequence lengths from best scoring 

models predicted by all four software algorithms. Whereas Rosetta predicts models as 
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accurate as <5 Å RMSD for small MPs, BCL∷MPfold creates higher-accuracy models for 

larger MPs. The addition of correlated mutation restraints leads to an increased performance 

of FILM3 compared to BCL∷MPfold. However, all methods are outperformed by 

EVfold_membrane. These are impressive prediction accuracies, and given that three of the 

four methods are newly developed, further improvements in de novo folding algorithms are 

likely to happen.

Structure prediction of specific classes of membrane proteins: GPCRs and K+ channels

De novo MP structure prediction methods have also been developed for specific targets, 

such as GPCRs. The idea is to make specific assumptions about the target from a template 

structure or use experimental data as restraints for structure prediction (see below).

Even though GPCR structures are difficult to determine experimentally, they have the 

advantages of (1) sharing a similar fold with 7 TM spans; (2) challenges in expression and 

protein engineering have been mainly resolved, and (3) the GPCR Network117 as a structure 

determination consortium is solely dedicated to this task, bringing together the experts in the 

field. (4) Additionally, GPCRs are still within the size limit for NMR spectroscopy (even 

though it is still challenging to obtain usable spectra).

The PREDICT118 program makes general assumptions about helix arrangement and GPCR 

structure to create a coarse-grained model, later optimizes helix orientations, and uses MD 

simulations for a full-atom refinement. Ultimately, experimental data from ligand-binding 

studies is used for further refinement. With this method, the structure of rhodopsin was 

predicted to 2.9 Å to the crystal structure. The MembStruk algorithm119 used a similar 

approach by predicting TM spans and optimizing individual helices with MD simulations. 

The helices were later assembled into a bundle using the electron density map of bovine 

rhodopsin. After refining helix orientations, loop modeling, and full-atom refinement using 

MD simulations, the RMSDs to the crystal structures were 3.1 Å for bovine rhodopsin and 

6.2 Å for bacteriorhodopsin. Fold GPCR120 starts from a helix bundle that has been 

assembled using distance restraints from a template structure with information about helix 

bundle topology, conserved residue contacts, and ligand binding geometry. The MD 

approach includes simulated annealing and a replica-exchange protocol for refinement. The 

RMSD to the crystal structure for the β2-adrenergic receptor is 2.1 Å. The TASSER121 

method differs from the previous approaches by not using any restraints or experimental 

data to reduce the conformational search space, but rather identifying template fragments 

from the PDB that are assembled using a replica-exchange Monte-Carlo protocol. Iterative 

clustering, modeling and then refinement make their threading algorithm (aka fold-

recognition) one of the best servers for protein structure prediction. In 2006, the TASSER 

group generated models for all 907 GPCRs in the human genome122 and achieved an RMSD 

to the bovine rhodopsin crystal structure of 4.6 Å.

Unfortunately, large tetrameric potassium channels, whose family is smaller than the 

GPCR family123 and whose members are expressed in various tissues, do not share the 

advantages that GPCRs have. Diseases associated with ion channels include cardiac 

arrhythmias (irregular heartbeat & sudden death), epilepsy, cystic fibrosis, and hearing loss, 

and blockers of potassium channels can be used as local anesthetics. Expression levels of 
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potassium channels are very low124, which sometimes requires special in vitro expression 

systems125. Additionally, their folds vary between channels formed by oligomeric 

association of 2 TM spans (inward rectifiers Kir, KATP channels, G-protein regulated GIRK 

channels, K2P channels), 6 TM spans (Kv, calcium-regulated KCa), and 7 TM spans 

(Slo)126. There are several structures available to date that are commonly used as templates 

for homology modeling: KcsA127, KvAP128, Kv1.2129, Kv1.2 chimera, Kir124, KirBac130, 

and MthK131. The challenges for homology modeling are to find templates with a 

reasonably high sequence identity to the target – at least 30% are required to obtain a model 

of acceptable quality. Furthermore, loop regions are usually less conserved and often need to 

be modeled de novo. Since the loops typically contain the ligand-binding interfaces, accurate 

modeling is required to carry out high-confidence ligand-docking studies. If experimental 

constraints from ligand-binding assays are available, they can be used to restrict flexible 

loop conformations.

Other approaches have been used to study potassium channels: MD simulations132, 

Brownian dynamics133, and potentials of mean force134 among others were used to try to 

explain certain features, such as ion selectivity, channel gating, voltage sensing, and ligand 

binding. To focus on the pharmacological aspects of ion channels135 (or drug targets in 

general), quantitative structure activity relationships (QSAR) can be used136, a ligand-based 

approach that uses chemical or 3D descriptors of the ligand to predict biological activities 

against a target protein. QSAR can be combined with pharmacophore maps137, i. e. maps of 

pharmacologically relevant features or functional groups of ligand molecules, to perform 

virtual high-throughput screening (vHTS)138. Interestingly, vHTS can also be carried out 

without knowing the structure of the target protein by training machine learning approaches 

with the chemical or 3D descriptors and using experimentally tested protein activity data as 

output for training and testing139.

