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ABSTRACT

Motivation: Whole-genome high-coverage sequencing has been

widely used for personal and cancer genomics as well as in various

research areas. However, in the lack of an unbiased whole-genome

truth set, the global error rate of variant calls and the leading causal

artifacts still remain unclear even given the great efforts in the evalu-

ation of variant calling methods.

Results: We made 10 single nucleotide polymorphism and INDEL call

sets with two read mappers and five variant callers, both on a haploid

human genome and a diploid genome at a similar coverage. By inves-

tigating false heterozygous calls in the haploid genome, we identified

the erroneous realignment in low-complexity regions and the incom-

plete reference genome with respect to the sample as the two major

sources of errors, which press for continued improvements in these

two areas. We estimated that the error rate of raw genotype calls is as

high as 1 in 10–15 kb, but the error rate of post-filtered calls is reduced

to 1 in 100–200 kb without significant compromise on the sensitivity.

Availability and implementation: BWA-MEM alignment and raw vari-

ant calls are available at http://bit.ly/1g8XqRt scripts and miscellan-

eous data at https://github.com/lh3/varcmp.

Contact: hengli@broadinstitute.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Since the sequencing of the first personal genome (Levy et al.,

2007), and in particular the first genomes sequenced with the

Illumina technologies (Bentley et al., 2008; Wang et al., 2008),

resequencing has been widely used for personal and cancer gen-

omics (Watson et al., 2013), for the discovery of de novo muta-

tions associated with Mendelian diseases (Bamshad et al., 2011),

for the reconstruction of human population history (Li and

Durbin, 2011) and for the understanding of mutation processes

(Campbell and Eichler, 2013; Veltman and Brunner, 2012). In

most of these studies, mapping-based single nucleotide poly-

morphism (SNP)/insertion-deletion (INDEL) calling plays a cen-

tral role. The accuracy of the calls has a fundamental impact on

the biological interpretation. In this context, various research

groups have attempted to evaluate the performance of variant

calling.
The simplest approach to the evaluation of variant calling

is to simulate variants and reads from a reference genome

(Li et al., 2008). However, we are unable to simulate various

artifacts such as the non-random distribution of variants, de-

pendent errors, incomplete reference genome and copy number

variations. An improved version is to incorporate real variants

instead of using simulated variants (Talwalkar et al., 2013), but it

does not address the artifacts caused by large-scale effects either.

A better simulation is to take the reads sequenced from one

sample with a finished genome, map them to another finished

genome, call variants and then compare the calls to the differ-

ences found by genome-to-genome alignment (Li et al., 2008).

However, this approach is limited to small haploid genomes.

There are attempts to apply a similar idea to mammalian gen-

omes (Bolosky et al., Unpublished data; Li et al., 2013), but as

the mammalian reference genomes are frequently incomplete and

the whole-genome alignment is imperfect, such a simulation is

still different from realistic scenarios.
The difficulties in simulation have motivated us to focus more

on real data. One simple approach is to thoroughly sequence a

small target region with mature technologies, such as the Sanger

sequencing technology, and take the resultant sequence as the

ground truth (Harismendy et al., 2009). It does not capture large-

scale artifacts, though. Another more commonly used method is

to measure accuracy either by comparing variant calls from dif-

ferent pipelines, or by comparing calls to variants ascertained

with array genotyping or in another study (Boland et al., 2013;

Cheng et al., 2014; Clark et al., 2011; Goode et al., 2013; Lam

et al., 2012a,b; Li, 2012; Liu et al., 2013; O’Rawe et al., 2013;

Zook et al., 2014). However, array genotyping is biased to easier

portions of the genome and may have a higher error rate per

assayed site than the variant calling error rate (Bentley et al.,

2008); simply comparing call sets would only give us an estimate

of the relative accuracy––if two pipelines are affected by the same

artifact that a third pipeline does not have, then the third pipeline

will appear worse even though it is in fact better. In addition,

comparative studies usually measure the accuracy with summary

statistics such as the fraction of calls present in dbSNP or the

transition-to-transversion ratio. They do not tell us the wrong

sites.

Many studies also experimentally validated typically up

to a few hundred variants with MiSeq or Sanger sequencing or

Sequenom genotyping. Nonetheless, such experiments are biased

toward easier regions and may also be subjected to other artifacts

such as on-primer variants and non-specific amplification (the

1000 Genomes Project analysis subgroup, personal communica-

tion). Calling heterozygotes from Sanger sequence data are also

challenging by itself.

