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Abstract

This paper discusses statistical models for multilevel ordinal data that may be more appropriate for 

prevention outcomes than are models that assume continuous measurement and normality. 

Prevention outcomes often have distributions that make them inappropriate for many popular 

statistical models that assume normality, and are more appropriately considered ordinal outcomes. 

Despite this, the modeling of ordinal outcomes is often not well understood. This article discusses 

ways to analyze multilevel ordinal outcomes that are clustered or longitudinal, including the 

proportional odds regression model for ordinal outcomes, which assumes that the covariate effects 

are the same across the levels of the ordinal outcome. The article will cover how to test this 

assumption and what to do if it is violated. It will also discuss application of these models using 

computer software programs.
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1. Introduction

In many prevention science studies the outcome of interest is measured in a series of ordered 

categories. Such outcomes are termed “ordinal” and can represent a variety of graded 

responses such as ratings of severity (e.g., none, mild, moderate, severe), agreement ratings 

(disagree, undecided, agree), and in particular Likert scales (e.g., strongly disagree, disagree, 

neither agree nor disagree, agree, strongly agree). In other cases, the outcome may represent 

a count (e.g., number of cigarettes smoked) that has a large number of zero responses (i.e., 

no cigarettes), many values in the one to five-cigarette range, and a few extreme values. In 

these cases, an ordinal variable can be constructed with ordered categories of, say, 0, 1, 2, 4, 

5, and 6 or more cigarettes.

Researchers sometimes analyze ordinal outcomes, like Likert scale outcomes, assuming a 

normal (continuous) distribution for the outcome. However, treating the outcome as normal 

assumes that the intervals between the categories of the Likert scale are all equal, which is 

clearly a dubious assumption. Also, as will be described, the ordinal model takes into 

account the ceiling and floor effects of the dependent variable, whereas models for 
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continuous data do not. For example, if the outcome is coded in categories 1 to 5, a model 

for normal data can easily yield estimates below 1 and above 5. In this case, as [22] point 

out, biased estimates of the regression slopes and incorrect conclusions can easily result. 

Furthermore, as [42] note, the advantage of ordinal models in accounting for ceiling and 

floor effects of the ordinal variable is most critical if the variable is highly skewed, which is 

often the case in prevention research where many of the responses are observed in the lowest 

and/or highest category of the ordinal outcome. Recently, [4] conducted an extensive 

simulation study addressing these issues and concluded that continuous models were only 

reasonable when the ordinal outcome had seven or more response categories and its 

distribution was approximately normal. Thus, for example, if one has a Likert-scale outcome 

with five categories (e.g., strongly disagree, disagree, neither agree nor disagree, agree, 

strongly agree) an ordinal model should be used. Alternatively, researchers sometimes 

dichotomize an ordinal outcome and analyze it using (binary) logistic regression. [35] 

provided a simulation study in which an ordinal outcome with 5 categories was 

dichotomized and observed rather large losses of precision and power resulting from this 

practice. Also, [40] showed that the regression estimates can be poorly estimated when 

dichotomizing an ordinal outcome in datasets of limited size. Since power is a critical issue 

in small datasets, it therefore behooves researchers to analyze ordinal outcomes with ordinal 

models, rather than losing power and information by dichotomizing them. The ordinal 

logistic regression model, described as the proportional odds model by [21], provides a 

useful approach for analyzing ordinal outcomes. For multilevel data, where observations are 

nested within clusters (e.g., classes, schools, clinics) or are repeatedly assessed across time 

within subjects, mixed-effects regression models (aka multilevel or hierarchical linear 

models) are often used to account for the dependency inherent in the data [7,13,30]. Mixed-

effects models for ordinal data have been developed for quite some time [11,41,2], including 

software [12], making such analysis accessible to prevention researchers.

