
Neuroanatomical Circuitry Mediating the Sensory Impact of 
Nicotine in the Central Nervous System

Ozra Dehkordia,b, Jed E. Rosec, Sadegh Asadia, Kebreten F. Manayeb, Richard M. Millisb, 
and Annapurni Jayam-Troutha

aDepartment of Neurology, Howard University Hospital Washington D.C. 20060, United States

bDepartment of Physiology & Biophysics, Howard University College of Medicine Washington, 
D.C. 20059, United States

cDepartment of Psychiatry, Duke University Medical Center, Durham, NC 27705, United States

Abstract

Direct actions of nicotine in the CNS appear to be essential for its reinforcing properties. 

However, activation of nicotinic acetylcholine receptors (nAChRs) on afferent sensory nerve 

fibers are important components of addiction to, and withdrawal from, cigarette smoking. The 

present study was to identify the neuroanatomical substrates activated by the peripheral actions of 

nicotine and to determine whether these sites overlap brain structures stimulated by direct actions 

of nicotine. Mouse brains were examined by immunohistochemistry for c-Fos protein after 

intraperitoneal injection of either nicotine (NIC, 30 and 40 µg/kg) and/or nicotine pyrrolidine 

methiodide (NIC-PM, 20 and 30 µg/kg). NIC-PM induced c-Fos immunoreactivity (IR) at 

multiple brain sites. In the brainstem, c-Fos IR was detected in locus coeruleus, laterodorsal 

tegmental nucleus and pedunculotegmental nucleus. In the midbrain, c-Fos IR was observed in 

areas overlapping the ventral tegmental area (VTA) which includes paranigral nucleus, 

parainterfascicular nucleus, parabrachial pigmental area and rostral VTA. Other structures of the 

nicotine brain-reward circuitry activated by NIC-PM included hypothalamus, paraventricular 

thalamic nucleus, lateral habenular nucleus, hippocampus, amygdala, accumbens nucleus, piriform 

cortex, angular insular cortex, anterior olfactory nucleus, lateral septal nucleus, bed nucleus of 

stria terminalis, cingulate and medial prefrontal cortex, olfactory tubercle, medial and lateral 

orbital cortex. Nicotine, acting through central and peripheral nAChRs, produced c-Fos IR in areas 

that overlapped NIC-PM induced c-Fos expressing sites. These neuroanatomical data are the first 

to demonstrate that the CNS structures which are the direct targets of nicotine are also anatomical 

substrates for the peripheral sensory impact of nicotine.
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INTRODUCTION

The prevalence of tobacco smoking has not changed significantly over the past several 

years. In the United States alone, about 45 million people smoke tobacco (Joel et al., 2012). 

According to the Centers for Disease Control and Prevention (CDC), 75% of smokers would 

like to quit because of the known health risks associated with nicotine. Despite the 

availability of numerous nicotine addiction treatment strategies, less than 5% of individuals 

who try to quit remain smoke-free after one year (Yilmazel Ucar et al., 2014). Upon 

inhalation, nicotine, the major addictive component of tobacco smoke, passes into the 

bloodstream and, within seconds, crosses the blood-brain barrier to enter the brain 

parenchyma (Berridge et al., 2010; Rose et al., 2010). Once in the brain, nicotine activates 

various nicotinic acetylcholine receptors (nAChRs) located throughout the central nervous 

system (CNS) and modulates the activity of virtually all the major neurotransmitters via pre 

and/or postsynaptic mechanisms (Wonnacott et al., 2006; Dani and Bertrand, 2007; 

Albuquerque et al., 2009). Most studies evaluating the neurobiological mechanisms of 

nicotine addiction have focused on the direct effects of nicotine on the CNS and on the 

mesocorticolimbic pathways which include dopaminergic neurons of the ventral tegmental 

area (VTA) and its projections to nucleus accumbens (Acb) and medial prefrontal cortex 

(MPFC) (Schultz et al., 1997; Wise, 2009; Schultz, 2010; Ikemoto, 2010; De Biasi and 

Dani, 2011). However, activation of various CNS sites could result from interactions of 

nicotine with nAChRs abundantly expressed on epithelial cells of airways and afferent 

sensory nerve fibers (Gu et al., 2008; Rose et al., 1999; Alimohamadi and Silver, 2000; 

Dehkordi et al., 2009, 2010). Nicotine stimulation of peripheral sensory nerve fibers is 

important for mediating the sensory impact of nicotine such as taste, aroma and respiratory 

tract sensation and the associated perceptions are thought to be critically important for 

smoking satisfaction (Rose et al., 1984, 1985, 1999, 2006; Westman et al., 1996; Palmatier 

et al., 2006; Yerger and McCandless, 2011). Other drug-related sensory modalities 

associated with cigarette smoking such as visual, auditory and tactile or haptic sensations are 

also thought to be relevant in drug addiction (Schneider et al., 2001; Filbery et al., 2008; 

2009; Janes et al., 2010; Seo et al., 2011; Claus et al., 2011; Yalachkov et al., 2013). 