In recent years, the hERG potassium channel has received much attention both from the 

pharmaceutical industry as well as academia because many potassium channel blockers have 

shown to also non-specifically inhibit hERG as a side-effect, leading to Long-QT syndrome 

and possibly sudden death140. This inhibition has led the pharmaceutical industry to use 

hERG as an antitarget to probe drug safety. Since the structure of hERG is unknown, 

scientists rely on homology models of the channel99,141. As a model for drug binding, toxins 

such as scorpion toxin142,143 and tarantula toxin144 have been used because of their 

specificity towards the less conserved voltage-sensing part of the channel145. Currently, 

many drugs specifically target the highly conserved pore-forming part leading to side effects 

such as hERG blockage.

De novo structure prediction of MP β-barrels

Even though β-barrels are much less common among MPs than α-helical bundles (an 

estimate is 2-3% of the genome of gram-negative bacteria146), there has been some effort 

predicting their structures de novo. Early methods started with sequence-based prediction of 

topology or residue contacts, and only recently have algorithms emerged that attempt to 

predict the 3D fold of the barrel. The transFold147 algorithm is a sequence-based approach 

that predicts the ‘supersecondary’ structure of MP β-barrels, such as secondary structure, 
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TM topology, residue contacts, side-chain orientation, and strand angles with respect the 

membrane. The underlying algorithm uses inter-strand statistical potentials in conjunction 

with grammars from formal language theory to build models that are subsequently evaluated 

using a dynamic programming algorithm. The program partiFold148 goes one step further in 

modeling ensembles of β-barrels by computing the Boltzmann partition function to estimate 

inter-strand residue contact probabilities and crystal structure B-values. The 

BetaBarrelPredictor149 uses a graph-theoretic approach to classify β-barrels and model their 

supersecondary structure.

The TMBpro150 software suite encompasses several prediction tools for secondary structure, 

side-chain orientation, residue contacts, and tertiary structure. The latter uses a simulated 

annealing protocol with a specified move set to assemble 3D folds from fragments of 

template structures. The algorithm predicted β-barrel structures under 6 Å RMSD to the 

native for 9 out of 14 proteins and RMSDs under 5 Å for 6 out of 14 proteins. Another 

predictor, TOBMODEL151, uses topology prediction as a starting point and assembles the β-

sheets at different angles in the membrane. The resulting models are scored with ZPRED, 

which estimates the distance of each residue from the membrane center. On their test set, 

TOBMODEL correctly predicted the topology in more cases than TMBpro and also had a 

lower average RMSD to the crystal structure (7.2 vs 8.8 Å). Another recent method, 3D-

SPOT152 (as part of the TMBB explorer) is probably the most accurate method for 3D 

structure prediction of β-barrel MPs with RMSDs below 4 Å. It models the physical 

interactions of strong H-bonds (inter- strand backbone interactions), weak H-bonds, and 

side-chain interactions between neighboring strands in the membrane. Whereas the topology 

is not predicted explicitly and the strands can vary in length, the balance between inter-

strand interactions and an entropy-based loop term defines the length of the strands vs. loop 

lengths. To arrive at a low-scoring model, strands are allowed to slide up and down with 

respect to the previously inserted strand, which result in different strand registers and H-

bonding patterns.

Incorporating experimental restraints into modeling – early approaches for soluble 
proteins

In the mid 1990's computational protein structure prediction produced models with a more 

or less ‘random’ structure and succeeded only in rare cases for very small proteins153. The 

computer scientists developing new algorithms were often disconnected from the 

experimentalists who determined structures with distance geometry methodologies and 

measured NMR restraints. The datasets for NMR structure calculations were (and still are) 

typically ‘rich’ datasets with 10 or more restraints per residue. It was realized that 

incorporating experimental restraints into structure prediction was a crucial step to obtain 

higher quality models. Additionally, scientists understood the challenge of obtaining rich 

experimental restraint datasets and aimed to develop methods that produce high-quality 

models with sparse datasets of one restraint per residue or less.

An early success was the MONSSTER154 method from Skolnick et al. which used 

secondary structure elements and fragment assembly with a few long-range distance 

restraints. Even though this was as early as 1997 and the method was not designed for MPs, 
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the algorithm was able to determine the structure of the 146 residue protein myoglobin to 

5.7 Å RMSD with only 20 distance restraints. In 2000 the Rosetta NMR155 algorithm 

combined de novo prediction with sparse restraints from chemical shifts and NOE data. 

Using one restraint per residue produced consistently better results than traditional distance 

geometry approaches; moreover, the produced models were closer to the crystal structures 

than the corresponding NMR structures. As early as in 2003, unassigned NMR data was 

used in conjunction with Rosetta to determine the folds of proteins up to 150 residues156. 

The group of Kolinski and coworkers developed the CABS-fold program157 in 2007 that 

uses secondary structure from chemical shift index data and TALOS dihedral angle 

restraints to fold proteins up to 140 residues. Their algorithm uses a simplified 

representation of protein residues combined with replica-exchange MD simulations.

These methods were continuously improved to (1) use less data, (2) use data that was easier 

to obtain, (3) fold larger proteins, and (4) increase the accuracy of the models: by 2010 

Rosetta NMR could predict proteins up to 25kDa using backbone-only restraints from 

chemical shifts, RDCs, and NOEs158. Recently, backbone-only chemical shifts and distance 

restraints from homologous structures were used to model proteins of that size159. Another 

interesting idea is the RASREC protocol160 that resamples low-energy features from 

intermediate-stage models, thereby taking advantage of ‘good’ already-built substructures 

that can be recycled and combined in later stages. This method therefore provides crosstalk 

between the otherwise independent folding trajectories leading to improved sampling.