Models for ordinal outcomes often include the proportional odds assumption for model 

covariates. For an ordinal response with C categories, this assumption states that the effect 

of the covariate is the same across the C-1 cumulative logits of the model (or proportional 

across the cumulative odds). The idea is that if one did dichotomize the ordinal outcome and 

used a (binary) logistic regression model, the regression slopes would be equal, regardless of 

how one did the dichotomization (e.g., for an ordinal variable with 3 categories there are two 

possible dichotomizations: 1 vs 2 & 3, and 1 & 2 vs 3). In previous papers [15,16], we have 

described an extension to allow for non-proportional odds for the covariates. This extension 

provides a way of testing the proportional odds assumption. Namely, one can compare a 

model that relaxes the proportional odds assumption (i.e., allows covariates to have different 

effects) to one that makes this assumption (i.e., does not allow covariates to have different 

effects) using a likelihood-ratio test.

In terms of the organization, the mixed model for clustered ordinal data will be described in 

Section 2. Both 2- and 3-level models will be considered, and Section 3 will illustrate 

application of the model using a smoking prevention dataset where students are nested 

within both classrooms and schools. Section 4 will detail the mixed model for longitudinal 

ordinal data, and Section 5 will illustrate use of this model with a longitudinal psychiatric 
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dataset in which a patient’s level of depression is classified on an ordinal scale. Section 6 

will describe aspects related to software, and Section 7 will conclude with some discussion.

2. Mixed Proportional Odds Model for Clustered Data

Suppose that subjects are clustered or nested within some kind of cluster (e.g., providers, 

hospitals, schools, families, etc.) and let i denote the cluster (i = 1,…, N ) and j denote the 

subject ( j = 1,…,ni ). In the multilevel structure, level-1 subjects are clustered within level-2 

clusters. There are a total of N clusters, each with n subjects, so that the total number of 

subjects is . Let Yij denote the ordinal outcome from subject j in cluster i, and let the 

ordered response categories be coded as c = 1, 2,…, C. Ordinal regression models often 

utilize cumulative comparisons of the categories. For this, define the cumulative 

probabilities for the C categories of the outcome Y as , where 

pijm represents the probability of response in category m. For example, with three categories, 

we would have Pij1 = pij1 as the probability of a response in category 1, and Pij2 = pij1 + pij2 

as the probability of a response in categories 1 and 2. The probability of a response in 

category 3 would be obtained by subtraction as pij3 = 1 − Pij2.

The mixed-effects logistic regression model for the cumulative probabilities is expressed as 

a cumulative logit (i.e., log odds) model as

(1)

with C-1 strictly increasing model thresholds γc. These thresholds are akin to intercepts and 

represent the cumulative logits when the covariates and random effects equal 0. Basically, 

the thresholds indicate how many responses are in the different categories (when the 

covariates and random effects equal 0), and are usually not of great interest. The distribution 

of responses in the ordered categories is completely arbitrary. As usual, xij are the covariates 

and β are the regression slopes (i.e., effects of the covariates). The effect of the cluster on the 

subject’s outcome is represented by υi, and these cluster effects (i.e., one for each cluster) 

are assumed to be distributed in the population as . The sample of clusters in a 

particular dataset represent the population of clusters that one wants to make inferences 

about, and so the cluster effects are “random” effects and have a distribution in the 

population. Alternatively, the regression coefficients β (and the thresholds γc) are “fixed” 

parameters because they do not have a distribution; they are unknown constants in the 

population that we use our sample data to estimate. As a result, the model is a “mixed” 

model because it includes both fixed and random parameters.

1. Proportional Odds Assumption

Since the slopes β do not carry the c subscript, they do not vary across categories. That is, 

the effect of each covariate in x is assumed to be the same across the C-1 cumulative logits. 

For example, if Y has three categories, it is as if one ran two binary logistic regressions (with 

dichotomized outcomes 1 vs 2 & 3 and 1 & 2 vs 3) and assumed that the covariate effects 
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were the same for these two analyses. [21] calls this assumption the proportional odds 

assumption. Relaxing the proportional odds assumption is possible; [15] described a mixed 

non-proportional odds model, and [16] illustrate its use for substance use outcomes. In this 

case, the covariates have different effects on the C-1 cumulative logits. Tests of the 

proportional odds assumption can then be performed by running and comparing models: (a) 

assuming proportional odds vs. (b) relaxing proportional odds assumption. Comparing the 

model deviances (i.e., −2 log likelihood values) that are obtained from these two analyses 

provides a likelihood ratio test of the proportional odds assumption for the set of covariates 

under consideration.

