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Abstract
With the rapid development of biotechnologies, many types of biological data includingmolecular networks are now
available. However, to obtain a more complete understanding of a biological system, the integration of molecular
networks with other data, such as molecular sequences, protein domains and gene expression profiles, is needed.
A key to the use of networks in biological studies is the definition of similarity among proteins over the networks.
Here, we review applications of similarity measures over networks with a special focus on the following four prob-
lems: (i) predicting protein functions, (ii) prioritizing genes related to a phenotype given a set of seed genes that
have been shown to be related to the phenotype, (iii) prioritizing genes related to a phenotype by integrating gene
expression profiles and networks and (iv) identification of false positives and false negatives from RNAi experiments.
Diffusion kernels are demonstrated to give superior performance in all these tasks, leading to the suggestion that
diffusion kernels should be the primary choice for a network similarity metric over other similarity measures such
as direct neighbors and shortest path distance.
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INTRODUCTION
In recent years, many large-scale functional inter-

action networks among genes and their protein prod-

ucts have been generated. These networks include

protein physical interactions for a number of species

[1–7], gene regulatory networks [8], genetic inter-

action networks [9–14] and co-expression networks

from a large number of gene expression studies using

either microarray technologies or next-generation

sequencing. Several protein interaction databases are

available, including MIPS [15], PID [16], BioGRID

[17] and STRING [18]. Moreover, species–specific

interaction networks, such as the Human

Protein Reference Database (HPRD) [19], the

Comprehensive Drosophila Interactions Database

(DroID) [20] and the Yeast Protein database (YPD)

[21], are also available.

Molecular networks can be represented mathem-

atically as networks or graphs with nodes indicating

molecules and edges indicating relationships between

molecules, such as protein physical interactions,

genetic interactions, gene regulation or gene co-

expression. For a given graph, many similarity or

dissimilarity measures between nodes have been
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defined. The geodesic/Dijkastra distance calculates

the length of the shortest path between any two

nodes [22]. Kondor and Lafferty [23] first introduced

the exponential kernel and Laplacian exponential

diffusion (LED) kernel over networks. Several vari-

ants of the exponential kernels and similarity meas-

ures have then been developed and carefully studied,

such as the regularized Laplacian kernel [24, 25], the

von Neumann diffusion kernel [26], the commute-

time kernel [27, 28] and the random-walk-with-

restart similarity matrix [29–31]. Fouss et al. [32]

reviewed nine forms of kernels and similarity matri-

ces on graphs and their applications to the collabora-

tive recommendation task. However, we are not

aware of reviews on the use of kernels or similarity

matrices for biological studies, in particular, for pro-

tein function prediction and prioritization of genes

related to complex phenotypes.

To gain a more complete understanding of a given

biological system, it is necessary to integrate different

networks with other data, such as molecular se-

quences, gene ontologies, gene expression profiles

and RNAi outcomes. Molecular networks have

been widely used to study a variety of problems in

basic biological science, biomedicine and public

health. In this review, we focus on the definition

of similarity among proteins over the network, as

exemplified by four problems. The first is the classical

problem of predicting protein function based on the

functions of known proteins and protein interaction

networks. Here, the assumption is that interacting

proteins are more likely to have similar functions.

The second problem involves prioritizing genes

related to a complex phenotype given a set of seed

genes that have been shown to be related to the

phenotype. The principle is that a gene close to

seed genes in the network is more likely to be related

to the phenotype. However, in the event that no

seed genes are available, the third case calls for inte-

grating gene expression profiles and networks to

prioritize genes related to a phenotype. More specif-

ically, if a gene and most of its neighbors are differ-

entially expressed, then that gene is most likely to be

related to the phenotype. The fourth and final ques-

tion is the identification of false positives and false

negatives in RNAi experiments. The commonality

that unites all these problems is based on how we

define similarity between nodes over the network.

We have found through previous studies that diffu-

sion kernels over networks can usually yield superior

results compared with the use of standard similarity

measures, such as direct neighbors and shortest path

distance. The objective of this review is to demon-

strate the power of diffusion kernels over networks

in solving various biological problems.

The organization of the article is as follows. We

first introduce the definitions of exponential diffu-

sion kernel and Laplacian diffusion kernels over net-

works of Kondor and Lafferty [23], as they form the

bases for all the following applications. We also in-

clude the definitions of several other diffusion kernels

and similarity measures over networks that have been

used for protein function prediction or gene priori-

tization for complex phenotypes. Then we review

the use of diffusion kernels and similarity measures to

solve the four aforementioned problems. We point

out that there is a large body of research literature

and review articles for each of the topics [33–36].

This review differs from others in that we focus on

the use of kernels and similarity measures of nodes

over networks to these problems.

DIFFUSION KERNELSANDNODE
SIMILARITYMEASURESOVER
NETWORKS
Many different forms of kernels and similarity meas-

ures between nodes over networks have been de-

veloped during the past decade. Kondor and

Lafferty [23] first developed the LED kernel that

can be conveniently introduced using random

walks over a network (Figure 1). Denote the

unweighted network as

G ¼ ðV,EÞ

where V ¼ fvi, i ¼ 1, 2, . . . , ng are nodes and E in-

dicates the set of edges. A graph can also be repre-

sented by an adjacency matrix A ¼ ðaijÞi, j¼1, 2, ... , n
where aij ¼ 1 means there is an edge connecting

nodes vi and vj and aij ¼ 0 otherwise. The 1s in

the ith row of A represent all nodes connecting to

node i. We assume that the graph of interest is con-

nected. It is easy to see that the adjacency matrix A
of an undirected graph is symmetric, that is aij ¼ aji:
The degree of the ith node ðdiÞ, which measures how

many other nodes are immediately connected to it,

can be found by taking the sum of the ith row (or

column) of the adjacent matrix A. Let D be the di-

agonal matrix with the ith diagonal term being di and

the off-diagonal terms being 0.

