Secondary structure prediction |
PsiPred |
37 |
David Jones |
three states: helix, strand, coil |
BCL∷Jufo9D |
39 |
Jens Meiler |
combined withTMspan prediction |
ProfPhd |
40 |
BurkhardRost |
part of Predict Protein suite |
JPred |
41 |
Geoffrey Barton |
informs about homologous sequences |
Topology prediction and TMspan prediction |
BCL∷Jufo9D |
39 |
Jens Meiler |
SSPred and TMPred for helical bundles and beta-barrels |
OCTOPUS |
54 |
Arne Elofsson |
TM helix prediction |
TMMOD |
55 |
GuangGao |
TM helix prediction |
TMHMM |
56 |
Anders Krogh |
TM helix prediction |
Memsat-SVM |
57 |
David Jones |
TM helix prediction |
MemBrain |
86 |
James Chou |
TM helix prediction, contact prediction |
BOCTOPUS |
62 |
ArneElofsson |
TM beta-barrel prediction |
BETAWARE |
63 |
RitaCasadio |
TM beta-barrel prediction |
TMBeta-Net |
64 |
Makiko Suwa |
TM beta-barrel prediction |
TMBHMM |
65 |
Sikander Hayat |
TM beta-barrel prediction and exposure |
ProfTMB |
66 |
BurkhardRost |
TM beta-barrel prediction, part of PredictProtein suite |
TMDET |
274 |
Gabor Tusnady |
membrane position from 3D structure |
PPM |
275 |
Henry Mosberg |
membrane position from 3D structure |
Other sequence-based predictors |
AmphipaSeek |
69 |
GilbertDeleage |
amphipathic helix prediction |
HeliQuest |
70 |
Bruno Antonny |
amphipathic helix prediction |
TMkink |
71 |
James Bowie |
prediction of TM kinks |
ASAP |
73 |
Rohan Teasdale |
solvent accessibility for MPs (α and β) and soluble proteins |
MPRAP |
191 |
Arne Elofsson |
solvent accessibility for helical bundles |
aTMX |
74 |
Sikander Hayat |
solvent accessibility for helical bundles |
bTMX |
74 |
Sikander Hayat |
solvent accessibility for beta-barrels |
PRIMSILPR |
75 |
Volkhard Helms |
prediction of pore-lining residues |
LIPS |
77 |
Jie Liang |
lipid accessibility for helical bundles |
PREDDIMER |
88 |
Roman Efremov |
dimerization of TM helices |
PRALINETM |
91 |
JaapHeringa |
multiple sequence alignments for MPs |
PHAT |
92 |
Steven Henikoff |
substitution matrices for MPs |
JSUBST |
94 |
Kenji Mizuguchi |
substitution matrices for MPs |
MP-T |
93 |
Charlotte Deanne |
sequence-structure alignment |
Databases |
PDBTM |
276 |
Gabor Tusnady |
MPs from PDB, transformed into membrane coordinates, bilayer thickness, updated weekly |
OPM |
275 |
Henry Mosberg |
topology database with bilayer thickness |
TOPDB |
59 |
Gabor Tusnady |
topology database |
ExTopoDB |
60 |
Stavros Hamodrakas |
topology database |
TOPDOM |
61 |
Gabor Tusnady |
topology, sequence motifs, domains |
MeMotif |
84 |
Michael Schroeder |
sequence motifs in helical bundles |
HOMEP |
277 |
Barry Honig |
homologous MP dataset |
CGDB |
95 |
Mark Sansom |
coarse-grained molecular dynamics models |
3D structure prediction |
RosettaMembrane |
96, 97
|
Vladimir Yarov-Yarovoy Patrick Barth |
homology modeling, de novo prediction of helicalbundles |
MODELLER |
100 |
Andrej Sali |
homology modeling (no focus on MPs) |
MEDELLER |
102 |
Charlotte Deane |
homology-based coordinate generation |
MEMOIR |
103 |
Charlotte Deane |
homology modeling, fold-recognition |
HHPred |
104 |
Johannes Soeding |
homology modeling (no focus on MPs) |
Swissmodel |
105 |
TorstenSchwede |
homology modeling (no focus on MPs) |
GoMoDo |
278 |
Alejandro Giorgetti |
GPCR modeling and docking |
FREAD |
279 |
Charlotte Deane |
loop building from MP fragments |
FUGUE |
94 |
Kenji Mizuguchi |
fold-recognition |
iTASSER |
106 |
Yang Zhang |
fold-recognition (no focus on MPs) |
BCL∷MP-Fold |
114 |
Jens Meiler |
de novo prediction of MP helical bundles |
FILM3 |
116 |
David Jones |
de novo prediction of MP helical bundles with correlated mutations |
EVfold_membrane |
115 |
Deborah Marks |
de novo prediction of MP helical bundles with correlated mutations |
transFold |
147 |
Peter Clote |
MP beta-barrel predictor: SSPred, topology, contacts |
partiFold |
148 |
Bonnie Berger |
MP beta-barrel predictor |
TMBPro |
150 |
Pierre Baldi |
de novo prediction of MP beta-barrels |
TOBMODEL |
151 |
Arne Elofsson |
de novo prediction of MP beta-barrels |
TMBB-Explorer |
152 |
Jie Liang |
de novo prediction of MP beta-barrels |
RosettaNMR |
155 |
David Baker |
de novo prediction with NMR restraints |
CABS-fold |
157 |
AndrzejKolinski |
de novo prediction, can use NMR restraints |
GeNMR |
161 |
David Wishart |
structure prediction with NMR restraints |
CS-Rosetta |
163 |
Oliver Lange |
structure prediction using Chemical Shift NMR restraints |
ProQM |
197 |
BjoernWallner |
quality assessment of 3D models |
MD simulations |
MARTINI |
209 |
Siewert-Jan Marrink |
coarse-grained MD force field for lipids and proteins |
AMBER |
179 |
Peter Kollman |
all-atom force field |
OPLS |
180 |
William Jorgensen |
all-atom force field |
CHARMM |
178 |
Martin Karplus |
all-atom force field |
GROMOS |
280 |
Hermann Berendsen |
all-atom force field |
GROMACS |
230 |
Hermann Berendsen |
MD software package |
NAMD |
231 |
Klaus Schulten |
MD software package |
Desmond |
232 |
DE Shaw |
MD software package |
CHARMM |
228 |
Martin Karplus |
MD software package |