2. Intraclass Correlation

For a multilevel model, it is often of interest to express the cluster variance in terms of an 

intraclass correlation (ICC). The ICC indicates the proportion of unexplained variance that is 

at the cluster level, and is given by , where  is the cluster or level-2 

variance and σ2 is the level-1 variance. For a logistic regression model (either binary or 

ordinal), the level-1 variance, which is not estimated, equals the variance of the standard 

logistic distribution π2/3 [1].

3. Three-level Model

In some cases, subjects might be clustered within more than one hierarchy. For example, 

students might be clustered within classrooms within schools, or patients may be clustered 

within providers within clinics. Such an extension for ordinal data is described in [29]. For 

this, the model can be written as

(2)

for the level-1 subject k nested within the level-2 cluster j (e.g., classroom) and level-3 

cluster i (e.g., school). In this model, a subject’s response is influenced by both the 

classroom (υij) and school (υi) that he/she belongs to. The level-2 random effects υij have 

variance , and the level-3 random effects have variance . For a three-level model, 

the ICC for the level-3 clustering effect is

which represents the proportion of variance at the third level (e.g., school). The ICC for the 

level-2 clustering effect includes both the level-2 and level-3 variances (since subjects who 

are within a given classroom are also within the school that the classroom is part of):
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Thus, unless the level-3 variance equals 0 (e.g., a student’s school has no effect on their 

outcome), the level-2 ICC is larger than the level-3 ICC.

3. Clustered Data Example

The Television School and Family Smoking Prevention and Cessation Project (TVSFP) 

study (Flay et.al., 1988) was designed to test independent and combined effects of a school-

based social-resistance curriculum and a television-based program in terms of tobacco use 

prevention and cessation. The study sample consisted of 7th-grade students who were 

pretested in January, 1986 and post-tested in April, 1986. Randomization to various design 

conditions was at the school level, while much of the intervention was delivered to students 

within classrooms. Specifically, the 28 Los Angeles schools were randomized to either: (a) a 

social-resistance classroom curriculum (CC), (b) a media (TV) intervention, (c) a 

combination of CC and TV, and (d) a no-treatment control group. These conditions form a 2 

x 2 design of CC (= yes or no) by TV (= yes or no). Note that the variables that will 

represent these conditions are at the school-level (i.e., they don’t vary within schools, but 

only between schools), and that the number of schools, which will be treated as a level in the 

analysis, is not terribly large. Thus, statistical power is of concern here as in other small 

sample studies.

A tobacco and health knowledge scale (THKS) score was one of the study outcome 

variables. The scale consisted of seven items used to assess tobacco and health knowledge, 

and a student’s score was the number of items that they answered correctly. Subjects were 

included in the analysis if they had complete data on the THKS at both pre and post-test; 

there were 1600 students from 135 classrooms and 28 schools who met this criterion. The 

dataset had a range of 1 to 13 classrooms per school, and 2 to 28 students per classroom. 

The frequency distribution of the post-intervention THKS total scores suggested four ordinal 

classifications corresponding to 0–1, 2, 3, and 4–7 correct responses. Student frequencies for 

these categories of the THKS, broken down by condition subgroups, are given in Table 1.

Three ordinal logistic regression models were fit to these data. Results from these analyses 

are given in Table 2. For all, the post-intervention THKS score was modeled in terms of the 

baseline THKS score, dummy-coded (no = 0 and yes = 1) effects of CC and TV, and the CC 

by TV interaction. The first column of Table 2 lists results ignoring the clustering of 

students and treating each student’s outcome as an independent observation. This analysis 

clearly indicates the positive effect of the social-resistance classroom curriculum as well as 

the television part of the intervention. However, the interaction of CC by TV is also 

observed to be statistically significant, thus, student-level analysis suggests that while TV 

intervention is effective in increasing THKS scores for those not receiving the CC 

component, it has a slight negative effect on those exposed to both components.
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The next two columns of Table 2 list results from multilevel ordinal logistic regression 

models allowing for (a) nesting of students within classrooms, and (b) nesting of students 

within classrooms within schools. The latter is a 3-level model in which students (level-1) 

are nested within classrooms (level-2) which are nested within schools (level-3). Results 

from these multilevel analyses are somewhat different from those obtained from the student-

level analysis. Unlike ordinary student-level analysis, either multilevel analysis indicates 

that both the TV effect and the interaction of CC by TV are not statistically significant. 