To define similarity between nodes, we con-

sider random walks over a network (Figure 1; also
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see [37]). Starting from a node x0, at each time

interval t ¼ 1, 2, . . . ,T, the walker chooses either

to move to one of the neighbors of node xt�1 ac-

cording to a small probability b, or to stay at the

current node xt�1 with probability 1� bdt�1 In

other words, the transition probability matrix of

this walker’s movement is

Q ¼ I � bL

where L ¼ D� E is the unnormalized graph

Laplacian [38]. Let pðtÞ ¼ ½p1ðtÞ, p2ðtÞ, . . . pnðtÞ�
0 be

the column probability vector where piðtÞ is the

probability that the walker is at node i at time t.
Then

pðtþ 1Þ ¼ QpðtÞ

Therefore, pðTÞ ¼ QTpð0Þ, where p(0) is the initial

probability distribution of finding the walker at the

nodes. As it is desirable to measure the similarity

between nodes without explicitly specifying T,

Kondor and Lafferty [23] proposed to break the

time of moving away from a node into an infinitesi-

mally small number and to increase the number of

steps to infinity

KLED ¼ lim
m!1

I �
bL
m

� �m

¼ expð�bLÞ ¼ 1� bLþ
ðbLÞ2

2!
�
ðbLÞ3

3!
þ . . .

ð1Þ

The matrix KLED is called a LED kernel.

A few properties of the LED kernel on graphs can

be listed here. First, as it is calculated based on the

entire network, it is a global measure of similarity

rather than a metric that uses immediate neighbors.

Second, for certain learning problems based on the

LED kernel, the parameter b can be fine-tuned

during training to achieve high-learning accuracy.

As mentioned in Kondor and Vert [39], shortest

path distance similarity is extremely sensitive to

random insertion/deletion of edges. On the other

hand, the LED kernel is less affected by such prob-

lems. Therefore, it is expected that the LED kernel

can be more useful in propagating information on a

network, as will be shown later from real applications

of diffusion kernels.

In addition to the LED kernel, Kondor and

Lafferty [23] also studied the exponential diffusion

kernel (ED) defined by

KLED ¼ expðbAÞ ¼
X1

k¼0

bkAk

k!
ð2Þ

Since the publication of [23], many other diffusion

kernels have been developed and studied.

Corresponding to the LED kernel defined in

Equation (1), Smola and Kondor [25] considered

the regularized Laplacian (L) kernel by replacing

the coefficient of (�L)k in Equation (1) to bk ,

thus increasing the contribution of higher power

of ^L.

KL ¼ ðI þ bLÞ�1
¼
X1

k¼0
bkð�LÞk ð3Þ

The matrix KL is defined for 0 < b < pðLÞ�1 with

pðLÞ being the largest eigenvalue in absolute value of

matrix L.
Similarly, by changing the coefficient of Ak in

Equation (2) to bk, the von Neumann diffusion

(VND) kernel, KVND, was defined previously [26,

40]

KVND ¼ ðI � bAÞ�1
¼
X1

k¼0
bkAk ð4Þ

The matrix KVND is defined for 0 < b < pðAÞ�1

with pðAÞ being the largest eigenvalue in absolute

value of matrix A.
By replacing the identify matrix in Equation (4)

with the diagonal degree matrix D, Fouss et al.
[41] defined the regularized commute time (RCT)

kernel

KRCT ¼ ðD� bAÞ�1
ð5Þ

By replacing the Laplacian matrix L in Equation (1)

5
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Figure 1: Random walk on a graph. At each step, the
walker will move to its neighbor nodes according to
the direct neighbors of the current node. For example,
if the current node is 0, the walker will randomly
move to one of its four neighbors with probability b
(<<1), and stay in current node with probability 1�4b.
If the current node is 4, the walker will move to one
of its neighbors with probability b (<<1), and stay in
current node with probability 1�2b.
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with the normalized Laplacian matrix D�1L, the heat

diffusion (HD) kernel [42] is defined as

KHD ¼ expð�bD�1LÞ ð6Þ

The random-walk-with-restart (RWR) similarity

[30, 31] matrix is defined by

KRWR ¼ ðD� bAÞ�1D ð7Þ

Note that KRWR is not a kernel as it is not

symmetric.

In this article, we review the applications of the

kernels and similarity matrices for protein function

prediction and gene prioritization for complex

phenotypes using molecular networks.

Application 1: predicting protein
functions based on functions of
known proteins and protein
interaction networks
Sequence comparison had been the dominant

method for protein function prediction before

high-throughput protein interaction data were avail-

able in the early 2000s [1–6]. Basically, if sequences

of two proteins are similar, they are more likely to

have similar functions. However, over two-thirds of

the proteins had no similarity with proteins having

known functions in the early 2000s, prompting the

search for alternative approaches to predict protein

functions. Along with the rapid development of

high-throughput protein interaction profiling tech-

nologies such as yeast-two-hybrid [2, 3] and affinity

profiling [4, 6, 43–45], protein function prediction

methods based on large-scale protein interaction data

sets have been under intensive study during the past

decade. For example, functions of a new protein may

be extrapolated by assigning the most frequently

annotated functions among its direct interaction

partners [46, 47]. However, these methods have

three major limitations. First, only direct interacting

proteins with known functions are considered, and

functions of high order interacting proteins are

ignored. Second, these methods do not take the de-

grees of the proteins into consideration. Third,

neighbor proteins with unknown functions are not

used in these methods. To overcome these limita-

tions, many methods have been developed to predict

protein functions using protein interaction net-

works based on the ideas of message propagation

over networks, and several excellent reviews are

now available [34–36]. Here, we concentrate on

the use of diffusion kernels over networks for protein

function prediction. As the use of diffusion kernels

over protein interaction networks for protein

function prediction is closely related to early

applications of Markov random field (MRF) for

the same purpose, we first introduce the MRF

model.