In the author’s view, it is better to evaluate variant calling by

comparing samples from a pedigree (Zook et al., 2014), or from

� The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2843

http://bit.ly/1g8XqRt
https://github.com/lh3/varcmp
mailto:hengli@broadinstitute.org
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu356/-/DC1
; Campbell and Eichler, 2013
,
;
 Bolosky etal., 2014
;
 Cheng etal., 2014
s
is


the same individual (Nickles et al., 2012), including cancer sam-

ples (L €ower et al., 2012). Because we expect to see only tens to

hundreds of somatic mutations or Mendelian errors per genome

(Conrad et al., 2011), most other inconsistencies are likely to be

errors. However, this method is insensitive to systematic errors.

If at a locus, a caller finds erroneous heterozygotes in all samples,

the errors would not be identified.

After these efforts, we are still not clear about a basic question:

the error rate of SNP and INDEL calling. Although a few papers

give an estimate of one error per 100–200kb, it is either estimated

on easy sites (Bentley et al., 2008) or not sufficiently backed with

published data (Nickles et al., 2012). In addition, only a few

works (Kim and Speed, 2013; Larson et al., 2012; Roberts

et al., 2013) have attempted to identify the sources of errors.

Analyzing systematic errors is even rarer, as most existing evalu-

ation methods hide them.
In this article, we use an exceptional dataset, sequencing data

from a haploid human cell line, to evaluate the accuracy of vari-

ant calling. As the vast majority of heterozygous calls are sup-

posed to be errors, we almost know the ground truth unbiasedly

across the whole genome. We are able to pinpoint errors, inves-

tigate their characteristics, experiment filters and get a reasonable

estimate of the error rate, not limited to non-systematic errors.

In addition to the unique dataset, our study also differs from

many previous ones in the use of multiple read mappers, unpub-

lished but well developed variant callers and caller-oblivious

genotyping and filtering.

2 DATASETS AND DATA ANALYSIS

2.1 Datasets

In this study, we focused on deep Illumina sequencing data from

two cell lines, the CHM1hTERT cell line (Jacobs et al., 1980)

and the NA12878 cell line. A crucial and unusual feature of

CHM1hTERT, or briefly CHM1, is that this cell line is haploid,

which suggests that any heterozygous variant calls are errors.

A calling method producing fewer heterozygotes is in theory

better. Meanwhile, to avoid overrating a variant calling

method with low sensitivity on heterozygotes, we also used

NA12878 as a positive control.

Both data sets are available from Sequence Read Archive

(SRA). The entire CHM1 dataset (AC:SRP017546) gives over

100-fold coverage. We are only using six SRA runs with the
accessions ranging from SRR642636 to SRR642641. The six

runs are from the same library, yielding �65-fold coverage
before the removal of potential duplicates caused by polymerase

chain reaction (PCR) during sample preparation.
We acquired the NA12878 dataset (AC:ERR194147) from the

Illumina Platinum Genomes project. The library was constructed

without PCR amplification. We are only using paired-end data,
which yield about 55-fold coverage.

2.2 Alignment and post-alignment processing

We mapped the CHM1 reads with Bowtie2 (Langmead and

Salzberg, 2012) and BWA-MEM (Li, 2013), and mapped the
NA12878 reads with BWA (Li and Durbin, 2009) in addition
to Bowtie2 and BWA-MEM. The detailed command lines can be

found in Table 1. Except in Section 3.6, we mapped the reads to
hs37d5, the reference genome used by the 1000 Genomes Project

in the final phase.
After the initial alignment, we run Picard’s MarkDuplicates

on both datasets. Picard identified 20% of CHM1 reads as PCR

duplicates. For NA12878, Picard reported 1.5% of them
as PCR duplicates, which are false positives, as the library was
constructed without amplification. We did not apply

MarkDuplicates for NA12878 in the subsequent analysis.
For the NA12878 BWA alignment, we also tried GATK’s

(Depristo et al., 2011) base quality score recalibration (BQSR)
and INDEL realignment around INDEL calls from the 1000
Genomes Project (1000 Genomes Project Consortium, 2012).

For both SAMtools (Li, 2011b) and GATK, the number of
calls only differs by 0.1%, much smaller than the difference

caused by other procedures. We thus did not apply these steps
to other alignments because of the additional computational
cost. It should be noted that although BQSR and INDEL re-

alignment have little effect on these two high-coverage datasets,
it may make difference on low-coverage data or when the base

quality is not well calibrated.

2.3 Calling SNPs and short INDELs

We called SNPs and short INDELs with FreeBayes (Garrison
and Marth, 2012), GATK UnifiedGenotyper, Platypus,
SAMtools and GATK HaplotypeCaller. The command lines

can be found in Table 1. Additional details are as follows.