Additionally, the variability attributable to the classes is highly significant and when 

expressed as an intra-class correlation equals 0.0543, reflecting the degree of non-

independence for this clustered dataset. Finally, the likelihood-ratio  equals 4250.21 – 

4230.77 = 19.44, which clearly supports the significance of including the random classroom 

effect in the model.

Comparing the 2- and 3-level models yields a likelihood-ratio , 

which is not significant. However, because the schools were the unit of randomization, one 

can make the case that the clustering attributable to schools should be in any statistical 

modeling of these data, regardless of the statistical significance of this clustering effect. 

Also, because the intervention was delivered in the classrooms, including the classroom 

cluster effect is important. Thus, based on the design of the study, the 3-level analysis 

provides the most valid approach. With only 28 schools, as noted, this represents a 

somewhat small sample, though of a typical number in school-based prevention research. 

Clearly, the effect of clustering attributable to the schools is rather small:

while the clustering attributable to classrooms equals

These values are consistent with published results [38] that considered ICCs evaluated 

across variable type, time, race, and gender.

Finally, we can test the proportional odds assumption by additionally estimating a model 

that relaxes this assumption. The logic is that we compare the model that assumes 

proportional odds to the model that relaxes this assumption. If the latter fits the data 

(statistically) better, then the assumption of proportional odds is rejected. Table 3 presents 

the covariate estimates for both models, as well as the model deviances (−2 log L ) from 

these two models. These deviance statistics are obtained as a standard part of the computer 

output. Notice that the non-proportional odds model includes three estimates for each of the 

covariates, one for each of the three cumulative logits. Comparing the deviance statistics, we 

obtain a likelihood-ratio , which is not statistically significant. 

Thus, the proportional odds assumption is not rejected for these data, and so assuming that 
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the four covariates have the same effect on the three cumulative logits is reasonable. The 

degrees of freedom for this test represents the difference in the number of estimated 

covariate effects: 12 under the non-proportional odds model versus 4 under the proportional 

odds model. Notice that, for a given covariate, the estimate from the proportional odds 

model is essentially an average of the non-proportional odds model estimates (it is not 

precisely an average because it depends on the category frequencies associated with 

different levels of the covariate). In statistics, one typically gains precision by averaging, 

and so it is not surprising that the standard errors are appreciably smaller in the proportional 

odds model as compared to their counterparts in the non-proportional odds model. This 

shows why one loses statistical power if an ordinal outcome is dichotomized and analyzed 

as a dichotomy (rather than as an ordinal outcome).

4. Mixed Proportional Odds Model for Longitudinal Data

Here, subjects are denoted as i (where i = 1,…, N subjects) and the repeated observations are 

denoted as j (where j = 1…, ni). The number of repeated observations per subject is ni, and 

so there is no assumption that each subject is measured on the same number of timepoints. 

In longitudinal studies, it is common to have incomplete data across time, so it is important 

that the model allows for this. The mixed-effects logistic regression model for the 

cumulative probabilities of subject i at timepoint j is given in terms of the C-1 cumulative 

logits as

(3)

where the random effects υi reflect each subject’s influence on their repeated observations. 

This model is referred to as a random-intercept model as the subject effects do not vary 

across time. These are assumed to be distributed in the population of subjects as , 

and so the sample of subjects are thought to represent a population of subjects that one 

wants to make inferences about.

