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Genome-wide association studies (GWAS) have identified hundreds of genetic susceptibility loci for cancers and other complex dis-
eases. However, the public health and clinical relevance of these discoveries is unclear. Evaluating the combined associations of genetic 
and environmental risk factors, particularly those that can be modified, will be critical in assessing the utility of genetic information for 
risk stratified prevention. In this commentary, using breast cancer as a model, we show that genetic information in combination with 
other risk factors can provide levels of risk stratification that could be useful for individual decision-making or population-based preven-
tion programs. Our projections are theoretical and rely on a number of assumptions, including multiplicative models for the combined 
associations of the different risk factors, which need confirmation. Thus, analyses of epidemiological studies with high-quality risk factor 
information, as well as prevention trials, are needed to empirically assess the impact of genetics in risk stratified prevention.
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With an increasing number of genetic susceptibility loci being iden-
tified for complex diseases, it is now important to examine whether 
genetic information could have utility in public health applications. 
Possible applications include risk stratified prevention and screen-
ing strategies targeted to susceptible subgroups of the population at 
elevated risk, or conversely defining subgroups at low risk that would 
benefit least from interventions. The value of genetic information for 
population-based screening programs has been recently discussed 
(1,2). The purpose of this commentary is to assess the potential util-
ity of genetic information in primary prevention, either at the indi-
vidual or the population level (1–3), for instance, by providing more 
accurate measures of individual risk to help make informed decisions 
on life-style changes or taking medications; or by targeting individu-
als at elevated risk for risk factor modification and chemoprevention 
programs. We are using breast cancer as an example, because this 
is a malignancy with a large number of known susceptibility loci, 
established modifiable risk factors such as menopausal hormone 
therapy (MHT), options for chemoprevention (ie, endocrine thera-
pies to prevent estrogen receptor positive [ER+] breast cancer [4]), 
and screening strategies for early detection. Our model-based analy-
ses illustrate the potential impact of genetic information for breast 
cancer prevention, and highlight the need for more empirical assess-
ment of cancer risks for the combined associations of genetic and 
environmental risk factors (broadly defined as life-style, endogenous 
factors, and external environment).

Utility of Polygenic Risk Information to 
Improve Breast Cancer Risk Stratification
From a broad perspective, the utility of risk factor information for 
disease prevention critically depends on whether this information 

can provide sufficient “risk stratification,” i.e., its ability to define 
several population strata with sufficient differences in absolute risks 
to alter the risk-benefit tradeoff for an intervention. In the past, 
the impact of adding new risk factors into existing risk prediction 
models has been often assessed by changes in the area under the 
receiver operating characteristic curve (AUC) of the model. The 
AUC, which is a measure of discriminatory accuracy of a model, is 
defined as the probability that the predicted risk is higher for a case 
than a noncase (range of 0.5 for no discrimination to 1.0 for per-
fect discrimination). This measure, which depends only on relative 
risk (RR) parameters, cannot capture the degree of stratification of 
absolute risk that a new risk factor can add to a model. In particular, 
when the baseline risk of a disease is high, overall or in certain sub-
groups of the population defined by existing risk factors, a polygenic 
risk score even with modest ability to increase AUC (5–7) could 
substantially add to risk stratification. We recently demonstrated an 
example of such risk-stratification by a polygenic risk score (PRS) 
for smoking-related risk of bladder cancer (8). Calibration, ie, how 
well the predicted risks of developing disease agree with the actual 
observed risk, is another important measure of risk model perfor-
mance that requires data from prospective cohort studies.

GWAS coupled with very large scale replication studies have 
identified 76 single nucleotide polymorphisms (SNP) for breast 
cancer at genome-wide significance levels (9–13). These SNPs 
explain about 15% of the familial risk (assuming a sibling rela-
tive RR of 2.0), with a further approximately 15% attributed 
to additional low and intermediate risk variants that did not 
reach genome-wide significance levels, according to the recent 
Collaborative Oncological Gene-Environment Study (COGS) 
Project (9,14). Although each of these loci is responsible for a 
small increase in risk, when combined, they could provide levels of 
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risk stratification useful for the prevention of breast cancer, par-
ticularly in conjunction with information on family history and 
other risk factors.