The Wishart group combined the use of various data (sequence data, NOEs, chemical shifts) 

and databases to predict protein structures with Rosetta and refine them with Xplor. They 

have shown that protein structures below 3 Å RMSD can be obtained even for non-

homologous proteins. Their webserver GeNMR161 generates 10 models per query.

Using experimental data to model MPs

Since 3D modeling of MPs didn't emerge until the mid 2000s, studies that use restraints in 

structural modeling have emerged only recently. Shortly after RosettaMembrane was 

developed, Barth et al. 162 reported the use of few (down to a single) specific helix-helix 

packing restraints in MP de novo folding. Twelve MPs from 190 to 300 residues were 

folded, and the restraints promoted an enrichment of native structures and models below 4 Å 

RMSD. The RASREC protocol and Rosetta CS in combination with sparse restraints 

allowed model building of MPs up to 40kDa163. In half of the cases, the Rosetta model was 

closer to the crystal structure than the NMR structure. Large MPs can be modeled with 

BCL∷MPfold developed in the Meiler group114. When supplemented with NMR data such 

as NOEs, chemical shifts, and RDCs, 65 out of 67 proteins in a test set had the correct 

topology164. Incorporating restraints achieved an average decrease in RMSD100 (RMSD 

normalized to a protein size of 100 residues) of 2.5 Å, and the best-scoring protein model of 

565 residues had an RMSD of ∼5 Å.

Since experimental structure determination of MPs is laborious and cumbersome, there have 

been attempts to predict the required number165 and location166 of spin labels for PRE NMR 

or EPR measurements. These distances can be used in modeling167, however, translating the 
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spin-label distances into accurate backbone restraints is not straightforward due to the 

flexibility of the spin label168,169.

Other types of restraints that have been used are density maps from CryoEM170,171 and 

SAXS172,173. Whereas CryoEM is becoming a well-established tool and medium to high-

resolution density maps become increasingly available, progress in the use of SAXS data is 

still slow. An emerging hybrid approach is the use of mass-spectromety or cross-linking data 

in modeling and docking174,175. Its success is most likely owed to the character of the 

restraints: distances of short range in 3D space but long range in sequence restrict the 

folding space drastically. Two beautiful examples of these hybrid approaches are (1) the 

structures of active and inactive ribosome-SecY channel complexes by combining CryoEM 

with homology modeling176, and (2) the structure of the ribosome using CryoEM, homology 

modeling, mass-spectrometry, and cross-linking data177.

Scoring functions for membrane proteins

Predicting the structures of proteins is intimately connected to the development of accurate 

scoring functions that are able to discriminate native and near native from non-native 

models. Scoring functions can either be physics-based, knowledge-based, learning-based or 

a combination. Examples of physics-based potentials[1] are the ones used by CHARMM178, 

Amber179, or OPLS180.

Physics-based potentials—Physics-based potentials typically include energy terms 

describing bonds, angles, dihedral angles, electrostatics, and van der Waals interactions. 

Interactions with the solvent can be modeled in two different ways: (1) explicitly, i. e. 

interactions of each protein atom with each solvent atom are modeled individually, or (2) 

implicitly, i. e. the solvent is represented as a continuous field with average solvent 

properties with which the protein atoms are interacting. To improve sampling and tackle the 

high cost of modeling water explicitly, implicit solvation models have been proposed and 

developed. The simplest way to model solvation is by considering the solvent-accessible-

surface-area (SASA) of atoms or residues in a protein that are associated with a specific 

solvation parameter. This model requires accurate solvation parameters to be chosen and 

measured. Another model is the Poisson-Boltzmann (PB) formulation that represents the 

solvent as a dielectric continuum and describes the electrostatic interactions between the 

protein and the solvent implicitly. This model is computationally expensive and has been 

approximated by the generalized Born (GB) formulation. A different model, the effective 

energy function EEF1, has been developed181 that approaches solvent exclusion by 

Gaussian statistics.

To model the membrane bilayer as an implicit solvent, Lazaridis extended the EEF1 

solvation potential to the lipid environment: the solvation term was parameterized based on 

experimental observation of energy transfer from water to cyclohexane, and a depth-

1Terminology: A potential is a mathematical function describing the potential energy of a system, for instance the Lennard-Jones 
potential. A force field is the sum of individual potential energy terms. A scoring function describes the “correctness” of a prediction. 
The term scoring function is most often used when derived from a knowledge-base, the term force field is often used for physics-based 
potentials.
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dependence was introduced into reference energies and the dielectric potential. The resulting 

potential IMM1111, was used in combination with the Rosetta knowledge-based scores for 

soluble proteins to create the high-resolution RosettaMembrane97 scoring function. This 

score function complements the low-resolution scoring function of RosettaMembrane96 that 

consisted solely of knowledge-based potentials modeling residue pairs, solvation, and 

packing, and that were added to the standard Rosetta scoring function for soluble proteins.

Others have extended the generalized Born theory of solvation to include the membrane as a 

planar hydrophobic region. This approach, first developed by Spassov et al., improves 

sampling by 1-2 orders of magnitude compared to explicit lipid bilayer simulations182. In 

combination with replica exchange techniques, Spassov's work has allowed the first 

unguided protein folding simulations of small membrane-spanning polypeptide segments 

using classical MD or MC methods with standard molecular mechanics force fields 

(CHARMM, OPLS, GROMOS)183,184. The downsides of these models are the 

oversimplification of the chemically complex lipid bilayer interface and the inability to 

capture membrane deformations caused by partitioning of charged sidechains.