In terms of the effects of time on the repeated outcomes, typically the covariate(s) xij would 

include at least a linear effect of time. For example, suppose that subjects are measured at 

baseline, 6 months, and 12 months. Then, one of the covariates in xij might be a variable tij 
(and coded 0, 1, 2) to represent the linear effect of time (in 6 month intervals). With more 

timepoints, the model might also include quadratic effects to allow for curvilinear effects of 

time. That is, the response across time might be a decelerating or accelerating trend, rather 

than a simple linear trend. For this, one could include both tij and its square  to represent 

the linear and quadratic components of the trend across time. Alternatively, in some cases, it 

might be of interest to compare each follow-up to baseline and therefore to create dummy 

variables for each of the follow-ups treating baseline as the reference cell. Whether one uses 

polynomials for trends or dummy codes to represent the effects of time depends on the 

scientific questions of interest.
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Interactions with the time effects are usually of interest in longitudinal models in order to 

assess, for example, the degree to which trends vary across groups of subjects. So, if there is 

a grouping variable Gi, say coded 0 for a control group and 1 for an intervention group, and 

one simply included a linear effect of time, the following model might be posited:

(4)

Here, β2 represents the group difference when Tij equals 0, and β3 indicates how the group 

difference varies with time. Or, β1 represents the time trend for the control group (when Gi 

equals 0), and β3 represents the difference in the trend for the intervention group relative to 

the control group. Thus, testing the significance of β3 is of great interest as it represents how 

the trends differ between the two groups.

Thus far, the model only includes a single random subject effect υi and assumes that a 

subject’s effect on their responses is the same across all timepoints. This is often an 

unreasonable assumption because subjects often vary in their trends across time. To permit 

this, we can extend the model by including a random subject trend:

(5)

Here, υ1i is essentially an interaction of subject by time, indicating the degree to which 

subjects have different time trends. In this model, υ0i represents the subject effect when Tij 

equals 0, and υ1i indicates how a subject’s effect varies with time. Subjects have different 

time trends to the extent that the υ1i parameters are non-zero. Both random effects are 

usually assumed to be normally distributed in the population of subjects with variances 

and , respectively. The covariance between a subject’s intercept and trend, συ01, indicates 

the degree to which a subject’s starting point is associated with their trend.

Notice that the random-intercept model in Equation (4) is a special case of the random trend 

model in Equation (5). By not including the random time effect υ1i, the random intercept 

model assumes that these are all zero and thus that the variance  and covariance συ01 both 

equal zero. Thus, comparison of the two models via a likelihood ratio test can be performed 

to test whether these two parameters equal zero. If the test is non-significant, then the 

simpler random-intercept model is supported and there is no appreciable subject 

heterogeneity in their time trends (other than the random intercept υ0i). Alternatively, if this 

test is significant it indicates that subjects do vary in their trends, and the simpler random-

intercept model would be rejected in favor of the random trend model.

In some studies, there might be time-varying covariates which are thought to influence the 

ordinal outcome. In this case, the model might be
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(6)

where Xij represents the time-varying covariate. One might also examine whether there is an 

interaction of Xij with time, by including the product term Xij × Tij into the model, which 

would suggest that the relationship between the covariate and the outcome varies with time. 

When time-varying covariates are included in the model, as in Equation (6), an assumption 

is made that the between and within-subjects effects of the covariate are equal. To see this, 

express the time-varying covariate Xij as Xij = X̄i +(Xij − X̄i), where X̄i is the mean of the 

time-varying covariate (averaged across time) for each subject (i.e., a between-subjects 

variable). The term ( Xij − X̄i) represents the subject’s deviation around their mean (i.e., a 

within-subjects variable). Including both of these terms into the model yields:

(7)

The total effect of Xij, β2X̄i + β3 (Xij − X̄i), is partitioned into its between- and within-

subjects effects (i.e., β2 and β3, respectively). The between-subjects part indicates the degree 

to which the subject’s average covariate level is related to their average outcome level, 

averaging across time. The within-subjects component represents the degree to which 

change in a subject’s covariate level is associated with change in their outcome (i.e., a 

within-subject change). If these two are equal (β3 = β2), then the effect is exactly as in 

Equation (6). Thus, model (6) makes the assumption that the within- and between-subjects 

effects of the covariate are the same. This assumption can be assessed by comparing the 

models specified by (6) and (7) via a likelihood ratio test. If these two models are 

significantly different, then the assumption is rejected and the more general model (7) is 

preferred; whereas if the models are not significantly different then the assumption is 

reasonable and model (6) can be used.