Consistent with this idea, we have previously demonstrated that blockade of the sensory 

afferents in the upper respiratory tract by local anesthetics makes human smoking much less 

rewarding (Rose et al., 1985). Nicotine associated with cigarette smoking has a direct effect 

on the nAChRs located at the central nervous system (CNS), but it also stimulates peripheral 

nAChRs. Thus, the objectives of the present study were twofold: (1) To explore the brain 

regions which are activated by intraperitoneal (i.p.) injection of a peripherally-acting 

nicotine analog, nicotine pyrrolidine methiodide (NIC-PM) that does not cross the blood-

brain barrier (Gillis and Lewis, 1956; Aceto et al., 1983; Lenoir et al., 2013) and (2) To 

determine whether the brain sites activated by NIC-PM overlap those activated by 

intraperitoneal (i.p.) administration of nicotine hydrogen tartrate, a form of nicotine that 

does cross the blood-brain barrier.

MATERIALS AND METHODS

Adult (2–3 month-old) CD-1 mice weighing 20–25 g were used. All procedures including 

the anesthesia and surgery were approved by the Institutional Animal Care and Use 
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Committee (IACUC) of Howard University. All efforts were made to minimize the number 

of animals used and their suffering. Animals (N=20) were housed at a room temperature 22–

24°C with water and food freely available. To reduce the nonspecific effects of handling and 

experimental environment, animals were handled daily and exposed to the same conditions 

as during the actual experiments. Following an adaptation period of 3–4 d, the mice were 

treated by i.p. injection of saline (control), nicotine hydrogen tartrate salt (NIC, Sigma–

Aldrich, Saint Louis, MO) and/or nicotine pyrrolidine methiodide (NIC-PM, Toronto 

Research Chemicals Company), the latter a quaternary nicotine analog which does not 

penetrate the blood-brain barrier (Gillis and Lewis, 1956; Aceto et al., 1983; Lenoir et al., 

2013). The NIC dose (30 and 40 µg/kg) used in the present study is within the range 

reported to be optimal for maintaining intravenous self-administration of nicotine in rats 

(Cox et al., 1984; Donny et al., 1995) and comparable to the dose delivered during the 

smoking of one or two cigarettes in humans (Rose and Corrigall, 1977). NIC–PM (20 and 30 

µg/kg) was given at a dose that is equimolar to nicotine. The 20 µg/kg of NIC-PM produced 

very little c-Fos activation in the brain. Thus, only the data obtained with 30 µg/kg NIC-PM 

were reported herein. Both forms of nicotine were dissolved in saline and injected i.p. Two h 

after i.p. injection of the saline (control), NIC and/or the NIC-PM, the mice were 

anesthetized with 5% isoflurane and were perfused transcardially with saline, followed by 

4% paraformaldehyde in 0.1 M phosphate buffer (PB) at pH 7.4. After perfusion, the brains 

were postfixed in 4% paraformaldehyde for one h and then cryoprotected in a 30% sucrose 

solution for a minimum of 2 d. Transverse sections of the brain were cut at 40 µm using a 

Bright OTF Cryostat (Hacker Instruments and Industries) and were stored in 0.5% sodium 

azide in 0.1 M PB (pH 7.4). Immunohistochemical procedures were performed using free 

floating sections as follows: Briefly, 1-in-5 series of brain sections extending from bregma 

−5.41 mm to bregma 2.33 mm (Paxinos and Franklin 2013) were rinsed three times in 0.1 M 

phosphate buffered saline (PBS) at pH 7.4. Nonspecific binding was blocked by incubating 

the tissues overnight in loading buffer containing 2% normal donkey serum (NDS, Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA) and 0.3% Triton X-100. Tissues were then 

washed and incubated with rabbit anti- c-Fos antibody (1:5000; Cat # PC38, Millipore 

Corporation Temecula, CA) in 2% NDS and 0.3% Triton X-100 in PBS at 4°C for 48 h. The 

sections were then incubated in Alexa Fluor 594 donkey anti-rabbit secondary antibody 

(1:100; Jackson ImmunoResearch Laboratories Inc) in 0.1 M PBS for 2½ h. After washing 

in PBS, sections were rinsed in PBS, mounted and cover-slipped using Vecta Shield (Vector 

Laboratories Inc., CA) antifade mounting media.