To assess the extent that polygenic risk information can add to 
risk stratification by itself or in conjunction with other risk fac-
tors, we estimated the expected RR distribution and correspond-
ing absolute risks of invasive breast cancer according to different 
sets of risk factors in the United Kingdom (UK) population. 
Simulation-based models were used to calculate the expected 
RR distribution that was calibrated to UK cancer rates to obtain 
estimates of absolute risk for women aged 40 and 50  years (see 
Supplementary Methods, available online). Models were based on 
published allele frequencies of SNPs, joint distribution of envi-
ronmental risk factors from UK population–based surveys or 
published reports, and RR estimates from previous publications, 
adjusted by confounders when available (Supplementary Table 1, 
available online) (15–27).

Eight different models were developed for sets of risk factors 
that require different sources of information: Model 1 is based 
only on questionnaire-based risk factors (age, age at menarche, 
number of births, age at first live birth, oral contraceptive use 
[for women age 40 years] and combined MHT use [for women 
age  50 years], body mass index [BMI], alcohol, smoking, per-
sonal history of benign breast disease [BBD], and family history 
of breast cancer in first-degree relatives); Model 2 is based on 
questionnaire-based risk factors plus measurements of mammo-
graphic density (i.e., risk assessment requires a previous mammo-
gram); Model 3 is based on a PRS (i.e., risk assessment requires 
a genetic test) as a measure of the combined associations of 76 
currently known SNPs explaining approximately15% of the 
familial risk (referred to as “76-SNP PRS”) (see Supplementary 
Methods, available online); Model 4 is based on questionnaire-
based risk factors plus 76-SNP PRS; Model 5 is based on all 
factors combined; and Models 6–8 are the same as Models 3–5 
but with a different PRS explaining approximately 30% of the 
familial risk, referred to as “improved PRS” (see Supplementary 
Methods, available online).

Table 1 shows the percentage of the population and the percent-
age of cancers in subgroups of the population at moderate risk (RR > 
2.0–3.0) and high risk (RR > 3.0) of invasive breast cancer, as defined 
by the above eight sets of risk factors. RRs are reported with respect 
to the average risk in the population (ie, lifetime risk from age 20 
to 79 for a woman in the UK of 10.2%, accounting for compet-
ing mortality). The risk categories are similar to those used by the 
UK’s National Institute for Health and Clinical Excellence (NICE) 
guidelines on familial breast cancer for recommendations on the use 
of enhanced surveillance and chemoprevention (ie, lifetime risk of 
17- <30% and ≥30% for moderate and high risk categories, respec-
tively) (28).

Results in Table 1 show substantial improvements in risk strati-
fication when adding information on polygenic risk to other known 
risk factors, as determined by the eight risk prediction models. For 
50-year old women, questionnaire-based risk factors and mam-
mographic breast density could identify 5.6% of the population at 
moderate-to-high risk that would account for 14.9% of the cases 
in the population. The 76-SNP PRS by itself could identify 4.0% 
of the population at moderate-to-high risk, capturing 9.6% of the 
cancers. When combining the 76-SNP PRS with questionnaire-
based risk factors and density, one could identify 8.5% of the 
population capturing 24.5% of the cancers. This could increase to 
10.2% of the population capturing 32.2% of cases for the improved 
PRS (Table 1). A similar level of risk stratification can be obtained 
for women at age 40 years, with 34.4% of the cases occurring in 
10.2% of the population at moderate-to-high risk (Supplementary 
Table  2, available online). It should be noted that substantial 
improvements in risk stratification can be obtained even when the 
AUC improvements are relatively small (Table 1).