5. Longitudinal Data Example

Data from a psychiatric study described in [32] are considered here. This study focused on 

the longitudinal relationship between imipramine (IMI) and desipramine (DMI) plasma 

levels and clinical response in 66 depressed inpatients. Imipramine is the prototypic drug in 

the series of compounds known as tricyclic antidepressants, and was commonly prescribed 

for the treatment of major depression at the time of this study [37]. Since imipramine 

biotransforms into the active metabolite desmethylimipramine (or desipramine), 

measurement of desipramine was also done. The study design was as follows. Following a 

placebo period of 1 week, patients received 225 mg/day doses of imipramine for four weeks. 

In this study, subjects were rated with the Hamilton depression (HD) rating scale [9] twice 

during the baseline placebo week (at the start and end of this week) as well as at the end of 

each of the four treatment weeks of the study. Plasma level measurements of both IMI and 

DMI were made at the end of each week. The total number of subjects was 66, but the 

number of subjects measured at each week fluctuated: 61 at pre1 (start of placebo week), 63 
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at pre2 (end of placebo week), 65 at week 1 (end of first drug treatment week), 65 at week 2 

(end of second drug treatment week), 63 at week 3 (end of third drug treatment week), and 

58 at week 4 (end of fourth drug treatment week). Here, we concentrate on the relationship 

between the drug levels and depression and focus on the four timepoints of the drug 

treatment period (after the placebo period). [10] presents several analyses treating the HD 

outcome as continuous. Here, as in [32], the outcome is ordinalized with 0 = full response 

(HD score below 8), 1 = partial response (HD score from 8 to 15), and 2 = non response 

(HD score above 15). We do this for illustrative purposes since, as noted, this leads to a loss 

of information and statistical power. To further simplify the analysis, we will consider a 

dichotomization of the time-varying metabolite DMI in terms of a median split on this 

variable.

Figure 1 presents the ordinal outcome frequencies (HAMD3) for the two groups of 

dichotomized DMI observations (DMI2). As DMI is a time-varying variable, a given subject 

could have both above and below median observations across the four weeks of the study. 

As Figure 1 suggests, there appears to be a beneficial effect of the drug, in that a better 

response profile is observed for the above median DMI observations (DMI2=1) than for the 

below median DMI observations (DMI2=0).

Table 4 presents the results of random trend models both assuming and relaxing the 

proportional odds assumption. Both models include a linear effect of time (Week) and the 

dichotomized desipramine variable (DMI2) as covariates. Comparing these models yields a 

likelihood-ratio , which is not statistically significant, and so the proportional odds 

assumption is not rejected for these data. As can be seen, both the estimates for time and 

DMI2 are negative and significant, indicating that subjects have lower responses (i.e., more 

in the full response category) as time goes on and as the drug level is higher. Testing for 

whether there is an interaction of DMI2 by time yields a highly non-significant result, as 

does testing for the equality of the between-subjects and within-subjects effects of DMI2. 

Thus, there is no evidence of a differential effect of drug across the four weeks of the study, 

and no evidence that the within-subject and between-subject effects are different. Finally, 

comparing the random trend model to a simpler random intercept model (not shown) yields 

a likelihood-ratio , which is significant and rejects the simpler random intercept 

model. Thus, there is evidence that subjects vary significantly in their trends across time.

6. Computational Issues

Variants of maximum likelihood are typically used to estimate the models presented in this 

article, and the solutions are usually more computationally demanding than similar models 

for normal outcomes. Software programs vary in the approaches they use, with some 

approaches being more approximate than others. Here, several of the most common 

approaches will be briefly described. More information about these different approaches can 

be found in [34].

Perhaps the most frequently used methods are marginal quasi-likelihood (MQL) and 

penalized or predictive quasi-likelihood (PQL) [8]. These quasi-likelihood approaches are 

computationally less-intense, unfortunately, several authors [6,33,31] have reported biased 
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estimates using these procedures in certain situations, especially for MQL. Several software 

programs provide either MQL and PQL as their default estimation approach (MLwiN, 

HLM, IBM SPSS, SAS PROC GLIMMIX), though some also offer other approaches. In 

general, PQL is preferred to MQL, though neither do well if the correlation of the clustered 

outcomes is high or the number of clusters and/or clustered observations are small. In 

longitudinal studies, the correlation is typically high and there are not that many clustered 

observations within subjects. Thus, for longitudinal data, MQL and PQL can produce biased 

results. However, as noted by [4], for situations in which the correlation is not that high and 

there are moderate numbers of individuals in clusters (e.g., students in classrooms and/or 

schools), PQL provides good results and can be relied upon. A disadvantage of both MQL 

and PQL is that one does not obtain a deviance statistic that can be used for likelihood ratio 

tests.