Controls for each experiment were performed to determine whether the primary or the 

secondary antibodies produced false-positive results. The controls involved omission of the 

primary and/or secondary antisera to eliminate the corresponding specific labeling. 

Nonspecific activation of c-Fos was assessed by evaluating the CNS expression of c-Fos in 

animals receiving i.p. injection of normal physiological saline (NS).

Data Analysis

High resolution fluorescent images were acquired using Nikon (Nikon Instruments, 

Melville, NY) and Olympus (Olympus AX70, Olympus America) microscopes equipped 

with the adequate filter systems to observe the red fluorescence. 1-in-5 series of brain 
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sections extending from bregma −5.41 mm to bregma 2.33 mm (Paxinos and Franklin, 

2013) were identified. NIC and NIC-PM induced c-Fos-expressing structures in 

representative brain regions were identified. The sections exhibiting the exact same 

anatomical structures for both the NIC and the NIC-PM treated groups were compared and 

analyzed. Images from all the brain regions of interest were captured at 4×, 10× and 20× 

magnification and minor adjustments of brightness and contrast were made using Adobe 

Photoshop CS3

Cell counting

Semi-quantitative estimate of the numbers of NS-, NIC-, NIC-PM-, c-Fos activated cells in 

VTA, Acb and PFC was performed using a NIC dose (40 µg/kg) that was approximately 

equimolar to NIC-PM (30 µg/kg). The counting of c-Fos immunoreactive cells was 

performed by an individual blinded to the treatment. Four 40 µm sections through each of 

the aforementioned structures were selected for each group (N=4) and well-defined areas 

based on anatomical landmarks were chosen for analysis. In VTA, the number of c-Fos IR 

cells in the sections selected between bregma −3.15 mm and bregma −2.79 mm were 

counted. In Acb, the number of c-Fos IR cells in the sections selected between bregma 0.61 

mm and bregma 1.41 mm were counted. In PFC, the number of c-Fos IR cells in the sections 

selected between bregma 0.85 mm and bregma 1.21 mm were counted. The c-fos IR cells 

were counted in a single plane and overlapping cells were counted if they were 

distinguishable by a staining intensity greater than that of the background. The data were 

expressed as mean ± standard error. Statistical analysis was performed using one-way 

analysis of variance (ANOVA) to compare the effects of NS, NIC and NIC-PM in the 

aforementioned areas. The significance level was set at P≤0.05.

RESULTS

Figure 1 is a schematic diagram of representative brain regions showing NIC-PM induced c-

Fos expression at multiple brain sites. The pattern of NIC–PM induced c-Fos expression was 

similar to that of NIC induced c-Fos expression and areas activated by the peripherally-

acting analog of nicotine, often overlapped those which were stimulated by NIC (Figures 2 

and 3). Overlap between the central and peripheral effects of i.p. NIC was a limiting factor 

which did not permit identification of the specific cells activated by the direct effects of 

nicotine on the CNS. Consequently, these data represent site-specific activations by NIC and 

NIC-PM and do not represent the specific cell groups activated by these compounds.

Figures 2 and 3 present the results of representative experiments demonstrating NIC and 

NIC-PM induced c-Fos activated cells in various structures of the mesocorticolimbic 

system. In the VTA (Figures 2 and 3), c-Fos expressing cells were scattered at sites medial 

to substantia nigra (SN) and medial lemniscus (ml) and in regions corresponding to 

paranigral nucleus (PN), parainterfascicular nucleus (PIF) and interpeduncular nucleus 

rostral (IPR). More rostrally, c-Fos IR cells were detected in rostral VTA (VTAR) and 

parabrachial pigmental area (PBP), as well as in areas that overlap the retromammillary 

nucleus (RM), interfascicular nucleus (IF) and rostral linear nucleus (RLi) (Figures 2 and 3). 

