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Abstract
Gene expression profiling has been extensively conducted in cancer research. The analysis of multiple independent
cancer gene expression datasets may provide additional information and complement single-dataset analysis. In this
study, we conduct multi-dataset analysis and are interested in evaluating the similarity of cancer-associated genes
identified from different datasets. The first objective of this study is to briefly review some statistical methods that
can be used for such evaluation. Both marginal analysis and joint analysis methods are reviewed. The second
objective is to apply those methods to 26 Gene Expression Omnibus (GEO) datasets on five types of cancers. Our
analysis suggests that for the same cancer, the marker identification results may vary significantly across datasets,
and different datasets share few common genes. In addition, datasets on different cancers share few common
genes. The shared genetic basis of datasets on the same or different cancers, which has been suggested in the
literature, is not observed in the analysis of GEO data.
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INTRODUCTION
Cancer is a disease of the genome. Gene expression

profiling can measure mRNA levels and has funda-

mentally changed the paradigm of cancer research.

Although it is one of the relatively old techniques, it

is still routinely used in cancer research nowadays,

partly because of the maturity of this technique and

partly because of the direct connection between

mRNAs and proteins. In most existing studies, a

single dataset has been analyzed. In this study, we

consider the analysis of multiple cancer gene expres-

sion datasets. Our main interest is in the selection

of cancer-associated markers. Multi-dataset gene

expression studies have been conducted in the

literature. Such studies may serve the following

purposes. First, consider the scenario where the

same cancer outcome/phenotype has been measured

in multiple datasets. Examples include [1, 2] and

many others. In cancer gene expression studies, the

sample sizes are usually small, which may lead to

unsatisfactory data analysis results, such as low repro-

ducibility of identified markers. Multi-dataset

analysis can provide an effective way to increase

sample size and hence improve analysis results. The

similarity (in terms of cancer-associated markers)

across multiple datasets is the basis of such analysis.

Second, consider the scenario where multiple data-

sets measure outcomes/phenotypes on different
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cancers or different subtypes of the same cancer.

Examples may include [3, 4] and many others.

Despite great heterogeneity, cancers can be ‘similar’

or ‘interconnected’. For example, it has been shown

that breast cancer and ovarian cancer share multiple

susceptibility genes, including BRCA1, BRCA2 and

HER2. In addition, cell cycle, apoptosis and DNA

repair genes are involved in the development and

progression of multiple cancers. More specific

examples are provided in [4] and references therein.

Comparing the susceptibility genes may facilitate the

investigation of similarity and dissimilarity among

different cancers and downstream analysis, such as

the construction of human disease network [5].

Multi-dataset analysis includes meta-analysis and

integrative analysis [2, 6]. In classic meta-analysis,

multiple datasets are analyzed separately, and then

summary statistics, such as the lists of identified

genes, P-values and effective sizes, are pooled

across datasets. In integrative analysis, the raw data

of multiple datasets are analyzed simultaneously. In

several recent studies [1, 2, 4], it has been argued that

integrative analysis may be more informative.

However, as integrative analysis methods are not as

mature and well-accepted, in this study we focus on

meta-analysis.

In this study, we consider the meta-analysis of

multiple cancer gene expression datasets. It is noted

that the reviewed techniques and empirical observa-

tions may also be applicable to other types of genetic,

genomic, epigenetic and proteomic measurements.

Because of limitations on data availability, we focus

on etiology studies comparing cancer and normal

samples and investigating the risk of cancers. The

analysis of etiology studies may have multiple object-

ives. Here we focus on the identification of cancer-

associated markers. In particular, this study has two

main objectives. The first is to provide a brief review

of some statistical methods that can be used to quan-

tify the similarity of the sets of cancer markers (gen-

etic basis) of multiple datasets. Here both marginal

and joint analysis methods are discussed. The second

objective is to apply these methods and conduct ana-

lysis of cancer gene expression datasets downloaded

from Gene Expression Omnibus (GEO) [7]. Besides

serving as the test bed of the reviewed methods, this

data analysis may also serve the following important

purposes. First, in the literature, multiple studies

(such as [1]) have conducted meta-analysis or inte-

grative analysis of multiple cancer gene expression

datasets that measure the same outcome/phenotype,

under the assumption that the genetic basis of these

datasets is the same. Our analysis will provide insights

into whether such an assumption is likely to be true.