The most accurate approach is to use what is called adaptive quadrature in the estimation 

procedure [20,23,5,26]. Simulations show that adaptive quadrature performs well in a wide 

variety of situations [28]. Several software packages have implemented adaptive quadrature, 

including SuperMix [14], GLLAMM [27], Stata [39], and SAS PROCs GLIMMIX and 

NLMIXED [36]. For the most accurate and reliable results, adaptive quadrature is advised. 

Additionally, this approach yields a deviance that can be readily used for likelihood-ratio 

tests. It is worth noting that not all of the software programs listed support estimation of the 

non-proportional odds models that were presented in this article. Also, some programs are 

restricted to 2-level models and cannot estimate 3-level models (e.g., the students within 

classrooms within schools model presented). Because this is constantly changing with 

software updates, the limitations of a given software program are worth checking into before 

undertaking a series of analyses. All of the models presented in this article were estimated 

with adaptive quadrature using the SuperMix software program. A student version of this 

program is freely available via the Scientific Software website, and all of the syntax scripts 

and datasets used in this article are available from the first author upon request.

7. Discussion

Mixed ordinal regression models have been described for analysis of clustered and 

longitudinal ordinal data. For clustered data, random cluster effects characterize the 

dependency of subjects’ responses from the same cluster. In our example, students were 

clustered within both classrooms and schools, and analyses of 2- and 3-level models were 

presented. For longitudinal data, repeated observations are clustered within subjects and 

random subject intercepts and trends are often considered. These allow subjects to vary in 

terms of their starting points and trajectories across time. In our example of subjects’ 

depression ratings across time, there was evidence for random subject trends in addition to 

random intercepts.

Models assuming and relaxing the proportional odds assumption were presented and 

compared. By comparing the two, one can perform a test of the proportional odds 

assumption. In this article, the proportional odds assumption was deemed reasonable for the 

examples considered. However, that is not always the case and more general models that 

relax the proportional odds assumption are sometimes required [16]. In these non-
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proportional odds models, covariates have different effects on each of the C-1 cumulative 

logits of the model. For example, suppose that the ordinal outcome is measured according to 

the Transtheoretical Model of Change (or Stages of Change Model) [24,25] with stages of, 

say, pre-contemplation, contemplation, and action. Then, it certainly could be the case that a 

covariate has an effect on moving subjects from pre-contemplation to contemplation, but 

does not produce effects on action. For such cases, we have described a “Thresholds of 

Change Model” using an ordinal non-proportional odds modeling approach [15,18].

Another area of application is for time to event data in which the timing is not known 

precisely but only within time periods. For example, one might be interested in modeling 

time until initiation of smoking in students who are measured annually in grades 5 to 8. 

Here, the ordered outcome is the grade in which smoking initiation began. We have 

described such multilevel survival analysis using the ordinal modeling approach [19,17]. 

Rather than using a logit link function, these survival models typically use a complementary 

log-log link function in order to yield a proportional hazards interpretation. Also, in this 

scenario one needs to consider the possibility of right-censoring in which the time of the 

event is unknown beyond a certain timepoint.

Certainly, researchers are more familiar with normal models and software, and so often treat 

ordinal outcomes as normal outcomes. One might wonder about whether this is a reasonable 

practice or not. In this regard, a comprehensive examination of this practice was performed 

by [4]. They examined the performance of mixed normal and ordinal models to ordinal 

outcomes with 3 to 7 categories, and distributions that were symmetric, skewed, and 

polarized. In terms of bias, these authors concluded that the mixed normal model only gave 

reasonable results if there were 7 categories and the distribution was symmetric. In all other 

cases, the mixed normal model yielded unduly biased estimates of regression coefficients. In 

comparison, the mixed ordinal model (i.e., the same model as presented in the current paper) 

produced unbiased estimates regardless of the number or shape of the distribution across the 

ordered categories.