Consider a specific function of interest and a pro-

tein interaction network with nodes indicating pro-

teins and edges indicating interactions between

proteins. Denote the binary labeling of functional

annotations of all proteins as (X1,X2, . . . ,Xn,

Xnþ1, . . . ,Xnþm), where the first n nodes are un-

annotated and the last m nodes are annotated,

where Xi ¼ 1 indicates the ith protein having the

function and Xi ¼ 0 otherwise. Deng et al. [48] pro-

posed to model all the labels of the proteins for a

particular function of interest as a MRF with the

probability of a configuration for the annotation of

all the proteins proportional to

expð�UðXÞÞ ¼ expðaN1 þ b10N10 þ b11N11 þ b00N00Þ

where N1 is the number of proteins having the func-

tion of interest; N10, N11 and N00 are the numbers of

interacting protein pairs with exactly one, both or

none having the function of interest, respectively;

and a, b10, b11 and b00 are parameters. A similar

model was independently developed by Letovsky

and Kasif [49]. However, the two studies used dif-

ferent computational approaches for protein function

inference. In the following, we briefly describe the

method used in Deng et al. [48].

It was shown that

log
PðXi ¼ 1jX½�i�, yÞ

1� PðXi ¼ 1jX½�i�, yÞ

� �
¼ aþ bN0ðiÞ þ cN1ðiÞ

where b ¼ b10 � b00, c ¼ b11 � b10, N1(i) and N0(i)
are the numbers of direct neighbors of

protein i having the function and not having the

function, respectively, and X[-i]¼ (X1, . . . ,

Xi-1,Xiþ1, . . . ,Xnþm). A pseudo-likelihood approach

was used to estimate the parameters a, b and c based

on the annotated proteins. A Markov Chain Monte

Carlo (MCMC) method was developed by Deng et al.
[48] to estimate the posterior probabilities of Xi¼ 1

given the network and the labels of annotated proteins

(Xnþ 1, Xnþ 2, . . . , Xnþm). The approach was later

used to predict gene ontology (GO) functions [50]

and extended to include multiple networks [50]. It

should be noted that the model does not specify the

signs of b and c, and they are estimated based on the

annotations of proteins with known functions. Thus,
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the model does not assume that interacting proteins

are more likely to have similar functions. Thus, this

model can equally be applied to situations that inter-

acting proteins may tend to have different functions.

However, we observed that b< 0 and c> 0 for protein

physical interaction networks and function categories

containing �10 proteins [48]. The results indicate that

the assumption that interacting proteins are more

likely to have similar functions is generally true for

protein physical interaction network. For other net-

works such as genetic interaction networks, this as-

sumption may not hold. In general, we suggest to

check the relationships of the functions of interacting

proteins before the guilty-by-association principle is

applied.

Lanckriet et al. [51] took a different approach to

predict protein functions based on protein interaction

networks. Instead of using the MRF model as in

Deng et al. [48], a support vector machine (SVM)

with the LED kernel over the protein interaction net-

work was used to predict protein functions. The SVM

with LED kernel was shown to outperform MRF for

protein function prediction [51]. Combining the ideas

from Deng et al. [48] and Lanckriet et al. [51], Lee et al.
[52] subsequently proposed a LED kernel-based logis-

tic regression approach to better model the neighbor-

hood information to predict protein functions. Instead

of using the direct neighbors only, the probability of

the annotations of the proteins over the network is

modeled to be proportional to

expðaN1 þ b10D10 þ b11D11 þ b00D00Þ

where

N1 ¼
X

i
Iðxi ¼ 1Þ,

D11 ¼
X

i<j
KijIðxi þ xj ¼ 2Þ,

D10 ¼
X

i<j
KijIðxi þ xj ¼ 1Þ,

D00 ¼
X

i<j
KijIðxi þ xj ¼ 0Þ,

and Kij is defined in the LED kernel KLED. It was

shown that

log
PðXi ¼ 1jX½�i�, yÞ

1� PðXi ¼ 1jX½�i�, yÞ

� �
¼ aþ bK0ðiÞ þ cK1ðiÞ,

ð8Þ

where b ¼ b10 � b00, c ¼ b11 � b10,K0(i)¼
P

j6¼i

Kij (1�xj) and K1(i)¼
P

j6¼i Kij xj. The MRF

model of Deng et al. [48] is a special case of this

new model. This method was called kernel logistic

regression (KLR).

The performance of a protein function prediction

method is usually evaluated using k-fold cross-valid-

ation. For a given function of interest, a set of pro-

teins having the function of interest is chosen as the

gold standard positive sample and a set of proteins

not having the function is chosen as gold standard

negative sample. Both the positive and negative sam-

ples are divided into k subsamples of roughly equal

size. Each pair of positive and negative subsamples is

used as test samples, and the remaining subsamples

are used as training samples. Based on the trained

model using the training samples, the functions of

the test samples are predicted, and the predicted

functions of the proteins are compared with the

known annotations. Thus, receiver operating char-

acteristic curves (ROC) can be plotted, and the area

under the ROC curve (AUC) can be calculated. The

average AUC score can be used to evaluate the per-

formance of the function prediction method. Higher

AUC score indicates better performance of a predic-

tion method.