NIC and NIC-PM also produced intense activation of cells in medial prefrontal cortex 
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(MPFC). Activated cells were also observed in the core and shell components of nucleus 

accumbens (AcbC, AcbSh). In addition to the mesocorticolimbic pathways, multiple other 

CNS sites were activated by both NIC and NIC-PM.

Figure 4 demonstrates NIC-PM induced c-Fos immunoreactivity in representative brain 

regions. At the pontine medullary junction, c-Fos IR cells were detected at areas 

corresponding to locus coeruleus (LC), laterodorsal tegmental nucleus (LDTg) and 

pedunculotegmental nucleus (PTg). More rostrally, intense c-Fos expression was seen in 

pontine nucleus (Pn), periaqueductal gray (PAG), dorsal raphe nucleus (DRN), superior 

colliculus (SC) and entorhinal cortex (Ent) (Figures 1 and 4). Scattered c-Fos expression 

was also observed in areas that overlap the anterior and vental tegmental nucleus (ATg, 

VTg). In addition to the VTA, other midbrain regions exhibiting c-Fos immunoreactivity 

were the dentate gyrus (DG), C1, C2, and C3 areas of hippocampus, amygdala (Amyg) and 

red nucleus (RN) (Figures 1 and 4). NIC-PM also produced intense stimulation of visual and 

somatosensory cortex (VC, SC) as well as various areas of cingulate cortex including medial 

prefrontal areas; i.e., prelimbic cortex (A32) and infralimbic cortex (A25). Activated cells 

were also observed in areas overlapping different nuclei of hypothalamus (HP) including 

arcuate hypothalamic nucleus (Arc), dorsomedial hypothalamic nucleus (DMN), anterior 

hypothalamic nucleus (AHN), paraventricular hypothalamic nucleus (PVN), medial preoptic 

nucleus (MPO), as well as lateral and posterior hypothalamic areas (LH, PH). Other areas 

strongly stimulated by NIC-PM included paraventricular thalamic nuclei (PVT), lateral 

habenular nucleus (LHb), lateral septal nucleus (LS), bed nucleus of stria terminalis (BST), 

nucleus of ventral limb of diagonal band (VDB), piroform cortex (Pir), angular insular 

cortex (AI), medial and lateral orbital cortex (MO, LO), anterior olfactory nucleus (AON) 

and olfactory tubercle (Tu).

Semi-quantitative estimation of the number of c-Fos activated cells in VTA, Acb and PFC 

demonstrated significantly greater activation by NIC than by NIC-PM (Figure 5). The 

number of c-Fos activated cells was also significantly greater for the NIC and NIC-PM 

treatments compared to the NS control ((P<0.001). At VTA, the number of NIC activated 

cells was 189.0 ± 16.4 vs. 142.5 ± 16.2 for NIC-PM (P=0.05). At Acb, the number of NIC 

activated cells was 192.3 ± 14.4 vs. 78.8 ± 9.5 for NIC-PM (P=0.03) and at PFC, the number 

of NIC activated cells was 93.3 ± 1.9 vs. 73.3 ± 4.6 for NIC-PM (P<0.001).

DISCUSSION

The present study demonstrates that NIC-PM, a peripherally-acting nicotine analog, acts 

through nAChRs present on afferents of somatic and visceral sensory nerve fibers, to 

stimulate cells at multiple sites throughout the brain. These include cells in brain regions 

overlapping the mesocorticolimbic reward pathways, and in areas implicated in tobacco-

related arousal, cognition, memory, stress, and interoceptive awareness (Panagis et al., 2000; 

Kirouac et al., 2005; Parsons et al., 2006; Levin et al., 2006; Guillem et al., 2011; Verdejo-

Garciaa et al., 2012; Flawin and Winder, 2013; Ramirez et al., 2014). The findings that 

virtually all the brain areas stimulated by nicotine actions on peripherally- and centrally-

located nAChRs, were also activated by NIC-PM, suggests that the sensory impact of 

nicotine may be critical in mediating its direct CNS effects. These anatomical data are 
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supported by previous studies demonstrating that hexamethonium, a peripherally-acting 

nicotine antagonist, drastically decreased EEG and EMG responses to nicotine (Lenoir and 

Kiyatkin, 2011; Lenoir et al., 2013). The immediate EEG responses to nicotine were also 

strongly inhibited during urethane anesthesia (Lenoir and Kiyatkin, 2011). Importance of the 

sensory impact of nicotine has also been demonstrated in our previous human studies 

showing that blockade of sensory afferents in the upper respiratory tract by local anesthetics 

and by peripheral nicotinic receptor antagonists makes human smoking much less rewarding 

(Rose et al., 1985, 1999).