Second, some epidemiologic and genetic studies

have suggested that certain cancers, for example,

breast cancer and ovarian cancer, are ‘related’ by

sharing common susceptibility genes [4]. Our ana-

lysis can show whether such similarity can be

observed in the analysis of GEO gene expression

datasets.

METHODS
Consider the meta-analysis of M independent

datasets. With a slight abuse of notation, in a single

dataset, denote Y 2 f0,1g as the binary cancer status,

for example, presence or absence of cancer. Denote

X as the length-d vector of gene expressions.

Assume n iid observations fðYi,XiÞ,i ¼ 1, . . . ,ng.
Denote Xi,j as the jth component of Xi. Many

other factors, such as clinical risk factors and envir-

onmental exposures, may also contribute to cancer

development. With GEO data, such variables are not

available, and we focus on analyzing gene expres-

sions. When needed, adjusting for clinical and envir-

onmental risk factors can follow the methods

developed in [8] and references therein. As described

in [9], in individual marker-based analysis of gene

expression data, where genes are the functional

units, there are two main analysis paradigms. The

first is to analyze each gene separately (that is, the

analysis of marginal effects) and then compare across

genes. The second is to simultaneously analyze the

effects of all genes (joint effects) in a single model.

Analysis of marginal effects
For gene jð¼ 1, . . . ,dÞ, assume the logistic regression

model, where log it ðPðYi ¼ 1jXi,jÞÞ ¼ aj þ bjXi,j.

Here aj is the intercept, and bj is the regression co-

efficient. With n iid observations, the likelihood

function and maximum likelihood estimate (MLE)

can be obtained. Denote bj as the MLE of bj and pj
as its P-value. With the d estimates and P-values, the

similarity of genetic basis (sets of identified cancer

markers) of multiple datasets can be evaluated as

follows.

� [Approach 1] For each dataset, we first rank the d
P-values from the smallest to the largest. The top

ranked, for example, top 100 as in our numerical

study, is selected. We then examine the overlap of
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top-ranked genes across datasets. Under Approach

1, we also consider two alternative ranking statis-

tics. The first is the fold change, which is closely

related to the difference of mean under the log

scale [10]. This approach accordingly is termed as

[Approach 1-fold]. The second ranking statistic is

the P-value from the two-sample t-test, and this

approach is termed as [Approach 1 t-test].

� [Approach 2] With the first approach, it is

reinforced that all datasets identify the same

number of genes. However, it is possible that in

a dataset even the gene with the smallest P-value is

not important. To tackle this problem,

consider the false discovery rate (FDR) approach

[11]. Denote a as the target FDR. The

Benjamini–Hochberg threshold is defined as

TBH ¼ maxfpðjÞ : pðjÞ � a j
d ,0 � j � dg, where

{pðjÞ (j ¼ 1, . . . d} are the ordered P-values (from

the smallest to the largest). Genes with P-values

smaller than TBH are identified as important. We

apply this approach to each dataset and then

examine the overlaps of important genes across

datasets. In our numerical study, we consider

two target FDR values, 0.1 and 0.01. As an alter-

native, we also consider [Approach 2 t-test], where

for each gene the P-value is from a two-sample

t-test.

� [Approach 3] A limitation of the above two

approaches is that they only examine whether a

gene is identified in multiple datasets. The signs of

the effects are not accounted for. A gene can be

positively associated with response in one dataset

but negatively associated in another. To overcome

this limitation, we consider the genetic variation

score (GVS) approach [12]. In a specific dataset,

for gene jð¼ 1, . . . ,dÞ, its GVS score is defined

as GVSj ¼ signðb̂jÞlogðpjÞ. Thus, it combines the

P-value (actual value as opposed to a simple rank),

which represents the strength of association, and

the sign of the estimated regression coeffi-

cient, which measures the ‘direction’ of associ-

ation. For each dataset, the genetic variation

profile (GVP) based on GVS is defined as

GVP ¼ ðGVS1, . . . ,GVSdÞ
T, which is a vector of

length d. With multiple datasets, the correlations

between the GVPs can be computed, quantifying

the similarity of gene effects. Here we consider

three different correlations, namely, Pearson,

Kendall and Spearman. The last two correlations

are based on rank and can be more robust. Once

correlations are computed, hierarchical clustering

of datasets can be conducted using the flashclust
function in R. The clustering results can reveal

whether two datasets have similar genetic profiles.