Extensive comparisons of the different protein

function prediction methods showed that the per-

formance of the LED kernel-based logistic regression

model of Lee etal. [52] is similar to that of SVM with

LED kernel as a similarity metric, and both methods

out-performed the original MRF method of Deng

et al. [48]. Figure 2 shows the AUC scores of the

different protein function prediction methods using

leave-one-out cross-validation for 34 functional

categories. This result indicates that the LED kernel

is effective in capturing extra information encoded in

the protein interaction network.

Several recent studies further reinforced results

from previous studies. Kourmpetis et al. [53] de-

veloped a Bayesian approach for protein function

prediction based on the model of Deng et al. [48].

In this approach, the parameters in the MRF model

are assumed to be random variables with some prior

distributions. Then Markov Chain Monte-Carlo

approaches were used to jointly estimate the poster-

ior distributions of the parameters and the annotation

of the proteins. The Bayesian approach simultan-

eously estimates the parameters and the functions

of the proteins, thereby overcoming the potential

problem in Deng et al. [48] that the parameters in

the MRF model were estimated using only the func-

tions of the known proteins based on a pseudo-like-

lihood approach, which may lead to potentially

inaccurate or biased estimation of the parameters.

The results in Kourmpetis et al. [53] indicate that

Protein interaction networks 689



the Bayesian approach performed better than the

original method of Deng et al. [48], but not as well

as the KLR approach of Lee et al. [51]. Ching et al.
[54] compared the performance of protein function

prediction based on protein interaction networks

using SVM with different kernels, including the

LED kernel defined in Equation (1) and the

Laplacian kernel defined in Equation (3). It was

shown that the performance of the LED kernel is

similar to that of the Laplacian kernel. Mondal and

Hu [55] used KLR to predict protein localization

and showed that KLR performs much better than

classification algorithms based on protein features,

such as amino acid content, hydrophobicity, side-

chain mass and domain composition.

The performance of the protein function predic-

tion methods depends on the interaction networks

used. For example, Lee et al. [52] showed that RNA

co-expression network is useful for the prediction of

functions related to transcription to RNA, but not

useful for other functional categories. This is reason-

able as RNA expression profiles contain transcription

information from DNA to RNA and do not contain

translation information from RNA to proteins.

Mondal and Hu [55] studied the performance of

KLR for predicting protein localizations using four

networks: protein physical interactions (PPPI), gen-

etic interactions (GPPI), mixture of both physical

and genetic interactions (MPPI) and co-expression

network (COEXP). For this particular application,

KLR coupled with the physical interaction performs

better than using other networks. This study also

showed that mixing networks into one network is

not recommended for protein localization prediction

in general. Even for one type of networks, e.g. phys-

ical interactions, the percentage of true interactions

within the observed protein interaction network

and the numbers of proteins and interactions that

the network contains can all significantly affect the

performance of the prediction methods. In fact, the

performance of the prediction methods decreases as

the noise level of the observed protein interaction

increases and the size of the network decreases [52].

Integrative approaches for protein function

prediction using protein interaction networks, gene

expression profiles, sequence similarity and phylo-

genetic information are well-studied topics.

Because this review focuses on the applications of

diffusion kernels over networks in computational

biology, we refer readers to the reviews in [33–36]

for other works on integrative approaches for protein

function prediction.

Application 2: prioritizing genes related
to complex phenotypes
A typical problem in biological and biomedical stu-

dies involves the identification of genes related to

certain phenotypes, such as disease status and certain

quantitative traits including height, blood pressure

and cholesterol level. Traditionally, linkage and as-

sociation studies are powerful tools to identify loci

associated with the phenotypes. These studies usually

found large genomic regions containing tens to hun-

dreds of candidate genes [56, 57]. Therefore, follow-

up studies to identify the true underlying genes

related to the phenotype of interest are needed. A

good prioritization method to rank the candidate

genes according to their potential impact on the

phenotype will help plan follow-up studies for the

identification of true underlying genes. However,

the number of genes known to be related to a

phenotype is usually small, and many other related

genes have not yet been identified. Thus, the priori-

tization of genes related to a phenotype can be re-

garded as a one-class-learning problem with only

positive training data [58]. Here, we focus on a suc-

cessful application of random walks on networks by

Kohler etal. [59] who proposed to prioritize genes by

integrating protein interaction networks and seed

genes known to be related to the phenotype.

Figure 2: The areas under the receiver operating
characteristic curves (AUC) for the prediction of 34
functions using Markov random field (MRF), support
vector machine (SVM) and kernel logistic regression
(KLR) based on the LED kernel; reprinted from Lee
et al. [52] with permission. The 34 function categories
are given in Lee et al. [52].
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Kohler et al. [59] reasoned that genes whose mu-

tations render the host susceptible to a phenotype d
should be close to each other within the protein

interaction network. Therefore, they first mapped

all the candidate genes to the protein interaction

network, and then defined a similarity measure be-

tween proteins in the network using the LED kernel.

Suppose a set of genes [seeds denoted as GðdÞ] is

known to be related to phenotype d. Each candidate

gene j is scored using the formula

scoreð jÞ ¼
X

i2GðdÞ
Sij

where Sij is the similarity score between protein i
and protein j in the protein interaction network.

The method is based on the idea that the closer a

gene j is to the seed genes, the more likely that gene

j is related to the phenotype. Note that this score is

the same as K1ðjÞ in Equation (8). As the set of genes

not related to the phenotype is not clearly known,

the values of K0ðjÞ were not used for ranking the

candidate genes.