Table 1. Evaluated mappers and variant callers

Symbol Algorithm Version Command line

bt2 Bowtie2 2.1.0 bowtie2 -x ref.fa -1 read1.fq -2 read2.fq -X 500

bwa BWA-backtrack 0.7.6 bwa aln -f read1.sai ref.fa read1.fq; bwa sampe ref.fa read1.sai read2.sai read1.fq read2.fq

mem BWA-MEM 0.7.6 bwa mem ref.fa read1.fq read2.fq

fb FreeBayes 0.9.9 freebayes -f ref.fa aln.bam

st SAMtools 0.1.19 samtools mpileup -Euf ref.fa aln.bam — bcftools view -v -

Ug UnifiedGenotyper 2.7-4 java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -R ref.fa -I aln.bam -stand_call_conf 30

-stand_emit_conf 10 -glm BOTH

hc HaplotypeCaller 2.7-4 java -jar GenomeAnalysisTK.jar -T HaplotypeCaller –genotyping_mode DISCOVERY -R ref.fa

-I aln.bam -stand_call_conf 30 -stand_emit_conf 10

pt Platypus 0.5.2 Platypus.py callVariants –filterDuplicates=1 –bamFiles=aln.bam –refFile=ref.fa
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2.3.1 Resolving overlapping variants Platypus and SAMtools
may produce many overlapping variants. To avoid overcounting

variants, for two overlapping variants, we always keep the one

with the higher variant quality. We repeated this procedure until

no overlapping variants remained.

2.3.2 Recalling genotypes Given the same genotype likelihood,
different callers may produce different genotypes. For example,

SAMtools estimates genotypes assuming the prior of seeing a

heterozygote being 10�3, but GATK does not apply a prior.

GATK is more likely to call a heterozygote than SAMtools.

Genotype calling for a single sample is relatively simple. To

avoid the subtle difference in this simple step complicating the

final results, we recall the genotypes from genotype likelihoods

provided by the callers. We multiplied 10�3 to the likelihood of

heterozygotes, and then called the genotype with the maximum

likelihood.
Platypus does not give genotype likelihoods for multi-allelic

variants. We kept the reported genotypes in the variant call

format (VCF).

2.3.3 Decomposing complex variants Both FreeBayes and

Platypus may report a variant composed of multiple SNPs

and/or INDELs. We decomposed such variants into individual

events such that the results are more comparable. FreeBayes uses

a concise idiosyncratic gapped alignment report notations

(CIGAR) string to describe how a complex variant is aligned

to the reference. We extracted SNPs and INDELs from the

CIGAR. Platypus does not report CIGAR. We assumed the

variant allele is always left aligned to the reference allele when

decomposing a complex variant.

2.4 Variant filtering

All the callers used in this study come with filtering programs or

a recommended set of filters. However, applying caller-specific

filters may complicate comparison and obscure artifacts. We

decided to choose several universal filters applicable to most

callers:

(1) Low-complexity (LC) filter: filtering variants overlapping

with low-complexity regions (LCRs) identified with the

mdust program (http://bit.ly/mdust-LC), which is a

stand-alone implementation of the DUST algorithm first

used by BLAST. In GRCh37, 2.0% of A/C/G/T bases on

autosomes are identified to be LCRs.

(2) Maximum depth (MD) filter: filtering sites covered by

excessive number of reads. It should be noted that differ-

ent callers may define the depth differently. For example,

Platypus apparently only counts reads with unambiguous

realignment. The read depth reported in the Platypus VCF

is noticeably smaller in comparison with other callers.

(3) Allele balance (AB) filter: filtering sites where the fraction

of non-reference reads is too low.

(4) Double strand (DS) filter: filtering variants if either the

number of non-reference reads on the forward strand or

on the reverse strand is below a certain threshold. This

filter is not applicable to GATK calls, as GATK does

not report these numbers. DS has been identified to be

an effective filter on cancer data (Kim and Speed, 2013;

Roberts et al., 2013).

(5) Fisher strand filter (FS): filtering sites where the numbers

of reference/non-reference reads are highly correlated with

the strands of the reads. More precisely, we counted the

number of reference reads on the forward strand and on

the reverse strand, and the number of non-reference reads

on the forward and reverse strand. With these four num-

bers, we constructed a 2� 2 contingency table and used

the P-value from a Fisher’s exact test to evaluate the

correlation.

(6) Quality filter (QU): filtering sites with the reported variant

quality below a threshold.