In the above analysis, the logistic regression model

is adopted, which is the default for data with

binary responses. In the recent literature, model-

free approaches have been developed [8]. Although

they may possess the robustness property, they suffer

from high computational cost and lack of stability

and have not been extensively adopted. There are

many other ways of quantifying similarity. For ex-

ample, multiple statistics have been described in [10]

for ranking genes. Here we mostly focus on P-value-

based approaches because of their popularity.

Analysis of joint effects
As an alternative to marginal analysis, joint analysis

simultaneously accounts for the effects of all genes.

For subject i in a specific dataset, still assume the

logistic model log it ðPðYi ¼ 1jXiÞÞ ¼ b0 þ XT
i b,

where b0 is the intercept, and b is the d � 1vector

of regression coefficient. With gene expression data,

for example, those analyzed in the next section,

n� d, and MLE cannot be straightforwardly com-

puted. In addition, it is expected that of a large

number of profiled genes, only a small subset is asso-

ciated with the response. With such considerations,

we consider the Lasso penalized estimate [13, 14],

which is defined as:

b̂ ¼ arg max

1

n

Xn

i¼1

½IðYi¼ 1Þ logPðYi ¼ 1 Xij Þ

þ IðYi¼ 0Þ logð1� PðYi ¼ 1 Xij ÞÞ�

� l
Xd

j

bj

���
���

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

l is the data-dependent tuning parameter, and is

selected using V-fold cross validation in data analysis.

bj is the jth component of b. Genes corresponding to

the non-zero components of b are identified as asso-

ciated with cancer [13]. After Lasso estimation and

gene selection are applied to each dataset, we can

evaluate the overlaps of identified genes across data-

sets. In data analysis, Lasso is realized using R package

glmnet.
The Lasso estimate (as well as other penalized es-

timates) and hence the set of selected genes depend

on the tuning parameter. Although there have been

extensive investigations, choosing the proper tuning

for a practical dataset still remains a challenging

Observations from GEO 673



problem. To partly overcome the tuning selection

problem, the stability selection approach [15] has

been suggested and proceeds as follows. For each

dataset (a) randomly select half of the observations

without replacement. Apply Lasso estimation; (b)

repeat Step (a) 100 times; (c) for each gene, compute

its probability of being selected in the 100 samplings;

and (d) genes with probabilities of being selected

over a certain cutoff are identified. After this proced-

ure is applied to each dataset separately, we can

evaluate the overlap of identified important genes.

The cutoff parameter is user-determined. In the

GEO data analysis, we find that there are few

genes with high probabilities of being selected. We

thus set a loose cutoff as 0.1. In the GEO data ana-

lysis, some datasets have small sample sizes, as can be

seen from Table 1. With small datasets, selecting half

of the subjects leads to an even smaller sample size

and may create a convergence problem when com-

puting Lasso. Thus, the stability selection approach is

only applied to datasets with at least six controls.

The two Lasso-based approaches described above

only examine whether a gene is selected or not.

Loosely speaking, they correspond to Approaches 1

and 2 under marginal analysis. Conceptually, it is pos-

sible to develop the joint analysis counterpart of

Approach 3. However, in high-dimensional analysis,

there is still extensive debate on how to compute

P-values. There are a few approaches with asymptotic

validity. However, in practical data analysis, they are

only moderately successful. To be conservative, we

will not examine joint analysis approach that involves

significance level. In the literature, there are a large

number of studies implementing Lasso penalization to

cancer gene expression data [13, 39, 40]. Many alter-

native approaches, such as boosting, thresholding,

Bayesian, can be applied to analyze the joint effects

of genes. Penalization can be preferred, as it has lucid

statistical properties, affordable computational cost

and satisfactory empirical performance [13, 40].

Beyond Lasso, other penalization approaches, such

as bridge, minimax concave penalty and smoothly

clipped absolute deviation, are also applicable. Lasso

is chosen, as numerically it is the simplest and the most

stable. In stability selection, the cutoff is much lower

than that considered in [15]. With a higher cutoff, few

or none of the genes in GEO analysis may be selected.

Multiple factors may contribute to the overall low

probabilities. The first, and most important, is the

small sample size of individual datasets. Second, in

cancer genomic studies, the signals are usually weak.

In addition, as with any statistical approach, the per-

formance of penalized methods may still need

improvement.