Another physics-based force field is that of MARTINI, originally developed to model lipid 

bilayers, it has now been extended to model proteins in the membrane185. This coarse-

grained potential bundles four atoms of a lipid or amino acid into a super-atom, thereby 

achieving an increase in speed of 3-4 orders of magnitude. MARTINI has recently been 

combined with the GROMOS atomistic force field to model the lipid bilayer in coarse-

grained mode while retaining the ability to model the protein atomistically186.

Knowledge-based potentials—The small number of determined MP structures have 

also been used to develop knowledge-based scoring functions, mostly for helical bundles. 

Adamian et al. examined interacting residues in TM helices187 and found that pairs between 

an aromatic residue and a basic residue (such as WR, WH, YK) are the most probable 

interactions. By investigating packing, they also found that large residues are most likely to 

occur in pockets whereas small residues are least likely. Additionally, the number of 

contacts correlates with residue size. A packing score to model helix-helix interactions was 

developed by Fleishman & Ben-Tal188 that rewards small residues in the interface and 

penalizes large ones. From a test set of 11 proteins, 73% of the predicted structures had an 

RMSD <= 2 Å. A potential with similar scoring ability was developed by Wendel et al. from 

a database of 71 MPs189. A purely distance dependent score for oligomeric helix-helix 

interfaces was also developed by Park et al. 190. Their lowest energy conformations of 

glycophorin A, ErbB2, and phospholamban matched experimental data.

Knowledge-based potentials that probe the interaction with the solvent can be used as a 

guide for modeling or for filtering out erroneous models. MPRAP191 is a sequence-based 

predictor of SASA that was developed by the Elofsson lab. It is a support vector machine 

that has been trained on databases of both soluble proteins as well as MPs and overcomes 

the limitations of other methods, that perform well in either solution or the membrane, but 

not both. The Liang group developed a lipid propensity scale76 that was used to train their 

LIPS server77, a method to predict lipid accessible surfaces from protein sequence alone. A 

much more fine-grained scoring function was derived from the Lazaridis group192 that 
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describes binding of peptides to the membrane bilayer dependent on pH. Components of the 

binding free energy were computed from MD trajectories. The same group later derived 

potentials of mean force for ionizable side-chains at the water-bilayer interface region193.

Comparison of different scoring functions—Which scoring functions are good for 

which scenarios? Since the ruggedness of the energy landscape depends on the granularity 

with which the protein is modeled, the ‘correct’ scoring functions should be used in the 

appropriate scenarios. Forrest & Woolf194 studied loop conformations in MPs and compared 

several physics-based potentials in their ability to discriminate native-like conformations. 

They found that effective energy functions can distinguish native-like conformations under 

the assumption of a homogeneous environment and that continuum-solvent models and 

finite-difference PB models are the most powerful ones. MP loop conformations were also 

examined by Gao et al., who tested several high-resolution potentials on homology 

modeling decoys195. They found that the scoring functions of PLOP, Rosetta, and DFIRE 

have the most discrimination ability, followed by AMBER/GBSA, RAPDF, and 

MODELLER. It should be noted, however, that the homology models were built with PLOP 

and MODELLER, possibly biasing the test to the compatible score function. The Lazaridis 

group tested the discrimination ability of several physics-based scoring functions on decoys 

generated by RosettaMembrane in dependence on the membrane thickness196. They found 

that IMM1 in combination with CHARMM36 gives best results at a membrane thickness of 

25.4 Å, similar to GB with simple switching, which includes a higher-order Coulomb field 

approximation and uses overlapping van der Waals spheres to represent the dielectric 

surface. Using GB with simple switching at a membrane thickness of 28.5 Å produced 

identical results.

The Wallner group developed ProQM197, a learning based scoring function consisting of a 

support vector machine. The SVM was trained on structural characteristics of the models, 

namely atom-atom contacts, residue-residue contacts, SASA, secondary structure, TM 

spans, membrane depth, and evolutionary information. The method produced higher 

correlation coefficients than any other methods and, combined with RosettaMembrane low-

resolution scoring function, led to a 7-fold enrichment in near-native models. Surprisingly, 

this learning based method was outperformed by a recently developed simple scoring 

function based on known residue-residue interactions198. The IQ-score is the sum of two 

scoring terms that considers the number of interactions (hydrophobic interactions, hydrogen 

bonds, ionic bonds, disulfides) and their distribution compared to a native protein structure. 

Based on its performance on three datasets, it outperforms ProQM on average by ∼7%.

Molecular Dynamics (MD) simulations – advances and challenges

Another popular technique in the computational modeling field is MD simulations, which 

have traditionally been used in conjunction with NMR restraints to compute protein 

structures. MD simulations have also been used to uncover a wealth of atomic detail 

information on the molecular mechanisms underlying protein function, such as ion 

conduction, selectivity, and gating for channel proteins. Even though the MD field has 

experienced a vast increase in protein sizes as well as timescales that were modeled over the 

past 10 – 15 years (FIG. 4), it remains challenging to fold proteins of a ‘reasonable’ size 
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(say, 150 residues) from an unstructured state in solution. The currently largest proteins 

folded are about 80 residues in size199 – one example is the soluble protein acylCoA whose 

simulation pushed several limits at once with an incredibly long simulation time of 30 ms. 