Numerous other studies have used methiodides of nicotine as probes to distinguish the 

central and peripheral actions of nicotine (Domino, 1965; Geller et al., 1971; Shechter and 

Rosecrans, 1972; Thompson et al., 1972; Tang and Kiyatkin, 2011; Lenoir and Kiyatkin, 

2011; Lenoir et al., 2013). The present study using NIC-PM to differentiate the peripheral 

and central actions of nicotine, is based on the assumption that NIC-PM, which is a highly 

polar molecule, does not cross the blood-brain barrier and that NIC-PM has nicotine-like 

properties. This assumption is based on previous studies in mice demonstrating that 

radiolabeled NIC-PM penetrates the brain poorly (Aceto et al., 1983). The inability of NIC-

PM to enter the brain has also been confirmed using highly-sensitive mass spectrometric 

methods (Lenoir et al., 2013). NIC-PM has also been shown to have potent nicotine-like 

properties (Gillis and Lewis, 1956). NIC and NIC-PM were both found to be equipotent in 

their pressor effects in cats (Barlow and Dobson, 1955), dogs (Larson and Haig, 1943) and 

monkeys (Zuo et al., 2009). Furthermore, CNS administration of NIC-PM in mice and rats is 

reported to produce antinociceptive effects comparable to those of nicotine (Aceto et al., 

1983). Therefore, based on these studies, we assume that NIC-PM mimics the peripheral 

effects of NIC and that the c-Fos activation following NIC-PM administration, in the present 

study, is primarily due to interactions of nicotine with peripheral nAChRs.

The peripheral actions of nicotine are also believed to act as interoceptive cues capable of 

eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. 

This notion is based on animal studies demonstrating that peripheral sensory stimuli 

associated with NIC-PM produce weak responses in drug naïve conditions. However, the 

same stimuli produce strong physiological and neural effects when injected after animals 

have nicotine experience (Lenoir et al., 2013). Numerous other studies have shown that 

pairing between exteroceptive environmental and/or peripheral interoceptive stimuli and a 

natural reinforcer (e.g., nicotine) results in classical conditioning and plays an important role 

in drug addiction (Razran, 1961; Gauvin et al., 1993; Bernstein and Koh 2007; Verdejo-

Garcia et al., 2012). Importance of the sensory impact of nicotine has also been documented 

by studies demonstrating that damage to the insular cortex, a critical neural hub of 

interoceptive awareness, can lead to disruption of smoking behavior (Naqvi et al., 2007). In 

the present study, NIC and NIC-PM activated cells in cingulate, insular, olfactory (Pir AON 

and Tu) and orbitofrontal cortexes. These areas are implicated in processing conscious 

emotion via representation of body interoceptive states (Naqvi et al., 2007; Naqvi and 

Bechara, 2010; Kutlu et al., 2013).
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NIC and NIC-PM Induced c-Fos Activation in VTA

In the present study, we observed a mild c-Fos response to NIC and/or NIC-PM in areas 

overlapping VTA, an important center for reward-seeking behavior (Schultz et al., 1997; 

Wise, 2009; Schultz, 2010; Ikemoto, 2010; De Biasi and Dani, 2011). However, VTA is 

known to receive excitatory synaptic inputs from a wide range of structures including 

various brainstem nuclei (Phillipson, 1979; Mejías-Aponte et al., 2009), PAG (Geisler et al. 

2007; Moreira et al., 2009), MPFC (Takahata and Moghaddam, 2003; Kalivas et al., 2009), 

hypothalamus (Kempadoo et al., 2013), BST (Georges and Aston-Jones, 2001, 2002), LS 

(Talishinsky et al., 2012), Acb (Usuda et al., 1998) and SC (Comoli et al., 2003). All of 

these structures were shown to be activated by both NIC and NIC-PM. Intense activation of 

cells at MFPC by NIC and /or NIC-PM confirms numerous other studies regarding the 

importance of this cortical control center in induction of burst activity in VTA (Gariano and 

Groves, 1988; Tong et al., 1996; Nisell et al., 1997; Takahata and Moghaddam, 2003; 

Kalivas, 2009). Dopaminergic neurons of VTA are known to receive direct and indirect 

glutamatergic innervations from MPFC and enhancement of this pathway underlies drug 

addiction (Takahata and Moghaddam, 2003; Kalivas, 2009). PAG, the third largest 

subcortical source of glutamate input to VTA (Geisler et al. 2007) was also strongly 

stimulated by NIC and NIC-PM. The importance of this structure in reward and addictive 

properties of nicotine is not known. However, PAG is thought to supply VTA neurons with 

information important for processing nociceptive signals, defensive and stress behaviors 

(Moreira et al., 2009).