Among these filters, LC is a regional filter and is entirely in-

dependent of alignment and variant calling. Although MD is

computed from called variants, its effect is usually not greatly

dependent on the mapper and the caller, either. The remaining

filters may be dependent of the error models used by the callers.

For example, SAMtools effectively gives a higher weight to vari-

ants supported on both strand; FreeBayes seems to require a

variant to be supported by 20% of reads covering the site. The

optimal thresholds for the AB, DS and FS filters are caller

dependent.

2.5 Measuring accuracy

The CHM1 and the NA12878 datasets share many properties.

They are both sequenced with 100 bp Illumina reads to a similar

coverage after the removal of PCR duplicates. The number of

called variants per haplotype is also close, usually within 1%

difference according to multiple call sets. Under this observation,

it is reasonable to assume the number of heterozygous errors in

NA12878 is also close to the number of heterozygous calls in

CHM1. As a result, we may take Nh=Nd as an estimate of the

false-positive rate (FPR) of heterozygotes, and Nd �Nh as a

proxy to sensitivity, where Nh is the number of heterozygous

calls in CHM1 and Nd the number in NA12878. This might be

the first time that we can unbiasedly measure FPR in a whole

genome call set.

2.6 Manual review

To understand the major error modes, we have manually re-

viewed 4200 heterozygous INDELs called by different callers

from CHM1. For these sites, we displayed the alignment with

SAMtools’ tview alignment viewer to get a sense of the alignment

quality, obvious positional biases and the complexity of the ref-

erence genome. We often extracted reads in regions around the

INDELs, extending to flanking regions with high complexity to

eyes. We assembled the extracted reads with fermi (Li, 2012)

version 1.1 and mapped the assembled contigs back to the refer-

ence genome with BWA-MEM. Fermi tries to preserve hetero-

zygotes. If the INDELs are truly heterozygous, we will typically

see two contigs covering a site, one for each allele. We used the

local assembly as an orthogonal approach to validate heterozy-

gous calls.
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3 RESULTS

When studying the effect of filters on variant calling, we initially

applied the filters independently on each call set. However, when

presenting the results in the following, we applied the filters in an

order, with a filter applied later depending on the filters applied

before it. We did this for clarity and to highlight filters having

major effects. Figure 1 overviews the breakdown of various fil-

ters across multiple call sets. If we consider that there might be

true heterozygotes in CHM1 potentially because of somatic mu-

tations, call sets generally have an error rate �1 in 100–200kb

(i.e. 15 000–30000 false heterozygotes per genome) after filtering.

3.1 Checking the ploidy of CHM1

Although the CHM1hTERT cell line is supposed to be haploid,

we may still see heterozygous variant calls potentially because:

(i) the cell line is not truly haploid; (ii) there are somatic muta-

tions in the cell line; (iii) there are library construction and

sequencing errors (Robasky et al., 2014), which ought to be con-

sidered by the calling algorithms; and (iv) mapping or variant

calling algorithms have flaws. In this study, we focus on (iii) and

(iv), but first we should make sure heterozygotes resulted from (i)

and (ii) occur at a much lower rate.
We note that if the sample submitted for sequencing is not

haploid either because of biological artifacts or massive somatic

mutations, a large number of heterozygotes should be evident

from the sequencing data and get called by all callers. In contrast,

if heterozygotes are mostly caused by sequencing errors or algo-

rithm artifacts, owing to the differences in algorithm and error

modeling, callers will call a subset of errors with different char-

acteristics, which will result in low consistency between call sets.

The small call set intersection in Figure 2 suggests the latter is

the case.
We also manually reviewed tens of heterozygotes called

by multiple callers, both on the data in this study and on

Illumina data generated from other libraries (AC:SRR642626–

SRR642635 and AC:SRR642750), which were mapped with the

original BWA algorithm (Li and Durbin, 2009) by the 1000

Genomes Project analysis group. Reviewing the read evidence

using an alignment viewer, it appears that more than half

of the SNPs are real. Most of these SNPs have averaged

read depth, non-overlap with known segmental duplications

 0

 20

 40

 60

 80

 100

 120

 140

#C
H

M
1 

he
te

ro
zy

go
us

 In
D

el
s 

(×
10

3 )

Remained
Filtered by misc
Filtered by MD

>1bp, Filtered by LC
±1bp, Filtered by LC

 0

 100

 200

 300

 400

 500

 600

 700

bt2:fb
m

em
:fb

bt2:hc

m
em

:hc

bt2:pt

m
em

:pt

bt2:st

m
em

:st

bt2:ug

m
em

:ug

#N
A

12
87

8 
he

te
ro

zy
go

us
 In

D
el

s 
(×

10
3 )