Kohler et al. [59] also used a random-walk-

with-restart (RWR) approach to rank candidate

genes. Let pt be the probability vector for the

walker to be at different nodes at time t and

p0 ¼ ði1, i2, . . . , inÞ
0=jGðdÞj be the initial probability

vector, where ik ¼ 1 if gene k is related to pheno-

type d and 0 otherwise, and jG(d)j is the total

number of genes in gene set G(d). Consider the fol-

lowing iterative equation

ptþ1 ¼ bAD�1pt þ ð1� bÞp0, ð9Þ

that is, at a certain time t and a node xt�1, with

probability b the walker moves to one of the neigh-

bors of xt�1with equal probability and with probabil-

ity 1�b the walker restarts at the initial probability

distribution. The steady-state probability of finding

the walker over the network exists and is denoted

as p1. It can be shown that p1 ¼ ð1� bÞKRWRp0,
where KRWR is the RWR similarity matrix defined

in Equation (7). Finally, the genes are ranked accord-

ing to the values of the components of p1. The

authors also compared the aforementioned methods

with gene prioritization methods based on direct

neighbors or shortest path distance. For direct neigh-

bors, a gene is predicted to be related to the pheno-

type if it interacts with one of the seed genes. For

shortest path distance, the genes are ranked based on

the shortest path distance to any of the seed genes.

The leave-one-out cross-validation is usually used

to evaluate the performance of the different methods

for gene prioritization related to a phenotype. For a

given phenotype, each gene related to the pheno-

type, referred as the target gene, is mixed with a set

of genes not related to the phenotype. These genes

can either be chosen as those closest to the target

gene according to their genomic locations or ran-

domly chosen from all the genes. A gene prioritiza-

tion method is used to rank all the genes. Several

different criteria have been used in the literature to

evaluate the performance of the prioritization

method. The first criterion is the average rank of

all the target genes. The second criterion is the frac-

tion of target genes ranked above a certain percent-

age of all the genes, e.g. top 10 or 20%. The third

criterion is through the ROC analysis and the AUC

score as in Application 1. In this application, a gene is

predicted as a phenotype-related gene if its rank is

above a threshold. By changing the threshold, the

ROC curve can be plotted, and the AUC score

can be calculated.

Using the evaluation methods described earlier in

the text, Kohler et al. [59] showed that the AUC

scores based on the LED kernel, RWR, shortest

path distance and directed neighbors were 90.8,

91.2, 84.1 and 73.2 based on 110 disease-gene

families studied in the article, respectively, indicating

superior performance of the LED kernel and RWR

over the direct neighbor and shortest path

approaches, whereas the performances with the

LED kernel and RWR were similar.

The network-based gene prioritization methods

developed in Kohler et al. [59] can only be applied

to phenotypes with known seed genes. When seed

genes are not available for a phenotype, the relation-

ship between genes and other phenotypes closely

related to the phenotype of interest can be used. In

recent years, databases documenting genes for many

phenotypes such as OMIM [19] and the Catalog of

Published Genome-Wide Association Studies [60] are

now available. Intuitively, closely related phenotypes

should result from abnormalities of genes involved in

similar functional pathways. This idea was first

explored by Wu et al. [61] who prioritized genes for

phenotypes with no seed genes and several extensions

are now available. Here, we review the work of

Zhang et al. [62] who made efficient use of the LED

kernel to prioritize genes related to phenotypes.

Let ydd0 be the similarity between phenotypes d
and d’, and yd ¼ ðydd1

, ydd2
, . . . , yddmÞ

0, where m is

the total number of phenotypes of interest. Let

GðdÞ be the set of all genes known to be related to
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phenotype d. The association score between gene g
and phenotype d is defined by

xgd ¼
X

g02GðdÞ
Sgg0

i.e. the similarity between gene g and all known genes

for phenotype d. Let xg ¼ ðxgd1
, xgd2

, . . . , xgdmÞ
0.

Suppose that there are p candidate genes

g1, g2, . . . , gp: Define XGðdÞ ¼ ðe, xg1
, xg2

, � � � , xgpÞ,
with all the elements of e being 1. Zhang et al. [62]

modeled phenotype similarities by the similarity be-

tween the candidate genes and the phenotypes using

linear model

yd ¼ XGðdÞbþ " ð9Þ

where " is the residual vector " ¼ ð"1, "2, . . . , "mÞ
0

modeling random noise and b is a pþ 1 dimensional

vector of coefficients.

To evaluate whether the set of candidate genes is

associated with the phenotype of interest, we test the

hypothesis b ¼ 0. Zhang et al. [62] used Bayes Factor

(BF) [63] as a scoring function to test this hypothesis.

Several similarity measures between genes within the

networks, including the LED kernel, direct neigh-

bors and shortest path distance, were studied, and the

LED kernel was shown to perform the best.

Therefore, Zhang et al. [62] used the LED kernel

in their studies. The model can be easily extended

to multiple networks. This result again indicated the

usefulness of the LED kernel in summarizing simi-

larity information over networks.

Zhang et al. [62] also studied the performance of

their method based on different protein interaction

networks: HPRD, BioGRID, BIND, IntAct and

MINT, with HPRD containing the largest numbers

of proteins (9470), protein interactions (36 634) and

seed genes (1440). As expected, the performance of

their method based on HPRD is better than

the performance based on other protein interaction

networks because of its high coverage as well as

high accuracy of the HPRD protein interaction

network. The authors also integrated the different net-

works and showed that the performance is signifi-

cantly increased by integrating multiple networks.

Application 3: prioritizing genes related
to phenotypes by integrating expression
profiles and protein interaction networks
With the development of high-throughput technol-

ogies, such as microarray and next-generation

sequencing, researchers can obtain the expression

levels of all genes across many disease/treatment

conditions in a single study. Typically, genes whose

expression level varies with disease/treatment condi-

tions can be identified on the gene-by-gene basis.

