Table 4. Mendelian randomisation analysis of serum Tg against serum urate using the triglyceride genetic risk score instrumental variable.
Ordinary Least Square Regression | Two-stage Least Square | ||||||||
---|---|---|---|---|---|---|---|---|---|
| |||||||||
Beta‡ | SE§ | P | Beta‡ | SE§ | P | DH P║ | |||
ARIC Europeans | All | Crude* | 0.026 | 0.001 | 1.44E-100 | 0.010 | 0.010 | 0.304 | 0.113 |
Adjusted† | 0.014 | 0.001 | 6.13E-42 | 0.008 | 0.008 | 0.336 | 0.436 | ||
Males | Crude | 0.016 | 0.001 | 5.61E-29 | 0.015 | 0.011 | 0.165 | 0.955 | |
Adjusted | 0.012 | 0.001 | 1.72E-16 | 0.020 | 0.010 | 0.037 | 0.356 | ||
Females | Crude | 0.026 | 0.002 | 3.42E-56 | -0.010 | 0.015 | 0.520 | 0.011 | |
Adjusted | 0.017 | 0.002 | 5.44E-27 | -0.012 | 0.014 | 0.387 | 0.029 | ||
FHS Europeans | All | Crude | 0.031 | 0.0016 | 1.15E-82 | 0.007 | 0.011 | 0.505 | 0.020 |
Adjusted | 0.014 | 0.0012 | 7.08E-29 | 0.012 | 0.007 | 0.104 | 0.802 | ||
Males | Crude | 0.015 | 0.0015 | 8.26E-23 | 0.020 | 0.009 | 0.035 | 0.607 | |
Adjusted | 0.012 | 0.0015 | 6.98E-16 | 0.022 | 0.009 | 0.016 | 0.279 | ||
Females | Crude | 0.032 | 0.0023 | 1.80E-39 | -0.016 | 0.016 | 0.286 | 0.0005 | |
Adjusted | 0.019 | 0.0023 | 3.78E-15 | -0.005 | 0.013 | 0.709 | 0.050 | ||
Combined | All | Crude | 0.029 | 0.001 | 1.32E-191 | 0.005 | 0.008 | 0.491 | 0.001 |
Adjusted | 0.014 | 0.001 | 1.80E-70 | 0.009 | 0.006 | 0.095 | 0.306 | ||
Males | Crude | 0.016 | 0.001 | 1.27E-50 | 0.017 | 0.007 | 0.025 | 0.860 | |
Adjusted | 0.012 | 0.001 | 1.52E-30 | 0.021 | 0.007 | 0.002 | 0.166 | ||
Females | Crude | 0.031 | 0.001 | 6.13E-112 | -0.023 | 0.013 | 0.076 | <0.00001 | |
Adjusted | 0.018 | 0.001 | 6.55E-43 | -0.008 | 0.010 | 0.403 | 0.002 |
The center-side is the standard linear (ordinary least square) regression between the explained variables (SU and serum Tg) and the right-side is the two-stage least squares analysis.
Unadjusted
Adjusted by study data set (in combined), sex (in ‘All’), age, BMI, first two Eigen values of genome-wide SNP (in ARIC, FHS and combined).
Beta represents the change in SU (mmol/L) attributed to a unit change in Tg in the linear regression (on the center) and the change in SU (mmol/L) caused by a unit change in serum Tg attributed to the instrumental variable in the two-stage least squares analysis (on the right).
Standard error
Durbin-Hausman P value