Remained
Filtered by misc
Filtered by MD

>1bp, Filtered by LC
±1bp, Filtered by LC

 0

 50

 100

 150

 200

 250

 300
#C

H
M

1 
he

te
ro

zy
go

us
 S

N
P

s 
(×

10
3 ) Remained

Filtered by misc
Filtered by MD
Filtered by LC

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

bt2:fb
m

em
:fb

bt2:hc

m
em

:hc

bt2:pt

m
em

:pt

bt2:st

m
em

:st

bt2:ug

m
em

:ug

#N
A

12
87

8 
he

te
ro

zy
go

us
 S

N
P

s 
(×

10
6 )

Remained
Filtered by misc
Filtered by MD
Filtered by LC

Fig. 1. Effect of filters. LC filter: not overlapping LCRs identified by the DUST algorithm. MD filter: read depth below d+3
ffiffiffi

d
p

, where d is the average

read depth. Miscellaneous filter (misc) includes three filters: allele balance above 30%, variants supported by non-reference reads on both strands and

Fisher strand P-value is40.01. Filters are applied in the order of LC, MD and misc, with MD applied to variants passing LC, and misc applied to

variants passing both LC andMD. For each call set, the total height of the bar gives the number of raw variant calls with the reported quality in VCF no

530. Note that the Y-axes are scaled differently
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(http://bit.ly/eelabdb) and are not associated with known error-

prone motifs in Illumina sequencing (Nakamura et al., 2011). On

the other hand, many INDELs in LCRs look like systematic

errors called by all callers (see also Section 3.2). We speculate

there may be 5–20k heterozygotes in CHM1 with strong align-

ment support from multiple Illumina libraries. It is hard to get a

more accurate estimate or to further tell the sources of these

heterozygotes with the data we are using. As we were writing

up this work, Pacific Biosciences released deep resequencing data

for the CHM1 cell line. It could be used to isolate errors caused

by the Illumina sample preparation and sequencing. However,

mapping and variant calling from PacBio human data is still in

the early phase. We decided to omit the comparison with the

PacBio data for now.

Anyway, even if we assume the variant calls in the intersection

are all present in the CHM1hTERT cell line, we should still be

able to measure an error rate up to 1 error per 170 kb (=3 Gbp/

17.7k). Given that there are 10 times more raw heterozygous

calls in NA12878 than CHM1 (Fig. 1), it seems likely that

CHM1 heterozygotes are likely errors from major sequencing/

calling artifacts.
As a side technical note, we applied milder filters in Figure 2 in

comparison with Figure 1. We found the intersection between

call sets often becomes smaller with more stringent thresholds

because stringent thresholds reduce the sensitivity in different

aspects of call sets and amplify the subtle differences between

calling algorithms. In addition, in Figure 2B, we were clustering

INDELs within 20bp from each other. Increasing the distance

threshold to 100 bp only changed the numbers slightly.

3.2 The LC

On CHM1, low-complexity regions (LCRs), 2% of the human

genome, harbor 80–90% of heterozygous INDEL calls and up to

60% of heterozygous SNPs (Fig. 1). Recall that if we let NGL
h

be the number of CHM1 heterozygous INDELs in LCRs and

NGL
d the number of NA12878 heterozygous INDELs in LCRs,

NGL
h =NGL

d estimates the FPR of heterozygotes. The FPR in

LCRs is ranged from 10% to as high as 40% depending on

call sets. With a similar estimator, the FPR of heterozygous

INDELs outside LCRs is much lower, �1–8% depending on

call sets. We have also tried lobSTR (Gymrek et al., 2012). It

called 65 k heterozygous INDELs from microsatellites, still yield-

ing a high FPR. To understand why errors are enriched in LCRs,

we reviewed 4100 sites and identified two major sources of

INDEL genotyping errors: potential PCR errors and realign-

ment errors.

3.2.1 Potential PCR amplification errors PCR errors are known

to be responsible for many INDEL errors in long homopolymer

runs (1000 Genomes Project Consortium, 2012). On CHM1,

we have observed many apparent 1bp heterozygous INDELs

(Fig. 1) inserted to or deleted from long poly-A or poly-T

runs, which may be because of PCR errors. Although most call-

ers deploy advanced models for homopolymer INDELs, they

are calling vastly different number of 1bp heterozygous

INDELs. It is still not clear to us that we can model PCR

errors well. Maybe the most effective solution is to avoid PCR

in sample preparation.
Potential PCR errors are not the only error source. On the

PCR-free NA12878 data, the call set intersection in LCRs is

noticeably smaller than in high-complexity regions (Fig. 3),

which suggests the presence of other error sources in LCRs. In

addition, PCR errors introduced during sample preparation are

believed to affect SNPs to a lesser extent. The small intersections

between CHM1 heterozygous SNP call sets (Fig. 2) and PCR-

free SNP call sets in LCRs (Fig. 3) should be caused by other

types of errors.