ANALYSIS OF GEODATA
GEO [7], or Gene Expression Omnibus, is a

National Center for Biotechnology Information

database for gene expression data. It hosts a large

number of cancer genomic datasets. Datasets to be

analyzed were assembled in June 2012. Our data

collection has been limited to human cancer studies

with both case and control samples using one chan-

nel microarrays. Our search identifies 28 datasets.

Two of them are removed as they profiled a very

small number of genes. A total of 26 datasets are

included in data analysis, covering five types of can-

cers. There are 12 datasets on breast cancer, 1 on

lymphoma, 4 on ovarian cancer, 2 on pancreatic

cancer and 7 on prostate cancer. All of the datasets

used total RNA extracted from human carcinoma

specimens, which were clinically removed from

cancer patients. Brief information on the datasets is

Table 1: Overview of the 26 GEO datasets

Type Series no and
platform

Case Control Reference

Breast _GSE14548_GPL1352 38 28 [16]
Breast _GSE14999_GPL3991 68 61 [17]
Breast _GSE15852_GPL96 43 43 [18]
Breast _GSE20086_GPL570 6 6 [19]
Breast _GSE21947_GPL96 15 15 [20]
Breast _GSE22544_GPL570 16 4 [21]
Breast _GSE22820_GPL4133 176 10 [22]
Breast _GSE33447_GPL14550 8 8 [23]
Breast _GSE3744_GPL570 40 7 [24]
Breast _GSE5364_GPL96 183 13 [25]
Breast _GSE7882_GPL5326 54 7 [26]
Breast _GSE9574_GPL96 14 15 [27]
Lymphoma _GSE28442_GPL570 4 4 GEO

website
Ovarian _GSE12470_GPL887 43 10 [28]
Ovarian _GSE14407_GPL570 12 12 [29]
Ovarian _GSE15578_GPL570 11 6 GEO

website
Ovarian _GSE18520_GPL570 53 10 [30]
Pancreatic _GSE16515_GPL570 36 16 [31]
Pancreatic _GSE19650_GPL570 15 7 [32]
Prostate _GSE11682_GPL4133 17 17 [33]
Prostate _GSE12378_GPL5175 36 3 [34]
Prostate _GSE14206_GPL887 53 14 [35]
Prostate _GSE16120_GPL887 51 14 [36]
Prostate _GSE17906_GPL570 13 12 [37]
Prostate _GSE29079_GPL5175 47 48 [38]
Prostate _GSE32269_GPL96 51 4 GEO

website
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provided in Table 1. Nine microarray platforms were

used in profiling. In our analysis, we use the pro-

cessed gene expression values available from the

GEO depository. A total of 6890 genes are profiled

in all 26 datasets. Following [12], our analysis is

focused on those genes only. It is acknowledged

that some important genes may be left out by this

screening. However, as the number of genes left is

still large, this may not be a serious concern. In

addition, using all genes may create a missing meas-

urement problem, which brings additional

complexity.

Analysis of marginal effects
The analysis results of Approach 1, Approach 1-fold

and Approach 1 t-test are shown in Table 2,

Supplementary Tables S1 and S2, respectively.

Detailed results using different ranking statistics are

slightly different. However, the overall observed pat-

terns are similar. This is in line with [10], which

shows that marginal rankings using several com-

monly adopted statistics (including the three investi-

gated here) are highly correlated. Take Table 2 as an

example. The first observation is that for datasets on

the same type of cancer, the number of overlapped

genes ranked in the top 100 is small. For breast

cancer, the largest number of overlap is 27; for ovar-

ian cancer, it is 4; for pancreatic cancer, the two

identified sets have 4 genes in common; and for

prostate cancer, the largest number of overlap is 74.

The second observation is that the sets of top 100

genes identified in datasets on different types of

cancers have very small overlap. Examining the

off-block-diagonal elements of Table 2 shows that

the largest number of overlap is 8.

The analysis results of Approach 2 and Approach 2

t-test with FDR¼ 0.1 are shown in Table 3 and

Supplementary Table S3, respectively. We have

also examined results with FDR¼ 0.01. Fewer

genes are identified, but the overall patterns of ob-

servations are similar. We again observe that using

logistic regression and t-test leads to different numer-

ical results but similar qualitative conclusions. Take

Table 3 as an example. It shows that with the FDR

control, different datasets on the same cancer may

identify a dramatically different number of genes.

Consider, for example, the four ovarian cancer data-

sets. The numbers of identified genes are 2307, 0, 0

and 3345, respectively. In some cases, there is an

‘improvement’ in overlap. Consider the first and

fourth ovarian cancer datasets. Under Approach 1,

the two top 100 sets have four genes in common.