NIC and NIC-PM Induced c-Fos Activation of Brainstem Nuclei

The brainstem structures known to project to VTA and also activated by both NIC and NIC-

PM were LDTg, PTg, LC and SC (Phillipson, 1979; Mejías-Aponte et al, 2009). Of these 

structures, LDTg and PTg comprise cholinergic, glutamatergic and GABAergic neurons and 

these three transmitters are expressed in the projections to VTA (Hallanger and Wainer, 

1988; Oakman et al., 1995; Maskos, 2008; Ishibashi et al, 2009). The involvement of 

LDTg/PTg in nicotine addiction has been demonstrated in previous studies wherein a 

normally functioning LDTg was reported to be necessary for the burst firing of 

dopaminergic VTA neurons (Lodge and Grace, 2006) and that PTg lesions reduce nicotine 

self-administration behaviors (Lanca et al. 2000; Picciotto and Corrigall, 2002). VTA 

neurons are also shown to be modulated by adrenergic agents and LC, the main source of 

norepinephrine in the brain, was also found to be activated by NIC and NIC-PM (Phillipson, 

1979; Mejías-Aponte et al., 2009). The exact role of LC in the nicotine reward and addiction 

circuitry is not known. However, based on its known functions, LC may provide VTA with 

signals related to arousal, cognition and stress associated with nicotine use (Samuels and 

Szabadi, 2008; Okere and Waterhouse, 2013). SC is another brainstem structure activated by 

NIC and NIC-PM. SC relays information about visual stimuli to VTA dopaminergic neurons 

(Comoli et. al., 2003; Overton et. al., 2014). The importance of Pn, another brainstem 

nucleus with intensive c-Fos IR after administering NIC and NIC-PM, in reward and 

addiction properties of nicotine is not clear. However, Pn is known to be critical in eyeblink 

conditioning in an associative learning paradigm (Villarreal and Steinmetz, 2005) and 

nicotine is widely believed to convey its reinforcing properties upon tobacco-related stimuli 

through associative learning (Gould and Davis, 2008).
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NIC and NIC-PM Induced c-Fos Activation of Hypothalamic and Thalamic Nuclei

Among the hypothalamic and thalamic structures that were activated by NIC and NIC-PM, 

the LH, PVN, PVT and LHb are particularly important because of their roles in nicotine 

addiction (Kirouac et al., 2005; Parsons et al., 2006; Balcita-Pedicino, 2011; Martin-Fardon 

and Boutrel, 2012; Mahler et al., 2012). Orexin/hypocretin neurons of LH project to reward-

associated brain regions such as Acb and VTA and these projections are important in 

relaying interoceptive-related signals to VTA (Peyron et al., 1998; Fadel and Deutch, 2002; 

Harris et al., 2005). Orexin/hypocretin neurons of PVN also play roles in the reinforcing and 

aversive properties of nicotine, as well as in the aversive properties of nicotine withdrawal 

(Maler et al., 2012). Of the thalamic nuclei, PVT contributes to the effects of nicotine on 

arousal and cognition and receives major orexin/hypocretin projections from LH (Kirouac et 

al., 2005; Parsons et al., 2006; Martin-Fardon and Boutrel, 2012). LHb, an epithalamic 

nucleus activated by NIC and NIC-PM, is thought to be a component of an anti-reward 

circuitry which inhibits VTA neurons via GABAergic projections to rostromedial tegmental 

nucleus (Balcita-Pedicino, 2011).