3.2.2 Realignment errors When mapping a read to the reference

genome, a read mapper chooses the optimal pairwise alignment

A B

Fig. 2. Relationship between CHM1 heterozygous call sets. Raw variant

calls were filtered with variant quality no 530, allele balance 420%,

Fisher strand P-value40.001 and maximum read depth below d+4
ffiffiffi

d
p

,

where d is the average read depth. (A) Relationship between heterozygous

SNP call sets. Two SNPs are considered the same if they are at the same

position. (B) Relationship between heterozygous INDEL call sets. Two

filtered INDELs are said to be linked if the 30 end of an INDEL is within

20bp from the 50 end of the other INDEL, or vice versa. An INDEL

cluster is a connected component (not a clique) of linked INDELs. It is

possible that in a cluster two INDELs are distant from each other but

both overlap a third INDEL. Venn’s diagram shows the number of

INDEL clusters falling in each category based on the sources of

INDELs in each cluster. In total, 15% of SNPs and 91% of INDELs

in the 3-way intersections overlap LCRs

Fig. 3. Relationship between NA12878 heterozygous call sets
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for each read independent of others. For reads mapped to the

same region, the combination of optimal pairwise alignments

does not always yield the optimal multi-alignment of reads. If

a variant caller simply trusts the suboptimal multi-alignment, it

may produce false variants or genotypes (Fig. 4). Therefore,

more recent variant callers, including HaplotypeCaller,

Platypus and FreeBayes in this study, heavily rely on realignment

for both SNP and INDEL calling.

However, with our manual review, we found that variant call-

ers often failed to produce the optimal realignment in LCRs.

About 50–70% of the reviewed 41bp heterozygous INDELs

from CHM1 can be corrected away with better realignment.

Without the thorough understanding of the very details of the

realignment process, we are unable to explain why the callers fail

even on some obvious cases. Nonetheless, as we can often manu-

ally derive a better multi-alignment, it is possible that a good

realignment algorithm may replace our manual work and

achieve higher accuracy than all the tools in our evaluation.
In the process of manual review, we found local assembly with

fermi is frequently more effective than the INDEL callers, which

may be because of the independence of the reference sequence,

the requirement of long-range consistency and the more powerful

topology-based error cleaning (Zerbino and Birney, 2008). Some

difficult errors such as Figure 4 are trivial to resolve with local

assembly.

3.3 The maximum read depth filter

3.3.1 The effectiveness of the MD filter Other filters require a
threshold on a single value. To study which filter, in addition to

LC, is more effective, we used a receiver operating characteristic

(ROC)-like plot, as shown in Figure 5. In this figure, the X-axis

indicates the number of heterozygous SNPs in CHM1, which is

proportional to the FPR; the Y-axis indicates the difference of

the number of heterozygous SNPs between NA12878 and

CHM1, which serves as a proxy to the sensitivity. Similar to a

standard ROC plot, a curve closer to the top left corner implies a

better classifier of errors.
Figure 5 implies that the MD filter is the most effective against

false heterozygotes, especially those found from the BWA-MEM

alignment. On our data with depth d � 50, a maximum depth

threshold between d+3
ffiffiffi

d
p

and d+4
ffiffiffi

d
p

removes many false

positives with little effect on the sensitivity. These false positives

are mostly caused by copy number variations (CNVs) or paralo-
gous sequences not present in the human reference genome.

3.3.2 The difference between Bowtie2 and BWA-MEM
alignment It is clear that Bowtie2 is less affected by the pres-

ence of CNVs and an incomplete genome (Figs 1 and 5). With
manual review, it seems to us that in comparison with BWA-