These timescales were reached by using specialized software that utilizes Graphics 

Processing Units (GPUs) on a distributed computing grid (Folding@home), while at the 

same time improving the sampling efficiency by representing the solvent implicity using the 

GBSA method200.

The first attempts at atomistic folding of MPs in explicit lipid bilayers proved challenging 

and exposed fundamental problems with simulation methods and force fields201,202. Recent 

studies, employing new lipid force fields203,204, have shown that atomic detail partitioning 

and folding of individual TM helices into explicit lipid bilayer membranes can be achieved 

via unbiased long-timescale molecular dynamics simulations on the multi-microsecond 

timescale205,206. However, folding of larger MP fragments and full multi-span membrane 

proteins remains difficult. Key challenges are: (1) the use of current protein force fields on 

the microsecond timescale has exposed flaws that need updating to reflect longer simulation 

timescales and new parameterizations might have to include solvent transfer free energies; 

(2) simulation timescales for protein folding are in the ms range and are now just starting to 

become accessible with modern computers, supercomputing clusters, and latest technologies 

such as GPUs207; (3) the inherent complexity of the membrane environment means that 

multi-span MPs need to be threaded correctly into the bilayer and prevented from getting 

trapped in non-native states; (4) the number of physical interactions (and the conformational 

search space) to be sampled increases dramatically for large proteins, such as MPs, and the 

associated lipids in the simulated unit cell. A review highlighting these challenges has 

recently been published208.

Coarse grained or all-atom simulations?—In 2003, Marrink and coworkers 

developed the coarse grained MARTINI force field to model the lipid bilayer explicitly209. 

MARTINI has since been extended to proteins185, and was used extensively to study events 

of the membrane bilayer such as raft formation210 (reviewed by Bennett & Tieleman211), 

membrane fusion212, and supramolecular assemblies in the membrane (like oligomerization 

of GPCRs213). Coarse-grained simulations are very useful for investigating larger-scale 

systems with MD, especially in the lipid bilayer, such as drug delivery using nanotubes214 or 

fullerenes215. However, studying the molecular mechanism of protein folding206,216, 

membrane partitioning217, or specific protein interactions (e. g. drug-protein218,219 or 

protein-lipid220) requires atomic detail representation of hydrogen bonds. For instance, 

atomic detail interactions were crucial to uncover the mechanisms of selectivity, ion 

conduction, and gating of potassium221,188 and sodium channels223, the voltage-dependent 

anion channel224, as well as an outer membrane protein225,190.

Which force field and software to use?—Several commonly used force fields were 

developed over the years and their accuracy was tested and compared to experimental 

data227. The most commonly used are AMBER179 and OPLS180, which have been used 

extensively for drug docking, and CHARMM228. Over the last few years highly accurate 

lipid parameterizations have been developed for these force fields, allowing simulation of 
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proteins in a variety of atomic detail lipid bilayer membranes203,229. In addition, these all-

atom force fields are supplemented with the previously mentioned MARTINI force field, 

which has coarse-grained representations of lipids and proteins. These force fields are 

implemented in several different software suites, i.e. most of the software can use most of 

the force fields. GROMACS230 is one of the fastest and most widely used packages, which 

support AMBER, OPLS, and CHARMM. Another popular package is NAMD231 and more 

recently Desmond232, which is fast, but not highly used at present.

Emerging techniques in Molecular Dynamics—Several methods have been 

introduced to accelerate MD simulations. Even though the methods discussed here are 

general approaches also applicable to soluble proteins, their impact on MP modeling is 

widespread because (1) of the larger size of MPs compared to most soluble proteins, and (2) 

of the large number of lipid molecules that need to be modeled in addition to the protein.

One of the most widely used methods is replica-exchange sampling233 (REMD, or parallel 

tempering). This method creates identical replicas of a system, which are simulated in 

parallel on an exponential temperature ladder. A Monte Carlo scheme is used to swap 

replicas regularly, melting kinetically trapped non-native conformations, accelerating 

sampling of phase space, and speeding up the transition towards the native state. The 

downside is that the kinetic information is lost when replicas are swapped.

Another related technique for increased sampling efficiency is MD at elevated temperatures. 

This approach was used to study the unbiased partitioning of peptides into the membrane 

and can speed up sampling of phase space by 2-3 orders of magnitude205,206, sufficient to 

accurately reproduce experimental membrane insertion free energies234. A requirement is a 

high thermostability of the peptide or protein that must be confirmed experimentally[2].

Whereas equilibrium MD is good at sampling low energy conformations, sampling of high-

energy transition states (see reference 235 for a recent review about pathway sampling 

methods) is typically poor. Dynamic Importance Sampling (DIMS) solves this problem by 

sampling transition states between two known protein conformations. It relies on importance 

sampling, which assigns a higher ‘importance’ (a bias) to less frequently sampled transition 

states such that the distribution of computed states matches the experimentally observed one. 

In DIMS, however, the applied bias is constantly adjusted based on the current state that 

allows guiding the sampled protein conformation through high-energy states to a defined 

endpoint. DIMS-MD was applied to sample intermediate conformations in the transport 

cycle of LacY236 and to study gating transitions in voltage-gated potassium channels237.