However, such individual gene-based methods are

sensitive to noise, which is typical in high-through-

put experiments. Thus, the identification of truly

differentially expressed genes related to certain

phenotypes by integrating gene expression profiles

and networks is gaining increasing attention and sev-

eral methods have been developed [64–66]. We

focus here on one method called prioritizing genes

by combining gene expression and protein inter-

action data (CGI) reported in Ma et al. [64] that

effectively used LED kernel for integrating gene

expression profiles and protein interaction networks.

Intuitively, if the expression levels of a gene and its

neighbors are all associated with the phenotype, then

the gene is most likely to be related to the pheno-

type. For quantitative phenotypes, the method can

be briefly described as follows.

First, let ri be the correlation between the expres-

sion profile of the ith gene and the phenotype mea-

sured by either the Pearson or the Spearman

correlation coefficients. Ma et al. [64] also suggested

using the Fisher’s transformation

Oi ¼
1

2
ln

1þ ri
1� ri

¼ arctan hðrÞ

so that Oi is approximately normally distributed.

Second, several similarity measures between genes

based on the network were studied in Ma et al.
[64], including (i) direct neighbor where the similar-

ity matrix S is the same as the adjacency matrix A;

(ii) shortest path distance where Sij ¼ 1=ð1þ dijÞ and

dij is the shortest path distance between genes i and j;
and (iii) the LED kernel KLED. Third, they defined

an integrated measure Ri by integrating the gene

expression profiles and the network to rank genes

associated with the phenotype

Ri ¼
Oi þ l

P
k 6¼i SikjOkj

1þ l
P

k 6¼i Sik
, for i ¼ 1, 2, � � � , n,

where l is a constant.

Another method of ranking genes related to a

phenotype integrating gene expression profiles and

a network is GeneRank [65] that used the ideas from

Google PageRank for webpage ranking. The algo-

rithm is essentially the same as in Equation (9) except

that the ith component of the initial probability dis-

tribution p0 is set to equal p0
i ¼ jOij=

P
j jOjj.
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To validate the methods, Ma et al. [64] used the

expression level of a gene, termed target gene, as a

special phenotype and prioritized other genes using

the aforementioned approaches. For each target

gene, a P-value is defined by testing whether genes

within the same gene ontology functional category

as the target gene are ranked higher than genes not

within the same category as the target gene.

Considering all the genes, the histogram of all the

P-values can be obtained. Intuitively, if a ranking

method is meaningful, the P-values will be close to

0. Therefore, they used the area under the cumula-

tive distribution function (AUCD) of the resulting

P-values as a metric to summarize the overall per-

formance of a ranking method:

AUCD ¼
Z 1

0

GðpÞdp

where G(p) is the cumulative distribution function

of the P-values. The range of AUCD is between 0

and 1. If a ranking method is not meaningful, the

AUCD is <0.5. A higher AUCD value indicates

better ranking method.

Three different large-scale expression datasets, cell

cycle [67, 68], knockout [69] and stress response [70],

were used to evaluate and compare different ranking

methods. Protein interaction data from MIPS [71]

was used, as it was considered to be the most reliable

at the time of the study. Figure 3 shows the AUCD
values of CGI using direct neighbors, LED kernel

and GeneRank [65], for all the three datasets. As it

turned out, CGI with the LED kernel outperforms

the direct neighbor and the shortest path distance

similarity metrics, suggesting the advantage of diffu-

sion kernel in measuring similarity between nodes in

a network. CGI with the LED kernel was also shown

to outperform GeneRank [65].

Recently, Winter et al. [66] studied several com-

putational methods to select biomarkers prognostic

of survival time of pancreatic tumor patients. The

methods include those based on individual genes

such as (i) fold change defined by the ratio of

mean expression level in cases over that in controls,

(ii) the t-statistic comparing the mean expression

level in cases versus that in controls, (iii) Spearman

correlation between the expression levels and the

survival time and (iv) a network approach similar as

GeneRank [65]. The authors used three networks:

the gene regulatory network in TRANFAC specify-

ing the regulatory relationships of the transcription

factors and their target genes, protein interaction

network from HPRD and gene co-expression net-

work. For each method, a given number of 5–10

genes are selected. SVM was used to train a model

to predict patient survival using a set of 30 patients.

The trained model was further used to predict the

survival of 412 independent pancreatic cancer pa-

tients as testing samples. The prediction accuracy

was defined as the fraction of correct predictions

among the testing samples. It was shown that the

accuracy of GeneRank using the TRANSFAC net-

work is the highest indicating the usefulness of

TRANSFAC network for selecting biomarkers.

Nitsch et al. [72] compared several gene prioritiza-

tion methods, including kernel ridge regression [72],

heat kernel diffusion [42] and Arnoldi Diffusion [73],

integrating gene expression profiles and protein

interaction networks. Let Y be a vector with the

ith component being a measure of differential ex-

pression values of the ith gene. For a given (semi-)

positive definite kernel Kover a network, the kernel

ridge regression approach tries to predict Y by KA
where A is a column vector with regularization.

That is, for a given parameter l, we find the min-

imum of

min
A
jjY � KAjj22 þ

l
2
A:

Let A� ¼ ðA�i Þ
0

i¼1, ..., n be the solution to the afore-

mentioned minimization problem. For a new point

x, its updated value is given by ŷ ¼
P
i
A�i Kðxi, xÞ.

The updated values of the genes are used for ranking.