MEM, Bowtie2 tends to give the same alignment a lower map-
ping quality when the read has other suboptimal hits. At the

same time, missing paralogous sequences from the reference

Fig. 4. Example of misalignment around chr1:26608841 in CHM1. The truth allele is derived from local assembly. Three erroneous read alignments and

their correct alignments are shown below it. Each of the three reads is an exact substring of the truth allele, but their alignments are different. The first

read ‘errRead1’ is aligned without gaps, as the 30 end of the read is a substring of the 18bp deletion. Read ‘errRead2’ is aligned with a 6bp insertion, as

this alignment is better than having two long deletions. Read ‘errRead3’ is also aligned without gaps but with seven mismatches. It is possible for an

aligner to find its correct alignment given a small gap extension penalty. On this example, Bowtie2 did not align any reads with gaps. BWA-MEM

aligned four reads correctly. Except HaplotypeCaller which locally assembled reads, other callers all called multiple heterozygotes around this region
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genome is often associated with existing segmental duplications

in the reference genome. Therefore, Bowtie2 is more likely to

correctly give a low mapping quality to a read from these par-

alogous sequences. As variant callers usually distrust mismatches

on alignments with low mapping quality, their calls from the

Bowtie2 alignment are less susceptible to CNVs or an incomplete

reference genome.

However, being conservative on the mapping quality estimate

may lead to more false negatives. For example, we found a read

pair having one mismatch around 13.7 Mb in chr1 but two

mismatches around 13.5 Mb. Both Bowtie2 and BWA-MEM

mapped the ends of the pair at the same positions. Bowtie2 gives

the pair amapping quality 6, whereas BWA-MEMgives amapping

quality 27. The similar scenario happens to the other reads mapped

to this region. As a result, a SNP is called from the BWA-MEM

alignment but not from the Bowtie2 alignment. Variant callers usu-

ally call more variants from the BWA-MEM alignment (Fig. 1),

many of which are located in segmental duplications.
Another difference, not relevant to the mapping quality,

comes from the alignment around long INDELs.

HaplotypeCaller always called �15bp INDELs from the

BWA-MEM alignment (data not shown). Other callers made

three times as many �15bp deletion calls from the BWA-

MEM alignment, either in LCRs or not, and called 40% more

insertions outside LCRs. Interestingly, except HaplotypeCaller,

others called more �15bp insertions from the Bowtie2 alignment

in LCRs instead. We have not found a good explanation to the

apparently conflictive observations.

3.3.3 An alternative to the MD filter While the MD filter is

effective against false heterozygotes, it is only applicable to

high-coverage data with uniform read depth. It does not work

with exome sequencing data, or is not powerful on data with

shallow coverage.

To overcome the limitation, we derived an alternative filter.

We obtained unfiltered SAMtools SNP calls from the 1000

Genomes Project and computed the inbreeding coefficient and

the Hardy–Weinberg P-value using genotype likelihoods (Li,

2011b). We extracted sites satisfying: (i) the reported read

depth above 25 000; (ii) the inbreeding coefficient 50; (iii) the

P-value 510�10. We then clustered the sites within 10kb into

regions. These regions are susceptible to common CNVs or

artifacts in the reference genome. We call this filter as the

Hardy–Weinberg filter or HW in brief.

On CHM1, the HW filter is almost as effective as the MD

filter. It could be a valid alternative when the MD filter cannot

be applied. However, the derivation of the HW filter requires

multiple thresholds and depends on populations, the mapper

(BWA) and the caller (SAMtools). Therefore, we decided to

use the much simpler MD filter here.

3.4 Other filters

The remaining filters, including AB, DS, FS and QU (Section

2.4), can filter additional false heterozygous called from CHM1,

but their effectiveness varies with call sets. It is also difficult to

find the optimal thresholds on these filters as they affect both the

false-negative rate and the FPR. In the end, we arbitrarily chose

reasonable thresholds based on the ROC-like curves (Fig. 5),

which may not be optimal for all call sets.

3.5 Effect of PCR duplicates

Twenty percent of CHM1 data are discarded in our analysis

because of PCR duplicates. We have also tried variant calling

with mem:hc without the MarkDuplicates step. Before filtering,

this approach yields 3% more heterozygous SNPs and 12%

more heterozygous INDELs, suggesting INDELs are more sus-

ceptible to PCR artifacts than SNPs. After filtering, the total

numbers of SNPs and INDELs are about the same with or with-

out duplicates.

3.6 Effect of the reference genome

In this work, we mapped reads to hs37d5, the reference genome

used by the 1000 Genomes Project. This reference genome con-

tains extra 35.4Mb sequences present in several de novo assem-

blies but likely to be missing from the primary assembly

of GRCh37. These sequences are supposed to attract many mis-

mapped reads, so are called as decoy sequences.