For datasets of limited size, another concern is the issue of statistical power. For this, [3] 

ordinalized a continuous outcome and reported efficiency (i.e., power) of 94% to 99% for 4 

to 9 categories, respectively, as compared to the continuous outcome. Thus, even if the 

outcome is continuous, there is little efficiency loss, especially as the number of categories 

is increased. Conversely, if one dichotomizes an ordinal outcome, there can be appreciable 

loss in statistical power. [40] dichotomized an ordinal outcome with 5 categories, and for 

which the power level was 78%. The dichotomized outcomes had power levels between 

38% to 68% depending on the cutpoint chosen. Thus, blindly dichotomizing an ordinal 

outcome can severely reduce power.

This article has attempted to present the ordinal model clearly and in relatively non-technical 

terms. Certainly the use of ordinal models is not as popular as use of normal and binary 

models, despite the fact that ordinal outcomes are often obtained. The tools are available in 

terms of methods and software, so hopefully this situation will change as researchers 

become more familiar with application of the ordinal model.
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Figure 1. 
Frequency distribution of the ordinal Hamilton Depression Scale outcome (HAMD3) by the 

dichotomized Desipramine plasma levels (DMI2)
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Table 2

THKS Post Intervention Ordinal Scores Proportional Odds Model Estimates (standard errors)

parameter Student-level 2-level multilevel 3-level multilevel

threshold γ1 −0.040 (0.121) −0.076 (0.147) −0.096 (0.169)

threshold γ 2 1.185** (0.123) 1.198** (0.149) 1.178** (0.171)

threshold γ 3 2.345** (0.134) 2.403** (0.158) 2.384** (0.179)

baseline THKS β1 0.422** (0.038) 0.415** (0.039) 0.409** (0.040)

CC β 2 0.863** (0.129) 0.861** (0.174) 0.885** (0.210)

TV β 3 0.253* (0.125) 0.206 (0.171) 0.237 (0.205)

CC × TV β 4 −0.367* (0.182) −0.301 (0.245) −0.372 (0.296)

class variance 

0.189** (0.064) 0.148* (0.064)

school variance 

0.045 (0.043)

−2 log L 4250.21 4230.77 4229.18

**
p < 0. 01

*
p < 0.05
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Table 3

THNKS Post-Intervention Ordinal Scores Proportional and Non-Proportional Odds 3-level Multilevel Models 

Estimates of Covariate Effects (standard errors)

parameter Proportional Odds

Non-Proportional Odds

1 vs 2,3,4 1,2 vs 3,4 1,2,3 vs 4

baseline THKS β1 0.409** (0.040) 0.369** (0.055) 0.400** (0.046) 0.444 ** (0.049)

CC β 2 0.885** (0.210) 0.772** (0.243) 1.000** (0.221) 0.850 ** (0.234)

TV β 3 0.237 (0.205) 0.096 (0.226) 0.282 (0.215) 0.327 (0.234)

CC × TV β 4 −0.372 (0.296) −0.1518 (0.342) −0.385 (0.311) −0.526 (0.328)

−2 log L 4229.18 4220.46

**
p < 0. 01

*
p < 0.05
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Table 4

Hamilton Depression Ordinal Scores Proportional and Non-Proportional Odds 2-level Multilevel Models 

Parameter Estimates (standard errors)

parameter Proportional Odds

Non-Proportional Odds

1 vs 2,3 1,2 vs 3

threshold γ1 −7.269** (1.157) −8.360 ** (1.520)

threshold γ 2 −2.431** (0.723) −2.423 ** (0.769)

Week β1 −1.375** (0.304) −1.965 ** (0.480) −1.218 ** (0.302)

DMI2 β 2 −1.706* (0.670) −1.607 (0.898) −1.958 ** (0.744)

Intercept variance 

8.348 (4.593) 10.853 (5.781)

Week variance 

1.186 (0.780) 0.979 (0.732)

Intercept, Week covariance συ01 −0.581 (1.205) −1.212 (1.494)

−2 log L 377.52 374.34

**
p < 0. 01

*
p < 0.05
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