The percentage of the population crossing a threshold for mod-
erate-to-high levels of risk only increases moderately when including 
more risk factors in the models (eg, an additional 5.4% of women 
are found to be at moderate-to-high risk when comparing Model 1 
[4.8%] with Model 8 [10.2%]). However, the percentage of cases 
captured in this risk group increases substantially (eg, an additional 
19.7% of cases are captured when comparing Model 1 [12.5%] 

Table 1.  Identification of women age 50 years in a UK population at moderate and high-risk of invasive breast cancer*

Parameter
Model 1: Qx 
risk factors†

Model 2: Qx 
risk factors + 
density

Model 3:  
76-SNP PRS

Model 4:  
Qx risk 
factors + 
76-SNP  
PRS

Model 5:  
Qx risk 
factors + 
density + 
76-SNP PRS

Model 6: 
Improved 
PRS

Model 7: Qx  
risk factors + 
improved PRS

Model 8: Qx 
risk factors +  
density + 
improved  
PRS

AUC 0.618 0.635 0.624 0.670 0.680 0.672 0.703 0.708
% Population (% cases) at  

different risk thresholds‡
   Moderate risk  

(RR > 2.0 - 3.0)
3.8 (8.8) 4.3 (10.0) 3.6 (8.2) 5.5 (13.0) 5.8 (13.7) 6.0 (14.1) 6.0 (14.4) 6.1 (14.7)

   High risk (RR > 3.0) 1.0 (3.7) 1.3 (4.8) 0.4 (1.4) 2.4 (9.3) 2.7 (10.8) 2.1 (8.1) 3.8 (16.0) 4.1 (17.5)

*	 Defined as relative risk (RR) > 2.0–3.0 and RR > 3.0, respectively, compared with the population average and for different combinations of risk factors and two 
polygenic risk scores (PRS). The following parameters are shown for eight risk prediction models: AUC, the % of the population found at moderate and high levels 
of risk according to the different models, and the % of cases in the population expected to occur among women at these levels of risk. AUC = area under the 
receiver operating characteristic curve; PRS = polygenic risk score; Qx = questionnaire; RR = relative risk; SNP = single nucleotide polymorphism.

†	 Questionnaire-based risk factors include age at menarche, parity, age at first birth, combined MHT, body mass index, benign breast disease, alcohol intake, 
smoking, and family history of breast cancer in first-degree relatives.

‡	 Lifetime risk (from age 20 to 80 years), 10-year and five-year risk thresholds corresponding to RRs of 2.0 and 3.0 for a woman age 50 years: RR = 2.0: 19.4% 
lifetime risk, 5.2% 10-year risk and 2.6% five-year risk; RR = 3.0: 27.5% lifetime risk, 7.8% 10-year risk and 3.9% five-year risk.
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with Model 8 [32.2%]), which is the desirable impact as risk models 
improve. Finally, contrary to previous suggestions based on informa-
tion on only seven known SNPs at the time (6), the addition of mam-
mographic breast density results in a smaller improvement in risk 
prediction than adding information on polygenic risk (now based on 
76-SNPs). For instance, adding density to a model with question-
naire-based risk factors results in an additional 2.4% of cases being 
captured by the moderate-to-high risk groups; whereas addition of 
the 76-SNP PRS results in an additional 9.8% of cases captured and 
the improved PRS in an additional 17.9% of cases. This is consistent 
with estimates from a Swedish study that observed a larger improve-
ment in the discriminatory accuracy of the Gail model when adding 
18 SNPs than when adding breast density and BMI (29).

Figure 1 illustrates graphically the ability to discriminate risk 
in a population of women aged 50 years in the UK, expressed as 
the percentage of cancers expected to occur in different groups of 
the population identified at highest risk according to different sets 
of risk factors (panels A and C) and the percent of the population 
crossing different RR thresholds compared with the population 
average risk (panels B and D). This figure indicates that addition 
of polygenic information has a substantial impact in identifying 
subsets of the population more likely to develop breast cancer. For 
instance, if one were to stratify the population according to a risk 
score based on questionnaire-based risk factors alone, about 22% 
of breast cancers in the population would be expected to occur in 
the top 10% of the population identified as having the highest risk. 
The percentage of cancers would increase from 22% to 27% with 
the addition of information on the 76-SNP PRS and to 32% with 
the addition of the improved PRS. It should also be noted that the 
improved PRS could have stronger risk discrimination ability by 
itself than questionnaire-based risk factors.

