Table 2. Mendelian randomisation analysis of SU against serum Tg using the uric acid transporter genetic risk score instrumental variable.
Ordinary Least Square Regression | Two-stage Least Square | ||||||||
---|---|---|---|---|---|---|---|---|---|
| |||||||||
Beta‡ | SE§ | P | Beta‡ | SE§ | P | DH P║ | |||
ARIC Europeans | All | Crude* | 3.160 | 0.145 | 1.44E-100 | -1.235 | 1.075 | 0.250 | <0.0001 |
Adjusted† | 2.474 | 0.181 | 6.13E-42 | -1.101 | 1.006 | 0.274 | 0.0002 | ||
Males | Crude | 3.214 | 0.284 | 5.61E-29 | -1.191 | 1.864 | 0.523 | 0.012 | |
Adjusted | 2.419 | 0.293 | 1.72E-16 | -1.340 | 1.826 | 0.463 | 0.031 | ||
Females | Crude | 3.276 | 0.203 | 3.42E-56 | -1.332 | 1.198 | 0.266 | <0.0001 | |
Adjusted | 2.369 | 0.218 | 5.44E-27 | -0.828 | 1.065 | 0.437 | 0.001 | ||
FHS Europeans | All | Crude | 3.813 | 0.192 | 1.15E-82 | -1.272 | 1.418 | 0.370 | <0.0001 |
Adjusted | 3.057 | 0.271 | 7.08E-29 | -0.924 | 1.311 | 0.481 | <0.0001 | ||
Males | Crude | 4.525 | 0.452 | 8.26E-23 | -3.833 | 3.463 | 0.269 | <0.0001 | |
Adjusted | 3.828 | 0.468 | 6.98E-16 | -1.980 | 2.816 | 0.482 | <0.0001 | ||
Females | Crude | 3.261 | 0.241 | 1.80E-39 | -0.224 | 1.108 | 0.840 | <0.0001 | |
Adjusted | 2.033 | 0.256 | 3.78E-15 | 0.032 | 0.999 | 0.974 | <0.0001 | ||
Combined | All | Crude | 3.475 | 0.115 | 1.32E-191 | -1.093 | 0.838 | 0.192 | <0.0001 |
Adjusted | 2.688 | 0.150 | 1.80E-70 | -1.007 | 0.797 | 0.206 | <0.0001 | ||
Males | Crude | 3.701 | 0.244 | 1.27E-50 | -2.041 | 1.680 | 0.224 | 0.0002 | |
Adjusted | 2.920 | 0.252 | 1.52E-30 | -1.520 | 1.547 | 0.326 | 0.0024 | ||
Females | Crude | 3.483 | 0.151 | 6.13E-112 | -0.631 | 0.816 | 0.439 | <0.0001 | |
Adjusted | 2.322 | 0.167 | 6.55E-43 | -0.564 | 0.767 | 0.463 | 0.0001 |
The center-side is the standard linear (ordinary least square) regression between the explained variables (SU and serum Tg) and the right-side is the two-stage least squares analysis.
Unadjusted
Adjusted by study data set (in combined), sex (in ‘All’), age, BMI and the first two Eigen values of genome-wide principal component analysis (in ARIC, FHS and combined).
Beta represents the change in serum Tg (mmol/L) attributed to a unit change in SU in the linear regression (on the center) and the change in serum Tg (mmol/L) caused by a unit change in SU attributed to the instrumental variable in the two-stage least squares analysis (on the right).
Standard error
Durbin-Hausman P value