While the above methods have allowed improvements of sampling and extension of 

simulation timescales, the largest improvements have come from the advancement in 

computer hardware. These developments were three-fold: (1) The rapid growth in speed and 

parallelization of Intel/AMD processors has extended the range of simulation timescales by 

4 orders of magnitude over the last 15 years and shows no signs of abating; (2) the use of 

graphics cards (GPUs)207 for parallel scientific computations has resulted in a massive 

2The method is generally not applicable to soluble proteins, which typically unfold even at slightly elevated temperatures of 40-50 °C.
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speedup. However, GPUs require a specific implementation of the code; (3) the 

development of distributed computing facilities such as Folding@home238, as well as 

dedicated massively parallel high-performance supercomputers, such as the Anton machine, 

which employs custom built hardware designed specifically for efficient MD simulation 204.

The future of MP modeling

Even though the MP modeling field has seen substantial progress in the past decade, many 

challenges lie ahead. Since we are now able to model MPs in a coarse-grained fashion, 

future research will most likely focus on MP function originating from different functional 

states of the proteins. At the same time, higher resolution representations of the protein (e.g. 

for design and for ligand binding) and the membrane itself (e.g. for specific lipid 

interactions) are important to understand MP function.

Membrane protein function and different conformational states—Even though 

knowledge of MP structure is beneficial to infer function, it is certainly insufficient. A single 

structure represents a protein trapped in a distinct conformational state (active or inactive, 

apo or holo, or an intermediate) and it does not reveal by itself how this protein functions, 

how it interacts with ligands or other proteins, or how it is regulated by other biomolecules 

or the membrane bilayer itself. Understanding MP function requires knowledge of structures 

in different conformational states that are often difficult to capture. The energy landscape of 

a protein depends on its sequence, ligand binding, protein-protein interactions, post-

translational modifications, and membrane properties.240 Structural characterization of a 

particular state, such as a transition state, can be achieved by altering the system's variables 

and interactions to stabilize or trap the state of interest. As an example, GPCR functions 

span a range of conformational states, and capturing the active state requires stabilization to 

crystallize the protein (such as nanobodies for the muscarinic acetylcholine receptor241). 

Once stabilized, transient states can then be studied using different techniques such as NMR 

spectroscopy242, EPR, HD exchange experiments243, MD simulations244,245, normal mode 

analysis, and others. Even low-populated transient states can be captured with relaxation 

dispersion NMR spectroscopy246,247.

Protein function can be modulated by membrane properties. For instance, changes in 

membrane potential are sensed by the gating charges in the voltage sensor of voltage-gated 

channels, leading to increased pore domain fluctuations that ultimately open or close the 

channel248. Likewise, the spring constant of the lipid bilayer can cause channel opening and 

closing, as shown for the gramicidin channel249. An interesting experiment demonstrated 

that membrane asymmetry can also lead to channel opening: phospholipase has been used to 

cleave fatty acid chains from DOPC:DOPG lipids in one leaflet of the bilayer, converting 

them into lysophospholipids. Since flip-flop of the latter is orders of magnitude slower than 

for fatty acid chains, this resulted in membrane asymmetry leading to opening of the 

Mechanosensitive Channel of Large conductance (MscL)250.

The previous examples and future research will show that close integration of computational 

modeling with experimental validation is necessary and valuable to study MP function.
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Membrane protein design—Protein design is one of the holy grails of structural 

biology. De novo design of soluble proteins remains difficult251,252 but some breakthroughs 

in recent years have been reported. The challenge for MPs is more pronounced, since both 

over-expression of sufficient material and experimental structure determination remain 

challenging. Point mutations and interface design are easier goals, even though the latter 

requires an understanding of the drivers for association, where helix-helix interfaces have 

been studied most85. De novo design and re-design of protein function are most challenging 

and require an advanced understanding of the underlying mechanism for MP stability and 

folding. Computational methods facilitate MP design but require accurate energy functions 

to discriminate ‘good’ from ‘bad’ designs, which ultimately determines which constructs are 

tested experimentally.

To bypass challenges in MP expression and solubilization, a soluble variant of the μ-opioid 

receptor was designed based on a homology model253. Interestingly, the solubilized form of 

the receptor had nanomolar affinity for the antagonist naltrexone, an affinity similar to the 

native human receptor. DeGrado's lab designed CHAMP peptides (computed helical anti-

membrane protein) that disrupt association of, and therefore activate, integrin dimers 

(αIIbβ3 and αvβ3) in micelles, bacterial membranes, and mammalian cells254. Sapay et al. 

engineered a chimera of the muscarinic acetylcholine receptor M2 and the Kir6.2 potassium 

channel that can be used as a biosensor255. Ligand binding to the M2 receptor modulates 

Kir6.2 channel gating allowing the construct to be used for drug screening, biosensing, and 

diagnostics. Exciting developments are also the high-throughout methods such as the 

combined use of protein display and peptide libraries that has been used to identify a novel 

regulator for the GIRK2 potassium channel256. High-throughput screening of combinatorial 

synthetic peptide libraries has recently been successfully employed in the design and 

optimization of membrane active peptides257,258.

These examples demonstrate that MP design, even though a challenging endeavor, has made 

great initial progress with enormous potential for future research and that computational 

modeling is an integral part of the design process. Designs so far have concentrated on 

homology models and small functional changes whereas de novo design of novel function 

within MPs has yet to be realized.