Utility of Polygenic Risk Information for 
Targeted Breast Cancer Prevention
Although the above estimates show that we might be able to iden-
tify a relatively small percentage of the population at elevated risk 
that would capture a substantial proportion of cases occurring in the 
population, a majority of cases would still occur in women not iden-
tified as being at elevated risk. Therefore, although not a substitute 
for general prevention efforts applicable to the whole population 
(eg, maintaining a healthy weight, being physically active, drinking 
alcohol in moderation), targeting certain interventions to high-risk 
individuals could be more effective (30), for instance, when the 
intervention has associated harms (e.g., side effects of medication) 
and/or it is too expensive to be applied to the whole population.

Interventions targeted to susceptible individuals could have a 
stronger impact on disease absolute risk reduction when the com-
bined associations of genetic (or other nonmodifiable risk factors) 
and modifiable risk factors are multiplicative. This is because under 
a multiplicative model for gene-environment joint associations, 
where RRs associated with a particular exposure remain the same 
for subjects in different polygenic risk categories, it is expected that 
risk differences (RDs) associated with the exposure will be larger 
for subjects with higher polygenic risk. Previous publications have 
shown that, with a few exceptions, most common susceptibility loci 
and environmental factors are likely to act multiplicatively on the 

risk of breast cancer (31–34). Below we illustrate how under the 
multiplicative model for gene-environment interaction, genetic 
risk-stratification can be useful for providing guidance to women 
about use of combined MHT and endocrine chemoprevention.

Combined Estrogen and Progesterone MHT Use
As the risk-benefit tradeoff for an intervention is critically related to 
the underlying risk differences, we assessed RD parameters associated 
with combined estrogen and progesterone MHT for menopausal 
symptoms for women in different categories of polygenic risk. Women 
with a family history of breast cancer are often advised to minimize the 
dose and duration of combined MHT use because of their underlying 
genetic risk (28). For women age 50 years under Model 8 in Table 1, 
we estimated that taking combined MHT increases the 10-year breast 
cancer risk by 2.5% (from 2.2% to 4.7%) for women without a family 
history, and by 4.4% (from 4.0% to 8.4%) for a women with a first-
degree relative with breast cancer (Table 2). The stronger impact of 
MHT use on absolute risk of breast cancer for women with family 
history is the basis of the current recommendations.

The above risk estimates are the average in the population for 
women with and without family history, and a PRS could allow 
finer risk stratification within these groups. For instance, the 
10-year breast cancer risk for a woman without a family history tak-
ing MHT would range from 1.3% to 13.9% depending on whether 
she is in the lowest or highest one percentile of the 76-SNP PRS; 
and the corresponding range for a woman with a family history 
would be 2.0% to 21.5%. The RD estimates imply that 70 cases 
would be prevented by removing MHT use in 10 000 women in the 
lowest one percentile of the 76-SNP PRS and negative family his-
tory, compared with 720 cases that would be prevented by remov-
ing MHT use in 10 000 women in the highest one percentile of the 
PRS and positive family history. Of note, stratification with respect 
to the 76-SNP PRS indicates that women with positive family his-
tory in the lowest 20th percentile of polygenetic risk have similar 
or lower RDs associated with MHT than women without family 
history (Table 2). Similarly, women in the highest 10th percentile 
of polygenic risk but no family history have RDs similar or higher 
than women with a family history. Thus, polygenic risk could be 
useful for personalization of advice regarding use of MHT beyond 
family history.

While our analysis suggests that the combination of infor-
mation on PRS and family history could provide substantial risk 
stratification in the population, the ultimate assessment of their 
utility for risk-benefit calculations needs to account for other risk 
factors for breast cancer, as well as those for other health effects 
from use of combined MHT, such as risk of endometrial cancer 
and osteoporosis.