Figure 3: The area under the cummulative distribu-
tion (AUCD) of the P-values of gene prioritization
methods: CGI with direct neighbor (CGIþDirect
Neighbor), GeneRank and CGI with the LED diffusion
kernel (CGIþDiff Kernel) based on three gene expres-
sion data sets: cell cycle [67, 68], stress response [70]
and gene knockout [69]. Higher AUCD value indicates
better performance of the prioritization method. CGI
with diffusion kernel outperforms CGI with direct
neighbor and GeneRank [65].
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The heat kernel diffusion approach ranks genes based

on the component values of KHDp0, where KHD is

the head kernel diffusion matrix defined in Equation

(6) and p0 is the initial preferential vector for the

genes and its ith component is proportional to the

absolute value of Yi. The detail of Arnoldi diffusion

approach is complicated and is omitted here. Nitsch

et al. [72] also considered three different normaliza-

tion methods for gene expression data, MAS5, RMA

and GCRMA and different statistical methods to

summarize the difference of gene expression be-

tween two conditions for each gene. A total of 40

mouse knockout gene expression data were used as

testing examples to evaluate the different methods. It

was shown that the combination of t-statistics to

evaluate the importance of each gene, together

with the heat diffusion kernel defined in Equation

(6) to integrate network data, gives the best perform-

ance. However, the relative performance of the heat

diffusion kernel approach and CGI was not studied.

Overall, these studies showed the importance of

using diffusion kernels to prioritize genes related to

a phenotype by integrating gene expression profiles

and network data.

The authors also considered different mouse inter-

action networks including versions 7.1 and 8.2 of

STRING [18] and BioGRID (version 2.0.61) [17]

with version 8.2 of STRING having the highest

number of proteins and highest number of inter-

actions. It was shown that the performance of the

heat diffusion kernel-based approach using version

8.2 of STRING is the best because of its high cover-

age of the proteins and the protein interactions.

Application 4: identification of false
positives and false negatives in RNAi
experiments
Functions of a gene can be studied by inhibiting its

expression, for example, during messenger RNA

translation. In the past few years, genome-wide

RNA interference (RNAi) screenings have been

conducted in several species, such as worm [74], fly

[75, 76] and mammals [77]. As a high-throughput

technology, RNAi results may contain many false

positives (FP) and false negatives (FN). For example,

a target gene may not be effectively knocked down

so that no clear phenotype is observed leading to a

false negative. On the other hand, the designed small

interfering RNA (siRNA) may actually target hun-

dreds of genes by the tolerance of mismatches and

gaps during base pairing with target genes, leading to

a phenotype that may not actually come from the

desired target genes. This is called off-target effects

and is believed to be the main reason for FPs. Thus,

computational identification of FPs and FNs can

greatly facilitate the efforts of investigators in eluci-

dating gene functions using RNAi.

Guest et al. [78] used protein interaction network

to guide RNAi screening of cell cycle related genes

in Drosophila. Using a set of potential cell cycle-

related genes identified through previous RNAi ex-

periments and genes annotated as cell cycle related in

gene ontology as seed genes, the authors identified

1843 other genes directly interacting with the seed

genes. These genes were experimentally shown

through RNAi experiments to be significantly en-

riched for cell cycle-related genes thus effectively

filtered out FNs from previous RNAi experiments.

The method is based on the idea that genes in the

same pathway tend to be targeted by the same RNA.

Several groups developed computational methods to

integrate RNAi experimental results with protein

interaction networks to efficiently identify FPs and

FNs [79–82]. In RNAi experiments, a score is usu-

ally associated with each RNAi hit with higher score,

indicating more important roles of the hit to the

pathway or function of interest. However, a thresh-

old separating pathway related hits from noise is hard

to be determined based on the scores from the RNAi

experiments. Realizing that pathway-related hits

tend to cluster together in protein interaction net-

works, Kaplow et al. [80] used protein interaction

networks to set a reasonable threshold for the

RNAi scores to separate true RNAi hits from

noise. For the k top-scored RNAi hits, the hypoth-

esis is that they are highly connected in the network

than random. The corresponding P-value, pk, is the

probability that the k genes have at least the observed

number of interactions for random networks having

the same degree distribution as the observed net-

work. The pk as a function of kusually first decreases

and then increases to form a V shape. The global

minimum of this function is suggested as a threshold

for the RNAi scores to separate pathway-related

genes from noise.

Wang et al. [82] proposed to integrate RNAi

screening results with protein interaction networks

to identify putative FPs and FNs. The basic idea is

that inhibition of genes in the same functional path-

way is likely to lead to similar phenotypes. As inter-

acting proteins, in contrast to other protein pairs, are

more likely to be in the same functional pathway, it
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is reasonable to expect that interacting pairs in the

protein interaction network would have similar

RNAi phenotype. Consistent with this notion,

Wang et al. [82] first demonstrated that RNAi hits

are more likely to interact with each other than

random gene pairs using 24 published genome-

wide RNAi screens in Drosophila and protein inter-

action data from STRING [18], the largest Drosophila
interaction network at the time of the study in 2009.

To efficiently integrate RNAi screening results

with protein interaction data, Wang etal. [82] studied

how to best use information encoded in the network

by different similarity measures among the proteins,

including direct neighbor, shortest path distance and

the LED kernel. For each gene j, a network RNAi

phenotype (NePhe) score indicating the potential for

the gene to be a real RNAi hit is given by

NePhe1j ¼
X

i 6¼j
SijIi

NePhe2j ¼

P
i 6¼j SijIiP
i 6¼j Sij

NePhe3j ¼ a
X

i 6¼j
SijIi � b

X
i 6¼j

Sijð1� IiÞ

where Ii ¼ 1 if protein i is observed as a RNAi hit

and 0 otherwise. The first score, NePhe1, predicts the

outcome for protein j based on the similarity scores

of protein j with the observed hits. The second score,

NePhe2, is similar to NePhe1 except it takes the

weighted average hit values of the neighbors

weighted by the similarity between protein j and

other proteins. The third score, NePhe3, explicitly

models the different contributions of hits (Ii ¼ 1)

and non-hits (Ii ¼ 0). The parameters a and b can

be estimated by the linear regression model based on

the RNAi results

Ij ¼ gþ a
X

i 6¼j
SijIi � b

X
i 6¼j

Sijð1� IiÞ:

The authors used the following procedures to

evaluate whether a NePhe scoring function can be

used to identify FNs: (i) put each RNAi hit together

with the non-hits as if it is a non-hit (simulated FN),

(ii) calculate the NePhe scores for all the non-hits

including the simulated FN, (iii) rank all the non-

hits in descending order according to the NePhe

scores and (iv) calculate the relative rank (RR) of

the simulated FN. The procedures were repeated

for every RNAi hit, and the average RR for all the

hits was finally calculated. If the average RR for the

hits is high, the NePhe score function will be able to

identify the FNs in RNAi experiments. Similar

procedures were used to evaluate whether a NePhe

scoring function can be used to identify FPs by chan-

ging the roles of hits and non-hits. If the average RR

for the non-hits is low, the NePhe score function will

be able to identify the FPs in RNAi experiments. The

authors used 24 RNAi experiments and the protein

interaction network in STRING [18] to show that

the NePhe3 scoring function combined with the

LED kernel has the highest average RR for the hits

and the lowest average RR for the non-hits. Thus,

NePhe3 combined with the LED kernel can best

identify FPs and FNs in RNAi experiments.

Realizing that observed RNAi hits can be noisy,

DasGupta et al. [83] carried out follow-up RNAi ex-

periments for the hedgehog (Hh) and Wnt signaling

pathways to filter out potential FPs in previous studies.

First, Wang et al. [82] showed that the reproducibility

rate of the hits correlates strongly with the NePhe

score indicating the usefulness of the NePhe score

to filter out false positives. Second, it was shown

that the NePhe scores of some known regulators of

Hh/Wnt pathways are high, although these regulators

failed to be confirmed by experimental validation.

This observation indicates that the NePhe score func-

tion can be an even more powerful tool to filter out

FPs than experimental validations. Third, NePhe

scores correlate with sequence-based off-target effect

prediction for FPs, although the NePhe score does

not use any sequence information, indicating the use-

fulness of NePhe scoring function for the identifica-

tion of FPs. This study clearly showed the usefulness

of using protein interaction networks for the identi-

fication of FPs and FNs in RNAi experiments.

DISCUSSIONAND CONCLUSIONS
Many biological relationships, such as physical inter-

actions, genetic interactions, gene regulation and co-

expression can be represented as networks. Efficient

integration of network data with experimental results

for individual genes such as protein functions, genes

related to complex phenotypes, differential expres-

sion and RNAi hits, can help us obtain a more com-

plete understanding of the biological system. One key

issue in integrating network data with experimental

results for individual genes is the definition of similar-

ity between genes or their protein products within the

networks. Many different ways of defining similarities

of nodes over networks are available including direct

neighbors, shortest path distance and various diffusion

kernels. For a given similarity measure, various
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integration methods for network data and experimen-

tal results for individual genes can be used to efficiently

answer biological questions, such as protein function

prediction, gene prioritization based on seed genes

and/or gene expression profiles for individuals of dif-

ferent phenotypes and identification of FPs and FNs in

RNAi experiments. The results from several research

groups clearly showed the advantages of using various

diffusion kernels over other similarity measures such as

direct neighbors and shortest path distance for data

integration. On the other hand, a limited number of

studies showed that different versions of diffusion ker-

nels, in particular, the LED kernel [23], heat diffusion

kernel [42], random-walk-with-restart (RWR) simi-

larity matrix [30, 31], seem to perform similarly. More

studies are needed to compare the performance of

different diffusion kernels to solve various biological

problems.

In this review, we compared the performance of

different similarity measures over a network. In prac-

tice, the choice of the network is also important. The

performance of the integration methods increases

with the fraction of true interactions (reliability) in

the network as well as its coverage of the proteins

and their interactions. Our experiences showed that

protein interaction networks in STRING [18] and

HPRD [19] have a good balance between reliability

and coverage. Thus, we suggest the use those net-

works in integrative studies. Further, networks from

the various databases complement each other, and

efficient combination of the various networks can

further improve the performance of the integration

methods as shown in Zhang et al. [62]. In addition,

the choices of functional annotation of known genes,

seed genes for phenotypes, gene expression profiles

and the RNAi hits are all essential for optimally sol-

ving the corresponding problems we review here.

In conclusion, integration of molecular networks

with experimental results of individual genes is a

powerful approach for a more complete understand-

ing of biological systems. For integration methods

involving similarities among the molecules in net-

works, similarities defined based on various diffusion

kernels and random walks have been shown to out-

perform other similarity measures such as direct

neighbors and shortest path distance leading to the

suggestion of using diffusion kernels in such studies.

However, the relative performances of the integra-

tion methods using various diffusion kernels such as

the Laplacian, Laplacian exponential and heat diffu-

sion kernels and the random-walk-with-restart

similarity matrix are not clear and more studies are

needed to see their power and limitations.

Key Points

� Integratingmolecular networks and intrinsic properties of mol-
ecules significantly increases the understanding of biological
systems.

� Integrating molecular networks with annotated proteins, genes
related to complex phenotypes and RNAi hits allows more ac-
curatepredictions ofprotein functions, genesrelated to complex
phenotypes and RNA targets.

� Diffusion kernels over networks have been consistently shown
to have superior performance compared with other similarity
measures over networks such as direct neighbors and shortest
path distance.

� Explorations of diffusion kernels over networks to other biolo-
gical problems promise to provide more in depth knowledge
about the biological processes of interest.
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