Membrane asymmetry and lipid composition—Lipid composition asymmetry and 

distribution seem crucial for MP function, as some MPs function in certain membranes, but 

remain inactive in others. Lipid asymmetry results in different biophysical properties of the 

membrane leaflets and influences vesicle fusion, cell division, cell stability, apoptosis, and 

other processes. For example, phosphatidylserine and phosphatidylethanolamine occur 

chiefly in the cytosolic leaflet and contribute to membrane fluidity required for vesicle 

fusion, whereas the tighter packing of sphingolipids and sterols in the exoplasmic leaflet 

leads to enhanced barrier function and cell stability for instance in red blood cells259. 

Proteins responsible for flipping the phospholipids in the membrane are P-type ATPases246, 

lipid translocases, scramblases, and others261. Cholesterol asymmetry has been associated 

with amyloid processing and may explain the onset of Alzheimer's disease262. Membrane 

asymmetry can also explain differential sequestering of integrin complexes. The lipid 

asymmetry further affects the charge symmetry (or lack thereof) in MPs: the Dunbrack lab 
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has found that the external side of outer membrane β-barrels has three times more charged 

residues than the internal side206.

Specific lipid interactions—An emerging direction is the investigation of lipid 

compositions and specific MP-lipid interactions264. Since MPs are usually stable in a variety 

of lipid or detergent compositions, the structural changes due to different lipid compositions 

and/or cofactors are likely small265. One example is the orientation of the voltage-sensor 

domain of KvAP that can be tuned between the resting and activated conformation by 

varying the charge in the lipid head group using lipids with or without phosphate groups266. 

In β-barrels, lipid binding can stabilize the protein in weakly stable regions267 using for 

instance sterol-binding motifs.

Modeling both membrane asymmetry as well as various lipid compositions and explicit MP-

lipid interactions will require better energy functions that are able to distinguish native-like 

from non-native conformations. A current obstacle for parameterization of such energy 

functions is the lack of experimental data, i.e. MP structures in various membrane mimetic 

and/or bound to explicit lipids.

Thinking bigger: interaction networks—Interactions of MPs with ligands are studied 

regularly268, especially GPCRs269, as they are important drug targets. Inter-MP interactions 

are increasingly studied270 such that whole interaction networks can slowly be derived271, 

which in turn drive the development of new computational methods272, such as the 

prediction of interacting surface residues. Modeling MP association in MD simulations, 

however, is still on the horizon since it requires timescales to be modeled that are currently 

barely accessible, even with coarse-grained simulations273.

Conclusions

The past decade saw vast improvements in MP modeling, mainly due to an increasing 

availability of determined structures and newly developed algorithms. Secondary structure 

prediction and trans-membrane span prediction can generally be regarded as a solved 

problem, though improvements are needed in the prediction of more subtle phenomena such 

as kinks, re-entrant loops and half-helices, and precise beginnings and ends of secondary 

structure elements. Homology modeling has become more and more useful and important, 

mainly due to an increasing number of template structures combined with advances in 

modeling methods. The de novo prediction of both α-helical bundles as well as β-barrels has 

improved considerably in recent years, primarily because transitive correlations in 

evolutionary constraints can now be successfully filtered out such that modeling MPs up to 

350 residues can yield models under 5 Å RMSD using information from multiple sequence 

alignments only. MD simulations have also made enormous progress through the 

improvement of energy functions and an increase in computational power that allows longer 

simulation times. Developments like these now make it possible to start explaining specific 

functions underlying MPs, that are modulated by asymmetric membranes and distinct lipid 

compositions of membrane bilayers. Recent progress that describes interactions between 

MPs/lipids and MPs/MPs up to MP interaction networks inspires the community with 

exciting developments still to come.
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Figure 1. 
Growth of number of MP structures (green for α-helical bundles, blue for β-barrels) 

compared to soluble protein structures (red) during the past 10 years. Note the logarithmic 

scale.
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Figure 2. 
Methods for predicting 3D protein structures. (Top left) Homology modeling requires a 

template to be found by multiple sequence alignment to the query sequence (Q). (Top right) 

Fold-recognition is used for low sequence similarities that prevent template identification 

solely based on multiple sequence alignments. A sequence-structure alignment of the query 

sequence with a database of structures and subsequent scoring is necessary to identify a 

suitable template. (Bottom left) De novo (or ab initio) folding is used when no template is 

available and/or for novel protein folds. (Bottom right) MD simulations are currently unable 

to fold proteins larger than ∼80 residues, they are used to study dynamics and molecular 

processes of proteins along a time trajectory.
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Figure 3. 
Comparison of different de novo structure prediction methods using RMSDs to crystal 

structures versus sequence lengths of the modeled proteins. The data is taken from the 

following references: RosettaMembrane [Yarov-Yarovoy, 2006, ProtStructFuncBioInfo; 

Barth, 2007, PNAS], RosettaMembrane* [Weiner, 2013, Structure], BCL∷MP-Fold 

[Weiner, 2013, Structure], FILM3 [Nugent, 2012, PNAS], EVfold_membrane [Hopf, 2012, 

Cell].
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Figure 4. 
Growth of computational power for all-atom MD simulations as seen by simulation times 

and protein sizes to be modeled.
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Table I
Prediction methods and online servers for membrane proteins