NIC and NIC-PM Induced c-Fos Activation of Other Limbic Structures

Other brain structures in the neurocircuitry of addiction which were activated by NIC and 

NIC-PM include hippocampus, LS and BST (Kenney and Gould, 2008; Luo et al., 2011; 

Sartor and Aston-Jones, 2012; Falvin and Winder, 2013). Nicotine addiction is considered to 

be a disorder of learning and memory and the hippocampus is a critical center for learning 

and memory (Gould, 2006; Gould and Leach, 2014; Ramirez et al., 2014). Nicotine alters 

various forms of hippocampus-dependent learning and memory through various long-lasting 

effects on hippocampal synaptic function (Gould, 2006; Gould and Leach, 2014). The 

hippocampus also receives input from midbrain dopaminergic cells and, in turn, projects to 

the prefrontal cortex and ventral striatum, areas involved in impulse control, decision-

making, and reward evaluation (Kelley, 2004; Jones and Bonci, 2005). Intense c-Fos IR was 

also seen in BST, a component of the extended amygdala (ExtA). This nucleus plays critical 

roles in responses to stress, anxiety and reward (Falvin and Winder, 2013). BST projects to, 

and exerts a strong excitatory influence on the firing of dopaminergic neurons within VTA 

(Georges and Aston-Jones, 2001, 2002) and these projections appear to be necessary for 

learning to associate drug rewards with specific environmental cues (Dumont et al., 2005). 

LS, a nucleus associated with stress and drug addiction, was another structure exhibiting 

intense c-Fos IR (Olds & Milner, 1954; Sheehan et al., 2004; Luo et al., 2011; Sartor and 

Aston-Jones, 2012). That LS is part of the reward network is supported by previous studies 

on selfstimulation (Olds & Milner, 1954). LS has strong projections to LH-orexin neurons of 

the hypothalamus and to the midbrain regions (Risold and Swanson, 1997; Yoshida et al., 

2006; Sartor and Aston-Jones., 2012 Talishinsky el al., 2012). Furthermore, LS has been 

associated with processing contextual information and sending this information to other 

brain regions for expression of drug reward-related behaviors (Luo et al., 2011; Sartor and 

Aston-Jones., 2012).
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Conclusion

The present study provides the first neuroanatomical data demonstrating that peripherally-

mediated sensory effects of nicotine are capable of eliciting neuronal activation at multiple 

levels of the drug addiction-reward circuitry in the mouse brain. The areas activated by NIC-

PM overlapped those stimulated by NIC. Consistent with nicotine’s actions on both central 

and peripheral nAChRs, semi-quantitative analysis demonstrated that a significantly greater 

number of cells in VTA, Acb and PFC were activated by nicotine than by its peripherally-

acting analog NIC-PM. The widespread and overlapping activation of multiple brain areas 

by both nicotine and its peripherally-acting analog implies that the neurotransmitters and 

brain circuitry mediating the effects of nicotine on the addiction-reward pathways are much 

more diverse and complex than previously thought. Since these peripherally mediated 

effects always precede the direct central action of nicotine, they may condition (prepare) the 

brain for yet-to-come important reward signaling. The conjunction of anatomical sites where 

peripheral actions of nicotine overlap with sites known to be important for reinforcement 

may encourage conditioned associations between sensory cues and the reinforcing effects of 

nicotine, thereby promoting addiction.
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ABBREVIATIONS

Aca Anterior Commissure, Anterior Part

AcbC Accumbens Nucleus, Core Region

AcbSh Accumbens Nucleus, Shell Region

AI Angular Insular Cortex

AIP Agranular Insular Cortex, Posterior Part

Amyg Amygdala

AO Anterior Olfactory Nucleus

APir Amygdalopiriform Transition Area

Arc Arcuate Nucleus

ArcM Arcuate Hypothalamic Nucleus
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ATg Anterior Tegmental Nucleus

Cg Cingulate cortex

cp Cerebral Peduncle

CPu Caudate Putamen (Striatum)

DRN Dorsal raphe nucleus

D3V Dorsal 3rd Ventricle

Ent Entorhinal Cortex

f Fornix

fmi Forceps Minor of the Corpus Callosum

fr Fasciculus Retroflexus

Hip Hippocampus

HP Hypothalamus

IP Interpeduncular Nucleus

IPC Interpeduncular Nucleus

LC Locus Coeruleus

LDTg Laterodorsal Tegmental Nucleus

LHb Lateral Habenular Nucleus

LS Lateral Septal Nucleus

LV Lateral Ventricle

ml Medial Lemniscus

MM Medial Mamillary Nucleus

MO Medial Orbital Cortex

MPFC Medial Prefrontal Cortex

MPO Medical Preoptic Nucleus

NS Normal physiological saline

OC Orbital Cortex

ON Olfactory Nucleus

PAG Periaqueductal Gray

PH Posterior Hypothalamic Nucleus

PIF Parainterfascicular Nucleus of the Ventral Tegmental Area

Pir Piriform Cortex

PN Paranigral Nucleus of the Ventral Tegmental Area
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Pn Pontine Nuclei