Endocrine Chemoprevention
Selective estrogen receptor modulators (SERMs) are approved 
by the United States Food and Drug Administration for reducing 
breast cancer risk, and the recently published UK NICE guide-
lines for familial breast cancer recommend offering endocrine 
chemoprevention to women aged 40 to 50  years at high risk 
of breast cancer (ie, lifetime risk > 30%) without contraindica-
tions and considering this treatment for women at moderate risk 
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(ie, lifetime risk of 17%-30%). However, the use of these drugs 
requires identification of women at those levels of risk. Our cal-
culations based on all risk factors combined indicate that about 
10% of women 50  years old found to be at moderate to high 

risk (capturing about 27% of cases in the population) could be 
identified as eligible for chemoprevention (Model 5 in Table 1), 
thus benefiting from a 38% reduction in risk (4). This could be 
improved to 11% of women capturing about 34% of cases when 

Figure 1.  Partial Receiver Operating Curves (ROC) showing the percent-
age of cases of breast cancer expected to occur in groups of the popu-
lation at highest predicted risk (A, C), and graphs for the percentage 
of the population crossing breast cancer relative risk (RR) thresholds 
(compared with the average risk in the population) (B, D). Estimates are 
for a UK population of women aged 50 years, for eight risk prediction 

models, including different sets of risk factors and two polygenic risk 
scores (PRSs): the 76–single nucleotide polymorphism (SNP) PRS 
based on currently known SNPs explaining 15% of the familial risk 
(A, B) and an improved PRS explaining 30% of the familial risk (C, D). 
PRS = polygenic risk score; Qx = questionnaire; SNP = single nucleotide 
polymorphism.
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using the improved PRS (Model 8 in Table 1). However, preven-
tive trials are needed to evaluate the joint associations of PRS 
and SERMs and assess the validity of the multiplicative joint 
effect assumption. In addition, introduction of such wide-scale 
preventive treatment would need to be closely monitored in the 
population, particularly in view of potentially severe side effects 
of treatment.

Concluding Remarks
Our estimates illustrate how information on polygenic risk, in 
addition to family history and other risk factors, could be used in 
primary prevention to identify subgroups of the population at dif-
ferent levels of risk, particularly those at elevated risk most likely 
to benefit from certain advice or an intervention. This is in spite 
of relatively small improvements in the AUC, indicating that using 
this as single measure of model performance can lead to erroneous 
conclusions about the clinical and public health utility of new risk 
predictors such as polygenic risk.

Our model-based estimates rely on RR estimates from large 
meta- or pooled analyses and population-based distributions. 
Although we used adjusted RR estimates and accounted for depend-
ency of distribution of key risk factors when possible, because of the 
multiple sources of data used, we did not fully account for depend-
ency and potential confounding effects of multiple risk factors. As for 
most existing risk prediction models, our model estimated the risk of 
developing invasive breast cancer; further work to develop models 

for both invasive and in situ breast cancer is needed. Our calculations 
also rely on the key assumption that genetic and environmental risks 
act multiplicatively. Although large studies are providing increasing 
support for multiplicative gene-environment associations (31-33,34), 
there is a need to continue to evaluate this assumption empirically 
and to obtain precise estimates of joint associations and absolute risk 
in subsets of population defined by the combination of environmen-
tal risk factors, chemo-preventive agents and polygenic risks. Such 
studies should include evaluation for additive interactions to directly 
evaluate if the expected risk reduction from removing an exposure 
differs by levels of genetic risk (8,35). This will require very large, 
studies with high quality information on risk factors. Calibration of 
risk models in prospective cohort studies to compare the predicted 
and observed risk will also be a critical part of the assessment of the 
performance of the models in providing accurate predictions of risk. 
Finally, easy-to-use risk prediction tools based on models validated 
in prospective cohorts will be needed for the adoption of risk-strati-
fied strategies in the clinical practice.
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