Method name REF Laboratory Comment

Secondary structure prediction

PsiPred 37 David Jones three states: helix, strand, coil

BCL∷Jufo9D 39 Jens Meiler combined withTMspan prediction

ProfPhd 40 BurkhardRost part of Predict Protein suite

JPred 41 Geoffrey Barton informs about homologous sequences

Topology prediction and TMspan prediction

BCL∷Jufo9D 39 Jens Meiler SSPred and TMPred for helical bundles and beta-barrels

OCTOPUS 54 Arne Elofsson TM helix prediction

TMMOD 55 GuangGao TM helix prediction

TMHMM 56 Anders Krogh TM helix prediction

Memsat-SVM 57 David Jones TM helix prediction

MemBrain 86 James Chou TM helix prediction, contact prediction

BOCTOPUS 62 ArneElofsson TM beta-barrel prediction

BETAWARE 63 RitaCasadio TM beta-barrel prediction

TMBeta-Net 64 Makiko Suwa TM beta-barrel prediction

TMBHMM 65 Sikander Hayat TM beta-barrel prediction and exposure

ProfTMB 66 BurkhardRost TM beta-barrel prediction, part of PredictProtein suite

TMDET 274 Gabor Tusnady membrane position from 3D structure

PPM 275 Henry Mosberg membrane position from 3D structure

Other sequence-based predictors

AmphipaSeek 69 GilbertDeleage amphipathic helix prediction

HeliQuest 70 Bruno Antonny amphipathic helix prediction

TMkink 71 James Bowie prediction of TM kinks

ASAP 73 Rohan Teasdale solvent accessibility for MPs (α and β) and soluble proteins

MPRAP 191 Arne Elofsson solvent accessibility for helical bundles

aTMX 74 Sikander Hayat solvent accessibility for helical bundles

bTMX 74 Sikander Hayat solvent accessibility for beta-barrels

PRIMSILPR 75 Volkhard Helms prediction of pore-lining residues

LIPS 77 Jie Liang lipid accessibility for helical bundles

PREDDIMER 88 Roman Efremov dimerization of TM helices

PRALINETM 91 JaapHeringa multiple sequence alignments for MPs

PHAT 92 Steven Henikoff substitution matrices for MPs

JSUBST 94 Kenji Mizuguchi substitution matrices for MPs

MP-T 93 Charlotte Deanne sequence-structure alignment

Databases

PDBTM 276 Gabor Tusnady MPs from PDB, transformed into membrane coordinates, bilayer thickness, 
updated weekly

OPM 275 Henry Mosberg topology database with bilayer thickness

TOPDB 59 Gabor Tusnady topology database

ExTopoDB 60 Stavros Hamodrakas topology database
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Method name REF Laboratory Comment

TOPDOM 61 Gabor Tusnady topology, sequence motifs, domains

MeMotif 84 Michael Schroeder sequence motifs in helical bundles

HOMEP 277 Barry Honig homologous MP dataset

CGDB 95 Mark Sansom coarse-grained molecular dynamics models

3D structure prediction

RosettaMembrane 96, 97 Vladimir Yarov-Yarovoy 
Patrick Barth

homology modeling, de novo prediction of helicalbundles

MODELLER 100 Andrej Sali homology modeling (no focus on MPs)

MEDELLER 102 Charlotte Deane homology-based coordinate generation

MEMOIR 103 Charlotte Deane homology modeling, fold-recognition

HHPred 104 Johannes Soeding homology modeling (no focus on MPs)

Swissmodel 105 TorstenSchwede homology modeling (no focus on MPs)

GoMoDo 278 Alejandro Giorgetti GPCR modeling and docking

FREAD 279 Charlotte Deane loop building from MP fragments

FUGUE 94 Kenji Mizuguchi fold-recognition

iTASSER 106 Yang Zhang fold-recognition (no focus on MPs)

BCL∷MP-Fold 114 Jens Meiler de novo prediction of MP helical bundles

FILM3 116 David Jones de novo prediction of MP helical bundles with correlated mutations

EVfold_membrane 115 Deborah Marks de novo prediction of MP helical bundles with correlated mutations

transFold 147 Peter Clote MP beta-barrel predictor: SSPred, topology, contacts

partiFold 148 Bonnie Berger MP beta-barrel predictor

TMBPro 150 Pierre Baldi de novo prediction of MP beta-barrels

TOBMODEL 151 Arne Elofsson de novo prediction of MP beta-barrels

TMBB-Explorer 152 Jie Liang de novo prediction of MP beta-barrels

RosettaNMR 155 David Baker de novo prediction with NMR restraints

CABS-fold 157 AndrzejKolinski de novo prediction, can use NMR restraints

GeNMR 161 David Wishart structure prediction with NMR restraints

CS-Rosetta 163 Oliver Lange structure prediction using Chemical Shift NMR restraints

ProQM 197 BjoernWallner quality assessment of 3D models

MD simulations

MARTINI 209 Siewert-Jan Marrink coarse-grained MD force field for lipids and proteins

AMBER 179 Peter Kollman all-atom force field

OPLS 180 William Jorgensen all-atom force field

CHARMM 178 Martin Karplus all-atom force field

GROMOS 280 Hermann Berendsen all-atom force field

GROMACS 230 Hermann Berendsen MD software package

NAMD 231 Klaus Schulten MD software package

Desmond 232 DE Shaw MD software package

CHARMM 228 Martin Karplus MD software package
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