PSC Primary Somatosensory Cortex

PVT Paraventricular Thalamic Nucleus

PVN Paraventricular hypothalamic nucleus

Py Pyramidal Cell Layer of the Hippocampus

RPC Red Nucleus, Parvicellular Part

SC Superior Colliculus

SNR Substantia Nigra

VC Visual Cortex

VDB Nucleus of the Vertical Limb of the Diagonal Band

VTA Ventral Tegmental Area

3V 3rd Ventricle
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Figure 1. 
Schematic diagrams of representative brain regions demonstrating the sites of c-Fos 

activated cells in the mouse brain following intraperitoneal injection of the peripherally-

acting nicotine analog, nicotine pyrrolidine methiodide (NIC-PM, 30 µg/kg). NIC-PM 

induced c-Fos immunoreactivity at multiple sites extending from bregma −5.41 mm to 

bregma 2.33 mm. The sites activated by NIC were qualitatively identical to those activated 

by NIC-PM. The red-colored dots represent the relative intensity of site-specific c-Fos 

activation and do not represent the exact number of activated cells. For abbreviations, see 

“abbreviations”
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Figure 2. 
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Immunofluorescence staining demonstrating the sites of c-Fos activated cells of the 

mesocorticolimbic system in the mouse brain following intraperitoneal injection of the 

peripherally-acting nicotine analog, nicotine pyrrolidine methiodide (NIC-PM, 30 µg/kg). 

Panels A and B: Control data demonstrating c-Fos immunoreactivity observed following 

intraperitoneal injection of physiological saline (vehicle) at a representative site. Panels C-F: 

c-Fos immunoreactive cells in the ventral tegmental area (VTA). Panels G and H: c-Fos 

immunoreactive cells in medial prefrontal cortex (MPFC). Panels I and J: c-Fos 

immunoreactive cells in nucleus accumbens (Acb).
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Figure 3. 
Immunofluorescence staining demonstrating the sites of c-Fos activated cells of the 

mesocorticolimbic system in the mouse brain following intraperitoneal injection of nicotine 

hydrogen tartrate (NIC, 30 µg/kg). Panels A–D: c-Fos immunoreactive cells in the ventral 

tegmental area (VTA). Panels E and F: c-Fos immunoreactive cells in medial prefrontal 

cortex (MPFC). Panels G and H: c-Fos immunoreactive cells in nucleus accumbens (Acb).
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Figure 4. 
Immunofluorescence staining in the mouse brain demonstrating representative c-Fos 

activated regions following intraperitoneal injection of the peripherally-acting nicotine 

analog, nicotine pyrrolidine methiodide (NIC-PM, 30 µg/kg). A: Locus coeruleus (LC). B: 

dorsal raphe nucleus (DRN). C: Paraventricular thalamic nucleus (PVT) and lateral 

habenular nucleus (LHb). D: Hippocampus (Hip). E: Cingulate cortex (Cg). F: Lateral 

hypothalamus (LH). G: Arcuate hypothalamic nucleus (Arc). H: Paraventricular 
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hypothalamic nucleus (PVN). I: Lateral septal nucleus (LS). J: Medial orbital cortex (MO). 

K: Piriform cortex (Pir). L: Angular insular cortex (AI) and olfactory nucleus (ON). The 

data obtained for the NIC treatment at the above representative sites were qualitatively 

identical to those obtained for the NIC-PM treatment.

Dehkordi et al. Page 25

J Neurosci Res. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Nicotine-induced activation of c-Fos at three representative sites in the mouse brain. Bars 

represent the mean (± standard error) number of c-Fos activated cells counted in ventral 

tegmental area (VTA), nucleus accumbens (Acb) and prefrontal cortex (PFC). c-Fos 

immunoreactivity was assessed following intraperitoneal administration of normal 

physiological saline (NS, control), nicotine hydrogen tartrate salt (NIC) or its peripherally-

acting analog nicotine pyrrolidine methiodide (NIC-PM). Differences between the NS 

control and NIC or NIC-PM treatments were significant at †P<0.001 and between NIC and 

NIC-PM were significant at *P≤0.05, **P<0.001.
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