Under Approach 2, total of 1167 common genes are

identified by the two datasets. The second observa-

tion is that for datasets on different types of

cancers, there may also be ‘improvement’ in the

overlap. Consider, for example, the first breast

cancer and the first ovarian cancer datasets. Under

Approach 1, there are two overlapped genes. As a

comparison, under Approach 2, there are 655 genes

in common.

The analysis results of Approach 3 are shown in

Figures 1–3 for the three correlations. The heat

maps show the correlation matrices between the

GVPs. Positive correlations are shown in red, and

negative correlations are shown in green. Different

cancers are represented using different colors shown

on the left of the figures. Examining the figures shows

that different correlations lead to different quantita-

tive results,;however, the qualitative observations are

similar. Consider, for example, Figure 1. Except for

several breast cancer datasets, in general, the correl-

ations among datasets on the same cancers are weak.

For different types of cancers, the correlations are

mostly weak. Hierarchical clustering can cluster

some datasets on the same cancers together, but not

always. For example with the four ovarian cancer

datasets, the first level of clustering puts GSE14407

and GSE 18520 in the same cluster; GSE15578 and

GSE12470 are put in the same cluster in the second

level of clustering. However, the two clusters do not

unite until at the last level.

The 26 datasets use nine different platforms. It is

possible that there may be batch effects, which may

potentially bias the analysis. Multiple methods have

been developed to correct such effects [41].

Examples may include singular value decomposition,

standard linear regression, Combat, surrogate variable

analysis (SVA) and others. Here we apply the

Combat function in the SVA package [42], which

conducts cross-platform normalization using empir-

ical Bayes approach. Compared with other methods,

Combat can be robust to outliers in small

datasets. Supplementary Figures 1–3 correspond to

Figures 1–3, with cross-platform normalized data.

The observations are slightly different, but the over-

all conclusions are similar.

Analysis of joint effects
We apply the Lasso approach to each dataset

separately. The tuning parameter is selected using 5-

fold cross validation. Results are shown in Table 4. A

Observations from GEO 675
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small number of genes are identified as cancer-asso-

ciated genes. For breast cancer, the largest number of

identified genes for a single dataset is 26, and the

smallest number is 0. For the lymphoma dataset,

four genes are identified. For the four ovarian datasets,

6, 4, 1, and 10 genes are identified, respectively. For

the two pancreatic cancer datasets, 0 and 5 genes are

identified. And for the prostate cancer datasets, the

largest number is 27, and the smallest number is 0.

It is concluded that for the same cancers, the gene

identification results can be significantly different.

For datasets on different types of cancers, one gene

is shared by a breast and an ovarian cancer datasets, and

another gene is shared by a breast and a pancreatic

cancer datasets. Otherwise, there is no common gene.

The ‘stability selectionþ Lasso’ approach is

applied to each dataset. Results are summarized in

Table 5. With a relatively loose cutoff (0.1), this

approach identifies more genes than the straightfor-

ward application of Lasso. For example, for the first

breast cancer dataset, 32 genes are identified, com-

pared with 26 in Table 4. For the two pancreatic

cancer datasets, 15 and 10 genes are identified, com-

pared with 0 and 5 in Table 4. However, for datasets

on the same or different cancers, the number of

overlapped genes remains small.

Figure 1: Analysis of marginal effects: Approach 3 with Pearson correlation.
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DISCUSSION
In the literature, when analyzing independent data-

sets on the same cancers, some studies such as [1, 2]

reinforce that different datasets share the same set of

susceptibility genes. It should be noted that the val-

idity of such a condition has not been carefully

checked. In our analysis of marginal and joint effects,

we observe that the number of overlapped genes is

small. In the analysis of datasets on different types of

cancers, several studies including [4, 43, 44] have

suggested that multiple cancers share common mar-

kers. A few pathways, such as DNA repair, cell cycle,

apoptosis and RAS, have been generally suggested as

‘cancer associated’. However, in our analysis, it is

observed that even though multiple cancers may

have overlapped markers, the degree of overlap is

small.

Multiple factors may have contributed to the dis-

crepancy between our analysis results and the pub-

lished ones. First, data quality may plan an important

role. Multi-dataset analysis results hinge on the qual-

ity of each individual dataset. Our data selection has

been conducted in an ‘unsupervised’ manner.