We have also mapped the CHM1 reads to the GRCh37 and

GRCh38 primary assemblies and called variants. The number of

homozygous non-LC SNPs called from each reference is close:

2.408, 2.405 and 2.412 million from GRCh37, hs37d5 and

GRCh38, respectively. However, the numbers of heterozygous

SNPs/INDELs are distinct (Fig. 6). We called twice as many

heterozygotes from GRCh37 in comparison with hs37d5. This

indicates that the 35.4Mb decoy sequences attracted many mis-

mapped reads and consequently improved the variant calls

in chromosomal regions. GRCh38 further resolves 39.8k

(=36.9 k+2909) heterozygotes called from hs37d5. However,

it also retains 36.8k heterozygotes called from GRCh37 but

not from hs37d5. Intriguingly, GRCh38 further adds 24.6k auto-

somal heterozygotes not called from GRCh37 or hs37d5. We are

unclear of the source of these false heterozygous SNPs. In gen-

eral, we conclude that hs37d5 and GRCh38 are more complete

than GRCh37.

Fig. 6. Relationship of CHM1 heterozygous SNPs called from mappings

to different reference genomes. CHM1 reads were mapped with BWA-

MEM. Autosomal SNPs were called with GATK HaplotypeCaller and

passed the LC filter. Heterozygous calls from GRCh38 were lifted to

GRCh37 with the liftOver tool from UCSC under the default setting
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4 DISCUSSIONS AND CONCLUSIONS

A distinct feature of our work is the use of a haploid human

sample, CHM1, from which heterozygous calls are supposed to

be errors. This allows us to unbiasedly investigate the causal

artifacts and to experiment effective filters with the diploid

NA12878 dataset as a positive control.
When we called SNPs and INDELs from CHM1, we were

surprised to find 10% of raw variant calls were heterozygotes.

Honestly, our immediate reaction was that CHM1 was not truly

haploid. However, after careful analysis, we have convinced our-

selves that the heterozygosity of CHM1 should be of an order of

magnitude lower than the raw error rate of variant calling. The

vast majority of heterozygotes are calling errors. In the raw call

set, we usually see an error per 10–15 kb.
It was also to our surprise that the LC is the most effective

against false heterozygotes, especially short INDELs. Although

we knew that INDEL errors may be introduced by PCR during

sample preparation, we underestimated its substantial effect. We

were also unaware that realignment of INDELs in LCRs remains

a great challenge even after the many existing efforts in this dir-

ection (Albers et al., 2011; Homer and Nelson, 2010; Li, 2011a;

Narzisi et al., 2014). Without the suggestion from (P.Sudmant,

personal communication), we would not have tried this filter.

Before we understand and resolve the issues in variant calling

in LCRs, it might be better to filter out all variants overlapping

these regions. Although450% of single-sample INDEL calls fall

in LCRs (Figs 1 and 3), only 1.25% of autosomal INDELs in the

ClinVar database (http://clinvar.com) overlap with LCRs––most

INDELs in LCRs have unknown clinical functionality. For cer-

tain applications, it might be safe to drop or downweigh these

difficult calls.

Outside LCRs, different call sets usually agree well with

each other if the same set of filters is applied (Fig. 3). Based

on Figure 1, we estimate that a caller usually makes a wrong

call per 100–200kb without significant compromise on the sen-

sitivity, similar to the previous estimates (Bentley et al., 2008;

Nickles et al., 2012). Many of these errors are likely to be sys-

tematic. In the context of somatic or de novo mutation discovery

by sample contrast, systematic errors will appear in all samples.

They will not lead to false mutation calls, fortunately.
A simple method to improve the variant accuracy is to use two

distinct pipelines, take the intersection of the raw calls and then

apply caller-oblivious filters to derive the final call set. As callers

agree well on post-filtered sites (Fig. 3) but badly on false posi-

tives (Fig. 2), we should be able to remove most errors without

much hit to the sensitivity. Such a consensus approach has been

applied to cancer data with limited success (Goode et al., 2013;

L €ower et al., 2012). Without subclonal mutations, it should be

much more effective on the variant discovery from normal

samples.
Finally, the advances in sequencing technologies lead to the

development of algorithms. We are heavily relying on mapping-

based variant calling because with short reads or at low coverage,

the traditional assembly-and-mapping approach would not

work. With increased read lengths and decreased sequencing

cost, we might go back to de novo assembly. An assembly does

not only encode small variants but also retains large-scale struc-

tural variations and is free of the artifacts in the reference

genome. Another possible direction which we mentioned

4 years ago (Li et al., 2010) is to map sequence reads to the

ensemble of multiple genomes. Recently, there has been signifi-

cant progress toward this goal (Paten et al., 2014; Sir�en et al.,

2010), but a practical solution is yet to be concluded.
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