Without having access to original experimental

details and raw data, quality control has not been

conducted. It is known that the quality of GEO

datasets varies. GEO is selected, as it contains a

large number of public datasets and has been used

Figure 2: Analysis of marginal effects: Approach 3 with Kendall correlation.
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in many studies. Analysis of more controlled datasets,

such as TCGA (The Cancer Genome Atlas), may

potentially lead to different conclusions. Second,

the analysis strategies have been different. In this

study, we first identify the ‘strongest signals’ for

each individual dataset, and then search for overlaps

across datasets. In studies such as [43], the strategy is

to search for genes showing persistent effects across

cancer types (while genes showing strong effects in

one or a small number of datasets are not of interest).

Note that such genes do not necessarily have the

strongest effects for each individual cancer. Third,

in cancer gene expression studies, it is commonly

agreed that the signals are in general weak, even

for those well-known ‘cancer genes’. This, coupled

with the high variability of gene expression measure-

ments, may create high variation in gene identifica-

tion. Fourth, several aspects of our analysis still need

improvement. Normalization plays an important role

in microarray analysis. In our analysis, each dataset

has been processed separately. In addition, we have

experimented cross-platform normalization using

Combat. Nevertheless, without having access to

the raw data, there may be ‘residual’ batch effects

to bias the analysis. In our analysis, genes are the

functional units. It has been suggested that path-

way-based analysis may increase stability and partly

solve the lack-of-overlapped gene problem [45].

Figure 3: Analysis of marginal effects: Approach 3 with Spearman correlation.
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A large number of analyses conducted nowadays are

still gene-based. In addition, many genes in the GEO

datasets are not well curated. Thus, here we have

focused on gene-based analysis. It should be noted

that with our analysis (and many of similar kind in

the literature), only associations between genes and

cancer risk can be established. More definitive results

on causation demand more profiling data and finer

mechanistic studies.

CONCLUSION
Although in the literature single-dataset analysis still

dominates, recent studies have suggested that multi-

datasets analysis may provide additional insights and

complement single-dataset analysis. In this study, we

have focused on the similarity of genes identified in

multiple cancer gene expression studies, which is an

important aspect of multi-datasets analysis. A few

existing statistical methods are reviewed. It is noted

that there are other methods that can serve similar

purposes. For example, the logistic-model-based

methods can be replaced with those based on other

generalized linear models. In addition, there are

many others methods that can analyze the joint

effects of all genes. The similarity of identified gene

sets is evaluated using the number of overlapped

genes, whereas measures such as the Jaccard index

can be more comprehensive. Here it is noted that

as the degree of overlap is really small, we do not

expect significantly different results with other over-

lap measures. The reviewed methods are relatively

simple and more extensively adopted, and hence de-

serve higher priority.

Twenty-six GEO datasets are analyzed, and few

overlapped genes are identified. It is noted that our

Table 4: Analysis of joint effects: Lasso

B B B B B B B B B B B B LL O O O O PPaa PPa PPrr PPrr PPrr PPrr PPrr PPrr PPrr

B 26 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

B 2 25 0 0 0 1 1 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

B 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 1 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 1 0 0 0 1 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 1 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 2 2 0 0 0 0 1 0 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

O 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

Pa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pa 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 4 0 0 0

Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 14 0 0 0

Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0

Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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analysis does not rule out the possibility that datasets

on the same or different cancers share common

genes. It is simply that such shared genes are not

commonly observed using the reviewed methods

and GEO microarray datasets. In the above section,

we enumerate multiple possible reasons why our

findings are different from the published studies.

Identifying the exact cause is of great interest.

However, it does not seem feasible without having

access to all the experimental details and conducting

mechanistic studies.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Multi-dataset analysis may provide additional insights beyond
single-dataset analysis in cancer gene expression profiling
studies.

� There are statistical methods that can be used to evaluate the
similarity of identified genes in multi-dataset analysis. Bothmar-
ginal and joint effects can be analyzed.

� In the analysis ofGEOdatasets, it is found thatdifferentdatasets
on the same cancers may lead to significantly different gene
identification results. Few genes are identified in multiple
datasets.

� In the analysis of GEO datasets, it is found that there are few
genes shared by datasets on different types of cancers.

Acknowledgements
The authors thank the editor, associate editor and three re-

viewers for careful review and insightful comments.

Table 5: Analysis of joint effects: stability selection with cutoff 0.1
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